Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nucleic Acids Res ; 50(6): 3432-3444, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35234892

RESUMEN

DNA helicases of the RecD2 family are ubiquitous. Bacillus subtilis RecD2 in association with the single-stranded binding protein SsbA may contribute to replication fork progression, but its detailed action remains unknown. In this work, we explore the role of RecD2 during DNA replication and its interaction with the RecA recombinase. RecD2 inhibits replication restart, but this effect is not observed in the absence of SsbA. RecD2 slightly affects replication elongation. RecA inhibits leading and lagging strand synthesis, and RecD2, which physically interacts with RecA, counteracts this negative effect. In vivo results show that recD2 inactivation promotes RecA-ssDNA accumulation at low mitomycin C levels, and that RecA threads persist for a longer time after induction of DNA damage. In vitro, RecD2 modulates RecA-mediated DNA strand-exchange and catalyzes branch migration. These findings contribute to our understanding of how RecD2 may contribute to overcome a replicative stress, removing RecA from the ssDNA and, thus, it may act as a negative modulator of RecA filament growth.


Asunto(s)
Proteínas Bacterianas , Rec A Recombinasas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN de Cadena Simple/metabolismo , Rec A Recombinasas/metabolismo
2.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36901969

RESUMEN

Replication fork rescue requires Bacillus subtilis RecA, its negative (SsbA) and positive (RecO) mediators, and fork-processing (RadA/Sms). To understand how they work to promote fork remodeling, reconstituted branched replication intermediates were used. We show that RadA/Sms (or its variant, RadA/Sms C13A) binds to the 5'-tail of a reversed fork with longer nascent lagging-strand and unwinds it in the 5'→3' direction, but RecA and its mediators limit unwinding. RadA/Sms cannot unwind a reversed fork with a longer nascent leading-strand, or a gapped stalled fork, but RecA interacts with and activates unwinding. Here, the molecular mechanism by which RadA/Sms, in concert with RecA, in a two-step reaction, unwinds the nascent lagging-strand of reversed or stalled forks is unveiled. First, RadA/Sms, as a mediator, contributes to SsbA displacement from the forks and nucleates RecA onto single-stranded DNA. Then, RecA, as a loader, interacts with and recruits RadA/Sms onto the nascent lagging strand of these DNA substrates to unwind them. Within this process, RecA limits RadA/Sms self-assembly to control fork processing, and RadA/Sms prevents RecA from provoking unnecessary recombination.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN , Proteínas de Unión al ADN/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Rec A Recombinasas/metabolismo , ADN de Cadena Simple/metabolismo
3.
Nucleic Acids Res ; 47(10): 5141-5154, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-30916351

RESUMEN

Bacillus subtilis diadenylate cyclase DisA converts two ATPs into c-di-AMP, but this activity is suppressed upon interaction with sites of DNA damage. DisA forms a rapid moving focus that pauses upon induction of DNA damage during spore development. We report that DisA pausing, however, was not observed in the absence of the RecO mediator or of the RecA recombinase, suggesting that DisA binds to recombination intermediates formed by RecA in concert with RecO. DisA, which physically interacts with RecA, was found to reduce its ATPase activity without competing for nucleotides or ssDNA. Furthermore, increasing DisA concentrations inhibit RecA-mediated DNA strand exchange, but this inhibition failed to occur when RecA was added prior to DisA, and was independent of RecA-mediated nucleotide hydrolysis or increasing concentrations of c-di-AMP. We propose that DisA may preserve genome integrity by downregulating RecA activities at several steps of the DNA damage tolerance pathway, allowing time for the repair machineries to restore genome stability. DisA might reduce RecA-mediated template switching by binding to a stalled or reversed fork.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Rec A Recombinasas/metabolismo , Dominio Catalítico , Daño del ADN , ADN Bacteriano/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Genoma Bacteriano , Proteínas Fluorescentes Verdes/metabolismo , Hidrólisis , Microscopía Fluorescente , Mutagénesis Sitio-Dirigida , Liasas de Fósforo-Oxígeno/genética , Mapeo de Interacción de Proteínas , Recombinación Genética
4.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34768753

