RESUMEN
Genetic studies have identified numerous regions associated with plasma fibrinogen levels in Europeans, yet missing heritability and limited inclusion of non-Europeans necessitates further studies with improved power and sensitivity. Compared with array-based genotyping, whole genome sequencing (WGS) data provides better coverage of the genome and better representation of non-European variants. To better understand the genetic landscape regulating plasma fibrinogen levels, we meta-analyzed WGS data from the NHLBI's Trans-Omics for Precision Medicine (TOPMed) program (n=32,572), with array-based genotype data from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium (n=131,340) imputed to the TOPMed or Haplotype Reference Consortium panel. We identified 18 loci that have not been identified in prior genetic studies of fibrinogen. Of these, four are driven by common variants of small effect with reported MAF at least 10 percentage points higher in African populations. Three signals (SERPINA1, ZFP36L2, and TLR10) contain predicted deleterious missense variants. Two loci, SOCS3 and HPN, each harbor two conditionally distinct, non-coding variants. The gene region encoding the fibrinogen protein chain subunits (FGG;FGB;FGA), contains 7 distinct signals, including one novel signal driven by rs28577061, a variant common in African ancestry populations but extremely rare in Europeans (MAFAFR=0.180; MAFEUR=0.008). Through phenome-wide association studies in the VA Million Veteran Program, we found associations between fibrinogen polygenic risk scores and thrombotic and inflammatory disease phenotypes, including an association with gout. Our findings demonstrate the utility of WGS to augment genetic discovery in diverse populations and offer new insights for putative mechanisms of fibrinogen regulation.
RESUMEN
ABSTRACT: Coagulation factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are critical to coagulation and platelet aggregation. We leveraged whole-genome sequence data from the Trans-Omics for Precision Medicine (TOPMed) program along with TOPMed-based imputation of genotypes in additional samples to identify genetic associations with circulating FVIII and VWF levels in a single-variant meta-analysis, including up to 45 289 participants. Gene-based aggregate tests were implemented in TOPMed. We identified 3 candidate causal genes and tested their functional effect on FVIII release from human liver endothelial cells (HLECs) and VWF release from human umbilical vein endothelial cells. Mendelian randomization was also performed to provide evidence for causal associations of FVIII and VWF with thrombotic outcomes. We identified associations (P < 5 × 10-9) at 7 new loci for FVIII (ST3GAL4, CLEC4M, B3GNT2, ASGR1, F12, KNG1, and TREM1/NCR2) and 1 for VWF (B3GNT2). VWF, ABO, and STAB2 were associated with FVIII and VWF in gene-based analyses. Multiphenotype analysis of FVIII and VWF identified another 3 new loci, including PDIA3. Silencing of B3GNT2 and the previously reported CD36 gene decreased release of FVIII by HLECs, whereas silencing of B3GNT2, CD36, and PDIA3 decreased release of VWF by HVECs. Mendelian randomization supports causal association of higher FVIII and VWF with increased risk of thrombotic outcomes. Seven new loci were identified for FVIII and 1 for VWF, with evidence supporting causal associations of FVIII and VWF with thrombotic outcomes. B3GNT2, CD36, and PDIA3 modulate the release of FVIII and/or VWF in vitro.
Asunto(s)
Moléculas de Adhesión Celular , Factor VIII , Quininógenos , Lectinas Tipo C , Receptores de Superficie Celular , Factor de von Willebrand , Humanos , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo , Factor VIII/genética , Factor VIII/metabolismo , Polimorfismo de Nucleótido Simple , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Análisis de la Aleatorización Mendeliana , Estudio de Asociación del Genoma Completo , Trombosis/genética , Trombosis/sangre , Estudios de Asociación Genética , Masculino , Células Endoteliales/metabolismo , FemeninoRESUMEN
AIMS/HYPOTHESIS: Childhood overweight increases the risk of type 2 diabetes and cardiovascular disease in adulthood. However, the impact of childhood leanness on adult obesity and disease risk has been overlooked. We examined the independent and combined influences of child and adult body size on the risk of type 2 diabetes and cardiovascular disease. METHODS: Data from the UK Biobank on 364,695 individuals of European ancestry and free of type 2 diabetes and cardiovascular disease were divided into nine categories based on their self-reported body size at age 10 and measured BMI in adulthood. After a median follow-up of 12.8 years, 33,460 individuals had developed type 2 diabetes and/or cardiovascular disease. We used Cox regression models to assess the associations of body size categories with disease incidence. RESULTS: Individuals with low body size in childhood and high body size in adulthood had the highest risk of type 2 diabetes (HR 4.73; 95% CI 4.50, 4.99), compared to those with average body size in both childhood and adulthood. This was significantly higher than the risk in those with high body size in both childhood and adulthood (HR 4.05; 95% CI 3.84, 4.26). By contrast, cardiovascular disease risk was determined by adult body size, irrespective of childhood body size. CONCLUSIONS/INTERPRETATION: Low body size in childhood exacerbates the risk of type 2 diabetes associated with adult obesity but not the risk of cardiovascular disease. Thus, promoting healthy weight management from childhood to adulthood, among lean children, is crucial.
Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Obesidad Infantil , Adulto , Humanos , Niño , Adolescente , Adulto Joven , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Índice de Masa Corporal , Factores de Riesgo , Obesidad Infantil/complicaciones , Tamaño CorporalRESUMEN
BACKGROUND: Diagnostic testing is essential for disease surveillance and test-trace-isolate efforts. We aimed to investigate if residential area sociodemographic characteristics and test accessibility were associated with Coronavirus Disease 2019 (COVID-19) testing rates. METHODS: We included 426 224 patient-initiated COVID-19 polymerase chain reaction tests from Uppsala County in Sweden from 24 June 2020 to 9 February 2022. Using Poisson regression analyses, we investigated if postal code area Care Need Index (CNI; median 1.0, IQR 0.8-1.4), a composite measure of sociodemographic factors used in Sweden to allocate primary healthcare resources, was associated with COVID-19 daily testing rates after adjustments for community transmission. We assessed if the distance to testing station influenced testing, and performed a difference-in-difference-analysis of a new testing station targeting a disadvantaged neighbourhood. RESULTS: We observed that CNI, i.e. primary healthcare need, was negatively associated with COVID-19 testing rates in inhabitants 5-69 years. More pronounced differences were noted across younger age groups and in Uppsala City, with test rate ratios in children (5-14 years) ranging from 0.56 (95% CI 0.47-0.67) to 0.87 (95% CI 0.80-0.93) across three pandemic waves. Longer distance to the nearest testing station was linked to lower testing rates, e.g. every additional 10 km was associated with a 10-18% decrease in inhabitants 15-29 years in Uppsala County. The opening of the targeted testing station was associated with increased testing, including twice as high testing rates in individuals aged 70-105, supporting an intervention effect. CONCLUSIONS: Ensuring accessible testing across all residential areas constitutes a promising tool to decrease inequalities in testing.
Asunto(s)
COVID-19 , Niño , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , SARS-CoV-2 , Prueba de COVID-19 , Suecia/epidemiología , PandemiasRESUMEN
PURPOSE OF REVIEW: Hypertriglyceridemia is a common dyslipidemia associated with an increased risk of cardiovascular disease and pancreatitis. Severe hypertriglyceridemia may sometimes be a monogenic condition. However, in the vast majority of patients, hypertriglyceridemia is due to the cumulative effect of multiple genetic risk variants along with lifestyle factors, medications, and disease conditions that elevate triglyceride levels. In this review, we will summarize recent progress in the understanding of the genetic basis of hypertriglyceridemia. RECENT FINDINGS: More than 300 genetic loci have been identified for association with triglyceride levels in large genome-wide association studies. Studies combining the loci into polygenic scores have demonstrated that some hypertriglyceridemia phenotypes previously attributed to monogenic inheritance have a polygenic basis. The new genetic discoveries have opened avenues for the development of more effective triglyceride-lowering treatments and raised interest towards genetic screening and tailored treatments against hypertriglyceridemia. The discovery of multiple genetic loci associated with elevated triglyceride levels has led to improved understanding of the genetic basis of hypertriglyceridemia and opened new translational opportunities.