RESUMEN

DNA lesions that impede fork progression cause replisome stalling and threaten genome stability. Bacillus subtilis RecA, at a lesion-containing gap, interacts with and facilitates DisA pausing at these branched intermediates. Paused DisA suppresses its synthesis of the essential c-di-AMP messenger. The RuvAB-RecU resolvasome branch migrates and resolves formed Holliday junctions (HJ). We show that DisA prevents DNA degradation. DisA, which interacts with RuvB, binds branched structures, and reduces the RuvAB DNA-dependent ATPase activity. DisA pre-bound to HJ DNA limits RuvAB and RecU activities, but such inhibition does not occur if the RuvAB- or RecU-HJ DNA complexes are pre-formed. RuvAB or RecU pre-bound to HJ DNA strongly inhibits DisA-mediated synthesis of c-di-AMP, and indirectly blocks cell proliferation. We propose that DisA limits RuvAB-mediated fork remodeling and RecU-mediated HJ cleavage to provide time for damage removal and replication restart in order to preserve genome integrity.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN/fisiología , Resolvasas de Unión Holliday/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Rotura Cromosómica , ADN Bacteriano/metabolismo , ADN Cruciforme/metabolismo , Proteínas de Unión al ADN/metabolismo , Fosfatos de Dinucleósidos/metabolismo , Escherichia coli/genética , Magnesio/metabolismo
5.
Nucleic Acids Res ; 46(14): 7206-7220, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29947798

RESUMEN

The ubiquitous RarA/Mgs1/WRNIP protein plays a crucial, but poorly understood role in genome maintenance. We show that Bacillus subtilis RarA, in the apo form, preferentially binds single-stranded (ss) over double-stranded (ds) DNA. SsbA bound to ssDNA loads RarA, and for such recruitment the amphipathic C-terminal domain of SsbA is required. RarA is a DNA-dependent ATPase strongly stimulated by ssDNA-dsDNA junctions and SsbA, or by dsDNA ends. RarA, which may interact with PriA, does not stimulate PriA DNA unwinding. In a reconstituted PriA-dependent DNA replication system, RarA inhibited initiation, but not chain elongation. The RarA effect was not observed in the absence of SsbA, or when the host-encoded preprimosome and the DNA helicase are replaced by proteins from the SPP1 phage with similar function. We propose that RarA assembles at blocked forks to maintain genome integrity. Through its interaction with SsbA and with a preprimosomal component, RarA might impede the assembly of the replicative helicase, to prevent that recombination intermediates contribute to pathological DNA replication restart.


Asunto(s)
Adenosina Trifosfatasas/genética , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , ADN/química , ADN/genética , ADN/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Genoma Bacteriano/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Dominios Proteicos , Especificidad por Sustrato
6.
Nucleic Acids Res ; 45(15): 8873-8885, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28911099

RESUMEN

Bacillus subtilis DprA and RecX proteins, which interact with RecA, are crucial for efficient chromosomal and plasmid transformation. We showed that RecA, in the rATP·Mg2+ bound form (RecA·ATP), could not compete with RecX, SsbA or SsbB for assembly onto single-stranded (ss)DNA, but RecA·dATP partially displaced these proteins from ssDNA. RecX promoted reversible depolymerization of preformed RecA·ATP filaments. The two-component DprA-SsbA mediator reversed the RecX negative effect on RecA filament extension, but not DprA or DprA and SsbB. In the presence of DprA-SsbA, RecX added prior to RecA·ATP inhibited DNA strand exchange, but this inhibition was reversed when RecX was added after RecA. We propose that RecA nucleation is more sensitive to RecX action than is RecA filament growth. DprA-SsbA facilitates formation of an active RecA filament that directly antagonizes the inhibitory effects of RecX. RecX and DprA enable chromosomal transformation by altering RecA filament dynamics. DprA-SsbA and RecX proteins constitute a new regulatory network of RecA function. DprA-SsbA contributes to the formation of an active RecA filament and directly antagonizes the inhibitory effects of RecX during natural transformation.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de la Membrana/genética , Rec A Recombinasas/genética , Transformación Bacteriana , Adenosina Trifosfato/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/química , Cromosomas Bacterianos/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Cinética , Proteínas de la Membrana/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Rec A Recombinasas/metabolismo , Recombinación Genética
7.
Nucleic Acids Res ; 44(6): 2754-68, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26786319