Asunto(s)
Dislipidemias , Hipertrigliceridemia , Estudio de Asociación del Genoma Completo , Humanos , Hipertrigliceridemia/genética , Fenotipo , TriglicéridosRESUMEN
AIMS/HYPOTHESIS: We aimed to investigate whether the impact of obesity and unfavourable lifestyle on type 2 diabetes risk is accentuated by genetic predisposition. METHODS: We examined the joint association of genetic predisposition, obesity and unfavourable lifestyle with incident type 2 diabetes using a case-cohort study nested within the Diet, Cancer and Health cohort in Denmark. The study sample included 4729 individuals who developed type 2 diabetes during a median 14.7 years of follow-up, and a randomly selected cohort sample of 5402 individuals. Genetic predisposition was quantified using a genetic risk score (GRS) comprising 193 known type 2 diabetes-associated loci (excluding known BMI loci) and stratified into low (quintile 1), intermediate and high (quintile 5) genetic risk groups. Lifestyle was assessed by a lifestyle score composed of smoking, alcohol consumption, physical activity and diet. We used Prentice-weighted Cox proportional-hazards models to test the associations of the GRS, obesity and lifestyle score with incident type 2 diabetes, as well as the interactions of the GRS with obesity and unfavourable lifestyle in relation to incident type 2 diabetes. RESULTS: Obesity (BMI ≥ 30 kg/m2) and unfavourable lifestyle were associated with higher risk for incident type 2 diabetes regardless of genetic predisposition (p > 0.05 for GRS-obesity and GRS-lifestyle interaction). The effect of obesity on type 2 diabetes risk (HR 5.81 [95% CI 5.16, 6.55]) was high, whereas the effects of high genetic risk (HR 2.00 [95% CI 1.76, 2.27]) and unfavourable lifestyle (HR 1.18 [95% CI 1.06, 1.30]) were relatively modest. Even among individuals with low GRS and favourable lifestyle, obesity was associated with a >8-fold risk of type 2 diabetes compared with normal-weight individuals in the same GRS and lifestyle stratum. CONCLUSIONS/INTERPRETATION: Having normal body weight is crucial in the prevention of type 2 diabetes, regardless of genetic predisposition.
Asunto(s)
Diabetes Mellitus Tipo 2/epidemiología , Estilo de Vida , Obesidad/epidemiología , Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/fisiopatología , Peso Corporal/genética , Peso Corporal/fisiología , Estudios de Cohortes , Diabetes Mellitus Tipo 2/genética , Ejercicio Físico , Predisposición Genética a la Enfermedad/genética , Humanos , Obesidad/genética , Factores de Riesgo , Fumar/genética , Fumar/fisiopatologíaRESUMEN
PURPOSE OF REVIEW: We review recent evidence of the relationship between dietary fat intake and risk of type 2 diabetes (T2D), the role of epigenetic alterations as a mediator of this relationship, and the impact of gene-dietary fat interactions in the development of the disease. Based on the observations made, we will discuss whether there is evidence to support genetic personalization of fat intake recommendations in T2D prevention. RECENT FINDINGS: Strong evidence suggests that polyunsaturated fatty acids (PUFA) have a protective effect on T2D risk, whereas the roles of saturated and monounsaturated fatty acids (SFA and MUFA) remain unclear. Diets enriched with PUFA vs SFA lead to distinct epigenetic alterations that may mediate their effects on T2D risk by changing gene function. However, it is not currently known which of the epigenetic alterations, if any, are causal for T2D. The current literature shows no replicated evidence of genetic variants modifying the effect of dietary fat intake on T2D risk. There is consistent evidence of a protective role of PUFA in T2D prevention. No evidence supports genetic personalization of dietary recommendations in T2D prevention.
Asunto(s)
Diabetes Mellitus Tipo 2 , Grasas de la Dieta , Predisposición Genética a la Enfermedad , Diabetes Mellitus Tipo 2/genética , Ácidos Grasos , Ácidos Grasos Monoinsaturados , Ácidos Grasos Insaturados , HumanosRESUMEN
BACKGROUND: Recent research indicates a favourable influence of postmenopausal hormone therapy (HT) if initiated early, but not late, on subclinical atherosclerosis. However, the clinical relevance of timing of HT initiation for hard end points such as stroke remains to be determined. Further, no previous research has considered the timing of initiation of HT in relation to haemorrhagic stroke risk. The importance of the route of administration, type, active ingredient, and duration of HT for stroke risk is also unclear. We aimed to assess the association between HT and risk of stroke, considering the timing of initiation, route of administration, type, active ingredient, and duration of HT. METHODS AND FINDINGS: Data on HT use reported by the participants in 5 population-based Swedish cohort studies, with baseline investigations performed during the period 1987-2002, were combined in this observational study. In total, 88,914 postmenopausal women who reported data on HT use and had no previous cardiovascular disease diagnosis were included. Incident events of stroke (ischaemic, haemorrhagic, or unspecified) and haemorrhagic stroke were identified from national population registers. Laplace regression was employed to assess crude and multivariable-adjusted associations between HT and stroke risk by estimating percentile differences (PDs) with 95% confidence intervals (CIs). The fifth and first PDs were calculated for stroke and haemorrhagic stroke, respectively. Crude models were adjusted for age at baseline only. The final adjusted models included age at baseline, level of education, smoking status, body mass index, level of physical activity, and age at menopause onset. Additional variables evaluated for potential confounding were type of menopause, parity, use of oral contraceptives, alcohol consumption, hypertension, dyslipidaemia, diabetes, family history of cardiovascular disease, and cohort. During a median follow-up of 14.3 years, 6,371 first-time stroke events were recorded; of these, 1,080 were haemorrhagic. Following multivariable adjustment, early initiation (<5 years since menopause onset) of HT was associated with a longer stroke-free period than never use (fifth PD, 1.00 years; 95% CI 0.42 to 1.57), but there was no significant extension to the time period free of haemorrhagic stroke (first PD, 1.52 years; 95% CI -0.32 to 3.37). When considering timing as a continuous variable, the stroke-free and the haemorrhagic stroke-free periods were maximal if HT was initiated approximately 0-5 years from the onset of menopause. If single conjugated equine oestrogen HT was used, late initiation of HT was associated with a shorter stroke-free (fifth PD, -4.41 years; 95% CI -7.14 to -1.68) and haemorrhagic stroke-free (first PD, -9.51 years; 95% CI -12.77 to -6.24) period than never use. Combined HT when initiated late was significantly associated with a shorter haemorrhagic stroke-free period (first PD, -1.97 years; 95% CI -3.81 to -0.13), but not with a shorter stroke-free period (fifth PD, -1.21 years; 95% CI -3.11 to 0.68) than never use. Given the observational nature of this study, the possibility of uncontrolled confounding cannot be excluded. Further, immortal time bias, also related to the observational design, cannot be ruled out. CONCLUSIONS: When initiated early in relation to menopause onset, HT was not associated with increased risk of incident stroke, regardless of the route of administration, type of HT, active ingredient, and duration. Generally, these findings held also for haemorrhagic stroke. Our results suggest that the initiation of HT 0-5 years after menopause onset, as compared to never use, is associated with a decreased risk of stroke and haemorrhagic stroke. Late initiation was associated with elevated risks of stroke and haemorrhagic stroke when conjugated equine oestrogen was used as single therapy. Late initiation of combined HT was associated with haemorrhagic stroke risk.