RESUMEN

Natural chromosomal transformation is one of the primary driving forces of bacterial evolution. This reaction involves the recombination of the internalized linear single-stranded (ss) DNA with the homologous resident duplex via RecA-mediated integration in concert with SsbA and DprA or RecO. We show that sequence divergence prevents Bacillus subtilis chromosomal transformation in a log-linear fashion, but it exerts a minor effect when the divergence is localized at a discrete end. In the nucleotide bound form, RecA shows no apparent preference to initiate recombination at the 3'- or 5'-complementary end of the linear duplex with circular ssDNA, but nucleotide hydrolysis is required when heterology is present at both ends. RecA·dATP initiates pairing of the linear 5' and 3' complementary ends, but only initiation at the 5'-end remains stably paired in the absence of SsbA. Our results suggest that during gene transfer RecA·ATP, in concert with SsbA and DprA or RecO, shows a moderate preference for the 3'-end of the duplex. We show that RecA-mediated recombination initiated at the 3'- or 5'-complementary end might have significant implication on the ecological diversification of bacterial species with natural transformation.


Asunto(s)
Bacillus subtilis/genética , Cromosomas Bacterianos/química , ADN Bacteriano/genética , Rec A Recombinasas/genética , Recombinación Genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/metabolismo , ADN Bacteriano/metabolismo , ADN Circular/genética , ADN Circular/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Rec A Recombinasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Nucleic Acids Res ; 44(4): 1833-44, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26826709

RESUMEN

Bacillus subtilis is one of the bacterial members provided with a nonhomologous end joining (NHEJ) system constituted by the DNA-binding Ku homodimer that recruits the ATP-dependent DNA Ligase D (BsuLigD) to the double-stranded DNA breaks (DSBs) ends. BsuLigD has inherent polymerization and ligase activities that allow it to fill the short gaps that can arise after realignment of the broken ends and to seal the resulting nicks, contributing to genome stability during the stationary phase and germination of spores. Here we show that BsuLigD also has an intrinsic 5'-2-deoxyribose-5-phosphate (dRP) lyase activity located at the N-terminal ligase domain that in coordination with the polymerization and ligase activities allows efficient repairing of 2'-deoxyuridine-containing DNA in an in vitro reconstituted Base Excision Repair (BER) reaction. The requirement of a polymerization, a dRP removal and a final sealing step in BER, together with the joint participation of BsuLigD with the spore specific AP endonuclease in conferring spore resistance to ultrahigh vacuum desiccation suggest that BsuLigD could actively participate in this pathway. We demonstrate the presence of the dRP lyase activity also in the homolog protein from the distantly related bacterium Pseudomonas aeruginosa, allowing us to expand our results to other bacterial LigDs.


Asunto(s)
Bacillus subtilis/enzimología , Reparación del ADN por Unión de Extremidades/genética , ADN Ligasas/genética , Liasas de Fósforo-Oxígeno/genética , Roturas del ADN de Doble Cadena , ADN Ligasas/metabolismo , Reparación del ADN/genética , Liasas de Fósforo-Oxígeno/metabolismo , Pseudomonas aeruginosa/enzimología
9.
Mol Microbiol ; 99(2): 328-37, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26417647

RESUMEN

The genetic switch of Lactobacillus casei bacteriophage A2 is regulated by the CI protein, which represses the early lytic promoter PR and Cro that abolishes expression from the lysogenic promoter PL . Lysogens contain equivalent cI and cro-gp25 mRNA concentrations, i.e., CI only partially represses P(R), predicting a lytic cycle dominance. However, A2 generates stable lysogens. This may be due to Gp25 binding to the cro-gp25 mRNA between the ribosomal binding site and the cro start codon, which abolishes its translation. Upon lytic cycle induction, CI is partially degraded, cro-gp25 mRNA levels increase, and Cro accumulates, launching viral progeny production. The concomitant concentration increase of Gp25 restricts cro mRNA translation, which, together with the low but detectable levels of CI late during the lytic cycle, promotes reentry of part of the cell population into the lysogenic cycle, thus explaining the low proportion of L. casei lysogens that become lysed (∼ 1%). A2 shares its genetic switch structure with many other Firmicutes phages. The data presented may constitute a model of how these phages make the decision for lysis versus lysogeny.


Asunto(s)
Bacteriófagos/fisiología , Regulación Viral de la Expresión Génica , Lacticaseibacillus casei/virología , Lisogenia , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Proteínas de la Cola de los Virus/metabolismo , Bacteriófagos/genética , Unión Proteica , ARN Mensajero/genética , ARN Viral/genética , Proteínas de la Cola de los Virus/genética
10.
Nucleic Acids Res ; 43(19): 9249-61, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26243774

RESUMEN

The ω gene is encoded in broad-host range and low-copy plasmids. It is genetically linked to antibiotic resistance genes of the major human pathogens of phylum Firmicutes. The homodimeric forms of ω (ω2) coordinate the plasmid copy number control, faithful partition (ω2 and δ2) and better-than-random segregation (ζϵ2ζ) systems. The promoter (P) of the ωϵζ operon (Pω) transiently interacts with ω2. Adding δ2 facilitates the formation of stable ω2·Pω complexes. Here we show that limiting ω2 interacts with the N-terminal domain of the ß' subunit of the Bacillus subtilis RNA polymerase (RNAP-σ(A)) vegetative holoenzyme. In this way ω2 recruits RNAP-σ(A) onto Pω DNA. Partial Pω occupancy by ω2 increases the rate at which RNAP-σ(A) complex shifts from its closed (RPC) to open (RPO) form. This shift increases transcription activation. Adding δ2 further increases the rate of Pω transcription initiation, perhaps by stabilizing the ω2·Pω complex. In contrast, full operator occupancy by ω2 facilitates RPC formation, but it blocks RPO isomerization and represses Pω utilization. The stimulation and inhibition of RPO formation is the mechanism whereby ω2 mediates copy number fluctuation and stable plasmid segregation. By this mechanism, ω2 also indirectly influences the acquisition of antibiotic resistance genes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Represoras/metabolismo , Factor sigma/metabolismo , Transactivadores/metabolismo , Adenosina Trifosfatasas/metabolismo , Bacillus subtilis/enzimología , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regiones Operadoras Genéticas , Regiones Promotoras Genéticas , Unión Proteica
11.
Nucleic Acids Res ; 43(12): 5984-97, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26001966

RESUMEN

Genetic data have revealed that the absence of Bacillus subtilis RecO and one of the end-processing avenues (AddAB or RecJ) renders cells as sensitive to DNA damaging agents as the null recA, suggesting that both end-resection pathways require RecO for recombination. RecA, in the rATP·Mg(2+) bound form (RecA·ATP), is inactive to catalyze DNA recombination between linear double-stranded (ds) DNA and naked complementary circular single-stranded (ss) DNA. We showed that RecA·ATP could not nucleate and/or polymerize on SsbA·ssDNA or SsbB·ssDNA complexes. RecA·ATP nucleates and polymerizes on RecO·ssDNA·SsbA complexes more efficiently than on RecO·ssDNA·SsbB complexes. Limiting SsbA concentrations were sufficient to stimulate RecA·ATP assembly on the RecO·ssDNA·SsbB complexes. RecO and SsbA are necessary and sufficient to 'activate' RecA·ATP to catalyze DNA strand exchange, whereas the AddAB complex, RecO alone or in concert with SsbB was not sufficient. In presence of AddAB, RecO and SsbA are still necessary for efficient RecA·ATP-mediated three-strand exchange recombination. Based on genetic and biochemical data, we proposed that SsbA and RecO (or SsbA, RecO and RecR in vivo) are crucial for RecA activation for both, AddAB and RecJ-RecQ (RecS) recombinational repair pathways.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Rec A Recombinasas/metabolismo , Reparación del ADN por Recombinación , Adenosina Trifosfato/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Daño del ADN , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/fisiología , Exodesoxirribonucleasas/genética , Eliminación de Gen
12.
Nucleic Acids Res ; 42(4): 2295-307, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24285298