Asunto(s)
Terapia de Reemplazo de Estrógeno/métodos , Estrógenos/administración & dosificación , Posmenopausia , Accidente Cerebrovascular/prevención & control , Adulto , Anciano , Supervivencia sin Enfermedad , Esquema de Medicación , Composición de Medicamentos , Terapia de Reemplazo de Estrógeno/efectos adversos , Estrógenos/efectos adversos , Estrógenos/química , Femenino , Humanos , Incidencia , Estimación de Kaplan-Meier , Persona de Mediana Edad , Análisis Multivariante , Estudios Prospectivos , Factores Protectores , Análisis de Regresión , Medición de Riesgo , Factores de Riesgo , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/epidemiología , Suecia/epidemiología , Factores de Tiempo , Tiempo de Tratamiento , Resultado del Tratamiento , Estudios en Gemelos como AsuntoRESUMEN
BACKGROUND AND AIMS: Smokers tend to have a lower body weight than non-smokers, but also more abdominal fat. It remains unclear whether or not the relationship between smoking and abdominal obesity is causal. Previous Mendelian randomization (MR) studies have investigated this relationship by relying upon a single genetic variant for smoking heaviness. This approach is sensitive to pleiotropic effects and may produce imprecise causal estimates. We aimed to estimate causality between smoking and abdominal obesity using multiple genetic instruments. DESIGN: MR study using causal analysis using summary effect estimates (CAUSE) and latent heritable confounder MR (LHC-MR) methods that instrument smoking using genome-wide data, and also two-sample MR (2SMR) methods. SETTING: Genome-wide association studies (GWAS) summary statistics from participants of European ancestry, obtained from the GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN), Genetic Investigation of Anthropometric Traits (GIANT) Consortium and the UK Biobank. PARTICIPANTS: We used GWAS results for smoking initiation (n = 1 232 091), life-time smoking (n = 462 690) and smoking heaviness (n = 337 334) as exposure traits, and waist-hip ratio (WHR) and waist and hip circumferences (WC and HC) (n up to 697 734), with and without adjustment for body mass index (adjBMI), as outcome traits. MEASUREMENTS: Smoking initiation, life-time smoking, smoking heaviness, WHR, WC, HC, WHRadjBMI, WCadjBMI and HCadjBMI. FINDINGS: Both CAUSE and LHC-MR indicated a positive causal effect of smoking initiation on WHR (0.13 [95% confidence interval (CI) = 0.10, 0.16 and 0.49 (0.41, 0.57), respectively] and WHRadjBMI (0.07 (0.03, 0.10) and 0.31 (0.26, 0.37). Similarly, they indicated a positive causal effect of life-time smoking on WHR [0.35 (0.29, 0.41) and 0.44 (0.38, 0.51)] and WHRadjBMI [0.18 (0.13, 0.24) and 0.26 (0.20, 0.31)]. In follow-up analyses, smoking particularly increased visceral fat. There was no evidence of a mediating role by cortisol or sex hormones. CONCLUSIONS: Smoking initiation and higher life-time smoking may lead to increased abdominal fat distribution. The increase in abdominal fat due to smoking is characterized by an increase in visceral fat. Thus, efforts to prevent and cease smoking can have the added benefit of reducing abdominal fat.