RESUMEN

Bacillus subtilis RecA is important for spore resistance to DNA damage, even though spores contain a single non-replicating genome. We report that inactivation of RecA or its accessory factors, RecF, RecO, RecR and RecX, drastically reduce survival of mature dormant spores to ultrahigh vacuum desiccation and ionizing radiation that induce single strand (ss) DNA nicks and double-strand breaks (DSBs). The presence of non-cleavable LexA renders spores less sensitive to DSBs, and spores impaired in DSB recognition or end-processing show sensitivities to X-rays similar to wild-type. In vitro RecA cannot compete with SsbA for nucleation onto ssDNA in the presence of ATP. RecO is sufficient, at least in vitro, to overcome SsbA inhibition and stimulate RecA polymerization on SsbA-coated ssDNA. In the presence of SsbA, RecA slightly affects DNA replication in vitro, but addition of RecO facilitates RecA-mediated inhibition of DNA synthesis. We propose that repairing of the DNA lesions generates a replication stress to germinating spores, and the RecA·ssDNA filament might act by preventing potentially dangerous forms of DNA repair occurring during replication. RecA might stabilize a stalled fork or prevent or promote dissolution of reversed forks rather than its cleavage that should require end-processing.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/fisiología , Roturas del ADN de Doble Cadena , Rec A Recombinasas/fisiología , Bacillus subtilis/efectos de la radiación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Replicación del ADN , Enzimas de Restricción del ADN/genética , Enzimas de Restricción del ADN/fisiología , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Mutación , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo , Respuesta SOS en Genética , Esporas Bacterianas/genética , Esporas Bacterianas/efectos de la radiación
13.
J Biol Chem ; 289(40): 27640-52, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25138221

RESUMEN

Bacillus subtilis competence-induced RecA, SsbA, SsbB, and DprA are required to internalize and to recombine single-stranded (ss) DNA with homologous resident duplex. RecA, in the ATP · Mg(2+)-bound form (RecA · ATP), can nucleate and form filament onto ssDNA but is inactive to catalyze DNA recombination. We report that SsbA or SsbB bound to ssDNA blocks the RecA filament formation and fails to activate recombination. DprA facilitates RecA filamentation; however, the filaments cannot engage in DNA recombination. When ssDNA was preincubated with SsbA, but not SsbB, DprA was able to activate DNA strand exchange dependent on RecA · ATP. This work demonstrates that RecA · ATP, in concert with SsbA and DprA, catalyzes DNA strand exchange, and SsbB is an accessory factor in the reaction. In contrast, RecA · dATP efficiently catalyzes strand exchange even in the absence of single-stranded binding proteins or DprA, and addition of the accessory factors marginally improved it. We proposed that the RecA-bound nucleotide (ATP and to a lesser extent dATP) might dictate the requirement for accessory factors.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/metabolismo , Rec A Recombinasas/metabolismo , Recombinación Genética , Bacillus subtilis/enzimología , Proteínas Bacterianas/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de la Membrana/genética , Rec A Recombinasas/genética
14.
J Biol Chem ; 289(25): 17634-46, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24770420

RESUMEN

Double-strand break repair involves the formation of Holliday junction (HJ) structures that need to be resolved to promote correct replication and chromosomal segregation. The molecular mechanisms of HJ branch migration and/or resolution are poorly characterized in Firmicutes. Genetic evidence suggested that the absence of the RuvAB branch migration translocase and the RecU HJ resolvase is synthetically lethal in Bacillus subtilis, whereas a recU recG mutant was viable. In vitro RecU, which is restricted to bacteria of the Firmicutes phylum, binds HJs with high affinity. In this work we found that RecU does not bind simultaneously with RecG to a HJ. RuvB by interacting with RecU bound to the central region of HJ DNA, loses its nonspecific association with DNA, and re-localizes with RecU to form a ternary complex. RecU cannot stimulate the ATPase or branch migration activity of RuvB. The presence of RuvB·ATPγS greatly stimulates RecU-mediated HJ resolution, but the addition of ATP or RuvA abolishes this stimulatory effect. A RecU·HJ·RuvAB complex might be formed. RecU does not increase the RuvAB activities but slightly inhibits them.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , ADN Cruciforme/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/genética , ADN Bacteriano/genética , ADN Cruciforme/genética , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo
15.
PLoS Genet ; 8(12): e1003126, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23284295