Asunto(s)
Causalidad , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Obesidad Abdominal , Fumar , Relación Cintura-Cadera , Humanos , Obesidad Abdominal/genética , Obesidad Abdominal/epidemiología , Fumar/genética , Fumar/epidemiología , Femenino , Masculino , Persona de Mediana Edad , AdultoRESUMEN
Genetic studies have identified numerous regions associated with plasma fibrinogen levels in Europeans, yet missing heritability and limited inclusion of non-Europeans necessitates further studies with improved power and sensitivity. Compared with array-based genotyping, whole genome sequencing (WGS) data provides better coverage of the genome and better representation of non-European variants. To better understand the genetic landscape regulating plasma fibrinogen levels, we meta-analyzed WGS data from the NHLBI's Trans-Omics for Precision Medicine (TOPMed) program (n=32,572), with array-based genotype data from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium (n=131,340) imputed to the TOPMed or Haplotype Reference Consortium panel. We identified 18 loci that have not been identified in prior genetic studies of fibrinogen. Of these, four are driven by common variants of small effect with reported MAF at least 10% higher in African populations. Three ( SERPINA1, ZFP36L2 , and TLR10) signals contain predicted deleterious missense variants. Two loci, SOCS3 and HPN , each harbor two conditionally distinct, non-coding variants. The gene region encoding the protein chain subunits ( FGG;FGB;FGA ), contains 7 distinct signals, including one novel signal driven by rs28577061, a variant common (MAF=0.180) in African reference panels but extremely rare (MAF=0.008) in Europeans. Through phenome-wide association studies in the VA Million Veteran Program, we found associations between fibrinogen polygenic risk scores and thrombotic and inflammatory disease phenotypes, including an association with gout. Our findings demonstrate the utility of WGS to augment genetic discovery in diverse populations and offer new insights for putative mechanisms of fibrinogen regulation. Key Points: Largest and most diverse genetic study of plasma fibrinogen identifies 54 regions (18 novel), housing 69 conditionally distinct variants (20 novel).Sufficient power achieved to identify signal driven by African population variant.Links to (1) liver enzyme, blood cell and lipid genetic signals, (2) liver regulatory elements, and (3) thrombotic and inflammatory disease.
RESUMEN
Physical inactivity and increased sedentary time are associated with excess weight gain in observational studies. However, some longitudinal studies indicate reverse causality where weight gain leads to physical inactivity and increased sedentary time. As observational studies suffer from reverse causality, it is challenging to assess the true causal directions. Here, we assess the bidirectional causality between physical inactivity, sedentary time, and adiposity by bidirectional Mendelian randomization analysis. We used results from genome-wide association studies for accelerometer-based physical activity and sedentary time in 91,105 individuals and for body mass index (BMI) in 806,834 individuals. We implemented Mendelian randomization using CAUSE method that accounts for pleiotropy and sample overlap using full genome-wide data. We also applied inverse variance-weighted, MR-Egger, weighted median, and weighted mode methods using genome-wide significant variants only. We found evidence of bidirectional causality between sedentary time and BMI: longer sedentary time was causal for higher BMI [beta (95% CI) from CAUSE method: 0.11 (0.02, 0.2), p = 0.02], and higher BMI was causal for longer sedentary time (0.13 (0.08, 0.17), p = 6.3 x 10-4). Our analyses suggest that higher moderate and vigorous physical activity are causal for lower BMI (moderate: -0.18 (-0.3,-0.05), p = 0.006; vigorous: -0.16 (-0.24,-0.08), p = 3.8 × 10-4), but indicate that the association between higher BMI and lower levels of physical activity is due to horizontal pleiotropy. The bidirectional, causal relationship between sedentary time and BMI suggests that decreasing sedentary time is beneficial for weight management, but also that targeting adiposity may lead to additional health benefits by reducing sedentary time.
Asunto(s)
Adiposidad , Conducta Sedentaria , Adiposidad/genética , Índice de Masa Corporal , Estudio de Asociación del Genoma Completo , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Polimorfismo de Nucleótido SimpleRESUMEN
OBJECTIVES: Regular physical exercise improves health by reducing the risk of a plethora of chronic disorders. We hypothesized that endurance exercise training remodels the activity of gene enhancers in skeletal muscle and that this remodeling contributes to the beneficial effects of exercise on human health. METHODS AND RESULTS: By studying changes in histone modifications, we mapped the genome-wide positions and activities of enhancers in skeletal muscle biopsies collected from young sedentary men before and after 6 weeks of endurance exercise. We identified extensive remodeling of enhancer activities after exercise training, with a large subset of the remodeled enhancers located in the proximity of genes transcriptionally regulated after exercise. By overlapping the position of enhancers with genetic variants, we identified an enrichment of disease-associated genetic variants within the exercise-remodeled enhancers. CONCLUSION: Our data provide evidence of a functional link between epigenetic rewiring of enhancers to control their activity after exercise training and the modulation of disease risk in humans.
Asunto(s)
Entrenamiento Aeróbico , Epigénesis Genética/fisiología , Terapia por Ejercicio , Músculo Esquelético/fisiología , Adulto , Humanos , Masculino , Adulto JovenRESUMEN
BACKGROUND: Use of targeted exome-arrays with common, rare variants and functionally enriched variation has led to discovery of new genes contributing to population variation in risk factors. Plasminogen activator-inhibitor 1 (PAI-1), tissue plasminogen activator (tPA), and the plasma product D-dimer are important components of the fibrinolytic system. There have been few large-scale genome-wide or exome-wide studies of PAI-1, tPA, and D-dimer. OBJECTIVES: We sought to discover new genetic loci contributing to variation in these traits using an exome-array approach. METHODS: Cohort-level analyses and fixed effects meta-analyses of PAI-1 (n = 15 603), tPA (n = 6876,) and D-dimer (n = 19 306) from 12 cohorts of European ancestry with diverse study design were conducted, including single-variant analyses and gene-based burden testing. RESULTS: Five variants located in NME7, FGL1, and the fibrinogen locus, all associated with D-dimer levels, achieved genome-wide significance (P < 5 × 10-8 ). Replication was sought for these 5 variants, as well as 45 well-imputed variants with P < 1 × 10-4 in the discovery using an independent cohort. Replication was observed for three out of the five significant associations, including a novel and uncommon (0.013 allele frequency) coding variant p.Trp256Leu in FGL1 (fibrinogen-like-1) with increased plasma D-dimer levels. Additionally, a candidate-gene approach revealed a suggestive association for a coding variant (rs143202684-C) in SERPINB2, and suggestive associations with consistent effect in the replication analysis include an intronic variant (rs11057830-A) in SCARB1 associated with increased D-dimer levels. CONCLUSION: This work provides new evidence for a role of FGL1 in hemostasis.
Asunto(s)
Inhibidor 1 de Activador Plasminogénico , Activador de Tejido Plasminógeno , Exoma , Productos de Degradación de Fibrina-Fibrinógeno , Fibrinógeno/genética , Fibrinólisis , Humanos , Inhibidor 1 de Activador Plasminogénico/genética , Activador de Tejido Plasminógeno/genéticaRESUMEN
Leptin influences food intake by informing the brain about the status of body fat stores. Rare LEP mutations associated with congenital leptin deficiency cause severe early-onset obesity that can be mitigated by administering leptin. However, the role of genetic regulation of leptin in polygenic obesity remains poorly understood. We performed an exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic variants that influence adiposity-adjusted leptin concentrations. We identify five novel variants, including four missense variants, in LEP, ZNF800, KLHL31, and ACTL9, and one intergenic variant near KLF14. The missense variant Val94Met (rs17151919) in LEP was common in individuals of African ancestry only, and its association with lower leptin concentrations was specific to this ancestry (P = 2 × 10-16, n = 3,901). Using in vitro analyses, we show that the Met94 allele decreases leptin secretion. We also show that the Met94 allele is associated with higher BMI in young African-ancestry children but not in adults, suggesting that leptin regulates early adiposity.