RESUMEN

The Bacillus subtilis recH342 strain, which decreases interspecies recombination without significantly affecting the frequency of transformation with homogamic DNA, carried a point mutation in the putative recX (yfhG) gene, and the mutation was renamed as recX342. We show that RecX (264 residues long), which shares partial identity with the Proteobacterial RecX (<180 residues), is a genuine recombination protein, and its primary function is to modulate the SOS response and to facilitate RecA-mediated recombinational repair and genetic recombination. RecX-YFP formed discrete foci on the nucleoid, which were coincident in time with RecF, in response to DNA damage, and on the poles and/or the nucleoid upon stochastic induction of programmed natural competence. When DNA was damaged, the RecX foci co-localized with RecA threads that persisted for a longer time in the recX context. The absence of RecX severely impaired natural transformation both with plasmid and chromosomal DNA. We show that RecX suppresses the negative effect exerted by RecA during plasmid transformation, prevents RecA mis-sensing of single-stranded DNA tracts, and modulates DNA strand exchange. RecX, by modulating the "length or packing" of a RecA filament, facilitates the initiation of recombination and increases recombination across species.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Recombinación Homóloga/genética , Rec A Recombinasas/genética , Proteínas Bacterianas/metabolismo , Daño del ADN/genética , Mutación Puntual , Respuesta SOS en Genética , Transformación Bacteriana
16.
J Biol Chem ; 288(31): 22437-50, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23779106

RESUMEN

Naturally transformable bacteria recombine internalized ssDNA with a homologous resident duplex (chromosomal transformation) or complementary internalized ssDNAs (plasmid or viral transformation). Bacillus subtilis competence-induced DprA, RecA, SsbB, and SsbA proteins are involved in the early processing of the internalized ssDNA, with DprA physically interacting with RecA. SsbB and SsbA bind and melt secondary structures in ssDNA but limit RecA loading onto ssDNA. DprA binds to ssDNA and facilitates partial dislodging of both single-stranded binding (SSB) proteins from ssDNA. In the absence of homologous duplex DNA, DprA does not significantly increase RecA nucleation onto protein-free ssDNA. DprA facilitates RecA nucleation and filament extension onto SsbB-coated or SsbB plus SsbA-coated ssDNA. DprA facilitates RecA-mediated DNA strand exchange in the presence of both SSB proteins. DprA, which plays a crucial role in plasmid transformation, anneals complementary strands preferentially coated by SsbB to form duplex circular plasmid molecules. Our results provide a mechanistic framework for conceptualizing the coordinated events modulated by SsbB in concert with SsbA and DprA that are crucial for RecA-dependent chromosomal transformation and RecA-independent plasmid transformation.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de la Membrana/metabolismo , Rec A Recombinasas/metabolismo , Bacillus subtilis/genética , Biocatálisis , Cromosomas Bacterianos , Unión Proteica , Recombinación Genética
17.
Nucleic Acids Res ; 40(12): 5546-59, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22373918

RESUMEN

We have investigated the structural, biochemical and cellular roles of the two single-stranded (ss) DNA-binding proteins from Bacillus subtilis, SsbA and SsbB. During transformation, SsbB localizes at the DNA entry pole where it binds and protects internalized ssDNA. The 2.8-Å resolution structure of SsbB bound to ssDNA reveals a similar overall protein architecture and ssDNA-binding surface to that of Escherichia coli SSB. SsbA, which binds ssDNA with higher affinity than SsbB, co-assembles onto SsbB-coated ssDNA and the two proteins inhibit ssDNA binding by the recombinase RecA. During chromosomal transformation, the RecA mediators RecO and DprA provide RecA access to ssDNA. Interestingly, RecO interaction with ssDNA-bound SsbA helps to dislodge both SsbA and SsbB from the DNA more efficiently than if the DNA is coated only with SsbA. Once RecA is nucleated onto the ssDNA, RecA filament elongation displaces SsbA and SsbB and enables RecA-mediated DNA strand exchange. During plasmid transformation, RecO localizes to the entry pole and catalyzes annealing of SsbA- or SsbA/SsbB-coated complementary ssDNAs to form duplex DNA with ssDNA tails. Our results provide a mechanistic framework for rationalizing the coordinated events modulated by SsbA, SsbB and RecO that are crucial for RecA-dependent chromosomal transformation and RecA-independent plasmid transformation.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Recombinación Genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Cristalografía por Rayos X , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , Modelos Moleculares , Rec A Recombinasas/metabolismo
18.
FEMS Microbiol Rev ; 48(1)2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38052445