Asunto(s)
Adiposidad/genética , Leptina/metabolismo , Grupos Raciales/genética , Regulación del Desarrollo de la Expresión Génica , Variación Genética , Genotipo , Humanos , Leptina/sangre , Leptina/química , Leptina/genética , Modelos Moleculares , Conformación ProteicaRESUMEN
BACKGROUND: Mendelian randomization studies in adults suggest that abdominal adiposity is causally associated with increased risk of type 2 diabetes and coronary artery disease in adults, but its causal effect on cardiometabolic risk in children remains unclear. OBJECTIVE: We aimed to study the causal relation of abdominal adiposity with cardiometabolic risk factors in children by applying Mendelian randomization. METHODS: We constructed a genetic risk score (GRS) using variants previously associated with waist-to-hip ratio adjusted for BMI (WHRadjBMI) and examined its associations with cardiometabolic factors by linear regression and Mendelian randomization in a meta-analysis of 6 cohorts, including 9895 European children and adolescents aged 3-17 y. RESULTS: WHRadjBMI GRS was associated with higher WHRadjBMI (ß = 0.021 SD/allele; 95% CI: 0.016, 0.026 SD/allele; P = 3 × 10-15) and with unfavorable concentrations of blood lipids (higher LDL cholesterol: ß = 0.006 SD/allele; 95% CI: 0.001, 0.011 SD/allele; P = 0.025; lower HDL cholesterol: ß = -0.007 SD/allele; 95% CI: -0.012, -0.002 SD/allele; P = 0.009; higher triglycerides: ß = 0.007 SD/allele; 95% CI: 0.002, 0.012 SD/allele; P = 0.006). No differences were detected between prepubertal and pubertal/postpubertal children. The WHRadjBMI GRS had a stronger association with fasting insulin in children and adolescents with overweight/obesity (ß = 0.016 SD/allele; 95% CI: 0.001, 0.032 SD/allele; P = 0.037) than in those with normal weight (ß = -0.002 SD/allele; 95% CI: -0.010, 0.006 SD/allele; P = 0.605) (P for difference = 0.034). In a 2-stage least-squares regression analysis, each genetically instrumented 1-SD increase in WHRadjBMI increased circulating triglycerides by 0.17 mmol/L (0.35 SD, P = 0.040), suggesting that the relation between abdominal adiposity and circulating triglycerides may be causal. CONCLUSIONS: Abdominal adiposity may have a causal, unfavorable effect on plasma triglycerides and potentially other cardiometabolic risk factors starting in childhood. The results highlight the importance of early weight management through healthy dietary habits and physically active lifestyle among children with a tendency for abdominal adiposity.
Asunto(s)
Adiposidad , Enfermedad de la Arteria Coronaria/etiología , Diabetes Mellitus Tipo 2/etiología , Análisis de la Aleatorización Mendeliana , Relación Cintura-Cadera , Adolescente , Índice de Masa Corporal , Niño , Preescolar , Enfermedad de la Arteria Coronaria/genética , Diabetes Mellitus Tipo 2/genética , Femenino , Humanos , Masculino , Factores de Riesgo , Triglicéridos/sangreRESUMEN
OBJECTIVE: This study aims to assess whether the timing of menopausal hormone therapy initiation in relation to onset of menopause and hormone therapy duration is associated with myocardial infarction risk. METHODS: This study was based on the Stockholm Heart Epidemiology Program, a population-based case-control study including 347 postmenopausal women who had experienced a nonfatal myocardial infarction and 499 female control individuals matched for age and residential area. Odds ratios (with 95% CIs) for myocardial infarction were calculated using logistic regression. RESULTS: Early initiation of hormone therapy (within 10 y of onset of menopause or before age 60 y), compared with never use, was associated with an odds ratio of 0.87 (95% CI, 0.58-1.30) after adjustments for lifestyle factors, body mass index, and socioeconomic status. For late initiation of hormone therapy, the corresponding odds ratio was 0.97 (95% CI, 0.53-1.76). For hormone therapy duration of 5 years or more, compared with never use, the adjusted odds ratio was 0.64 (95% CI, 0.35-1.18). For hormone therapy duration of less than 5 years, the odds ratio was 0.97 (95% CI, 0.63-1.48). CONCLUSIONS: Neither the timing of hormone therapy initiation nor the duration of therapy is significantly associated with myocardial infarction risk.