RESUMEN

Accurate DNA replication and transcription elongation are crucial for preventing the accumulation of unreplicated DNA and genomic instability. Cells have evolved multiple mechanisms to deal with impaired replication fork progression, challenged by both intrinsic and extrinsic impediments. The bacterium Bacillus subtilis, which adopts multiple forms of differentiation and development, serves as an excellent model system for studying the pathways required to cope with replication stress to preserve genomic stability. This review focuses on the genetics, single molecule choreography, and biochemical properties of the proteins that act to circumvent the replicative arrest allowing the resumption of DNA synthesis. The RecA recombinase, its mediators (RecO, RecR, and RadA/Sms) and modulators (RecF, RecX, RarA, RecU, RecD2, and PcrA), repair licensing (DisA), fork remodelers (RuvAB, RecG, RecD2, RadA/Sms, and PriA), Holliday junction resolvase (RecU), nucleases (RnhC and DinG), and translesion synthesis DNA polymerases (PolY1 and PolY2) are key functions required to overcome a replication stress, provided that the fork does not collapse.


Asunto(s)
Bacillus subtilis , Proteínas de Escherichia coli , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Replicación del ADN/genética , ADN/metabolismo , Proteínas de Escherichia coli/genética
19.
PLoS Genet ; 5(9): e1000630, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19730681

RESUMEN

Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss) DNA. The integration of homologous donor DNA into the recipient chromosome requires RecA, while plasmid establishment, which is independent of RecA, requires at least RecO and RecU. RecA and RecN colocalize at the polar DNA uptake machinery, from which RecA forms filamentous structures, termed threads, in the presence of chromosomal DNA. We show that the transformation of chromosomal and of plasmid DNA follows distinct pathways. In the absence of DNA, RecU accumulated at a single cell pole in competent cells, dependent on RecA. Upon addition of any kind of DNA, RecA formed highly dynamic thread structures, which rapidly grew and shrank, and RecU dissipated from the pole. RecO visibly accumulated at the cell pole only upon addition of plasmid DNA, and, to a lesser degree, of phage DNA, but not of chromosomal DNA. RecO accumulation was weakly influenced by RecN, but not by RecA. RecO annealed ssDNA complexed with SsbA in vitro, independent of any nucleotide cofactor. The DNA end-joining Ku protein was also found to play a role in viral and plasmid transformation. On the other hand, transfection with SPP1 phage DNA required functions from both chromosomal and plasmid transformation pathways. The findings show that competent bacterial cells possess a dynamic DNA recombination machinery that responds in a differential manner depending if entering DNA shows homology with recipient DNA or has self-annealing potential. Transformation with chromosomal DNA only requires RecA, which forms dynamic filamentous structures that may mediate homology search and DNA strand invasion. Establishment of circular plasmid DNA requires accumulation of RecO at the competence pole, most likely mediating single-strand annealing, and RecU, which possibly down-regulates RecA. Transfection with SPP1 viral DNA follows an intermediate route that contains functions from both chromosomal and plasmid transformation pathways.


Asunto(s)
Bacillus subtilis/genética , Transferencia de Gen Horizontal , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN/genética , Plásmidos/genética
20.
Front Mol Biosci ; 9: 836211, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223992

RESUMEN

PcrA depletion is lethal in wild-type Bacillus subtilis cells. The PcrA DNA helicase contributes to unwinding RNA from the template strand, backtracking the RNA polymerase, rescuing replication-transcription conflicts, and disassembling RecA from single-stranded DNA (ssDNA) by poorly understood mechanisms. We show that, in the presence of RecA, circa one PcrA/plasmid-size circular ssDNA (cssDNA) molecule hydrolyzes ATP at a rate similar to that on the isolated cssDNA. PcrA K37A, which poorly hydrolyses ATP, fails to displace RecA from cssDNA. SsbA inhibits and blocks the ATPase activities of PcrA and RecA, respectively. RecO partially antagonizes and counteracts the negative effect of SsbA on PcrA- and RecA-mediated ATP hydrolysis, respectively. Conversely, multiple PcrA molecules are required to inhibit RecA·ATP-mediated DNA strand exchange (DSE). RecO and SsbA poorly antagonize the PcrA inhibitory effect on RecA·ATP-mediated DSE. We propose that two separable PcrA functions exist: an iterative translocating PcrA monomer strips RecA from cssDNA to prevent unnecessary recombination with the mediators SsbA and RecO balancing such activity; and a PcrA cluster that disrupts DNA transactions, as RecA-mediated DSE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA