Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 325(1): H136-H141, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37235521

RESUMEN

Prenatal hypoxia is associated with enhanced susceptibility to cardiac ischemia-reperfusion (I/R) injury in adult offspring, however, the mechanisms remain to be fully investigated. Endothelin-1 (ET-1) is a vasoconstrictor that acts via endothelin A (ETA) and endothelin B (ETB) receptors and is essential in maintaining cardiovascular (CV) function. Prenatal hypoxia alters the ET-1 system in adult offspring possibly contributing to I/R susceptibility. We previously showed that ex vivo application of ETA antagonist ABT-627 during I/R prevented the recovery of cardiac function in prenatal hypoxia-exposed males but not in normoxic males nor normoxic or prenatal hypoxia-exposed females. In this follow-up study, we examined whether placenta-targeted treatment with a nanoparticle-encapsulated mitochondrial antioxidant (nMitoQ) during hypoxic pregnancies could alleviate this hypoxic phenotype observed in adult male offspring. We used a rat model of prenatal hypoxia where pregnant Sprague-Dawley rats were exposed to hypoxia (11% O2) from gestational days (GD) 15-21 after injection with 100 µL saline or nMitoQ (125 µM) on GD15. Male offspring were aged to 4 mo and ex vivo cardiac recovery from I/R was assessed. Offspring born from hypoxic pregnancies and treated with nMitoQ had increased cardiac recovery from I/R in the presence of ABT-627 compared with their untreated counterparts where ABT-627 prevented recovery. Cardiac ETA levels were increased in males born from hypoxic pregnancies with nMitoQ treatment compared with saline controls (Western blotting). Our data indicate a profound impact of placenta-targeted treatment to prevent an ETA receptor cardiac phenotype observed in adult male offspring exposed to hypoxia in utero.NEW & NOTEWORTHY In this follow-up study, we showed a complete lack of recovery from I/R injury after the application of an ETA receptor antagonist (ABT-627) in adult male offspring exposed to hypoxia in utero while maternal treatment with nMitoQ during prenatal hypoxia exposure prevented this effect. Our data suggest that nMitoQ treatment during hypoxic pregnancies may prevent a hypoxic cardiac phenotype in adult male offspring.


Asunto(s)
Hipoxia , Receptores de Endotelina , Embarazo , Femenino , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Atrasentán , Estudios de Seguimiento , Hipoxia/complicaciones , Placenta , Endotelina-1
2.
Int J Mol Sci ; 24(17)2023 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-37686430

RESUMEN

Prenatal hypoxia is associated with placental oxidative stress, leading to impaired fetal growth and an increased risk of cardiovascular disease in the adult offspring; however, the mechanisms are unknown. Alterations in mitochondrial function may result in impaired cardiac function in offspring. In this study, we hypothesized that cardiac mitochondrial function is impaired in adult offspring exposed to intrauterine hypoxia, which can be prevented by placental treatment with a nanoparticle-encapsulated mitochondrial antioxidant (nMitoQ). Cardiac mitochondrial respiration was assessed in 4-month-old rat offspring exposed to prenatal hypoxia (11% O2) from gestational day (GD)15-21 receiving either saline or nMitoQ on GD 15. Prenatal hypoxia did not alter cardiac mitochondrial oxidative phosphorylation capacity in the male offspring. In females, the NADH + succinate pathway capacity decreased by prenatal hypoxia and tended to be increased by nMitoQ. Prenatal hypoxia also decreased the succinate pathway capacity in females. nMitoQ treatment increased respiratory coupling efficiency in prenatal hypoxia-exposed female offspring. In conclusion, prenatal hypoxia impaired cardiac mitochondrial function in adult female offspring only, which was improved with prenatal nMitoQ treatment. Therefore, treatment strategies targeting placental oxidative stress in prenatal hypoxia may reduce the risk of cardiovascular disease in adult offspring by improving cardiac mitochondrial function in a sex-specific manner.


Asunto(s)
Antioxidantes , Enfermedades Cardiovasculares , Femenino , Masculino , Embarazo , Animales , Ratas , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Placenta , Vitaminas , Hipoxia/complicaciones , Hipoxia/tratamiento farmacológico , Mitocondrias , Succinatos
3.
FASEB J ; 35(2): e21338, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33428278

RESUMEN

Pregnancy complications associated with prenatal hypoxia lead to increased placental oxidative stress. Previous studies suggest that prenatal hypoxia can reduce mitochondrial respiratory capacity and mitochondrial fusion, which could lead to placental dysfunction and impaired fetal development. We developed a placenta-targeted treatment strategy using a mitochondrial antioxidant, MitoQ, encapsulated into nanoparticles (nMitoQ) to reduce placental oxidative stress and (indirectly) improve fetal outcomes. We hypothesized that, in a rat model of prenatal hypoxia, nMitoQ improves placental mitochondrial function and promotes mitochondrial fusion in both male and female placentae. Pregnant rats were treated with saline or nMitoQ on gestational day (GD) 15 and exposed to normoxia (21% O2 ) or hypoxia (11% O2 ) from GD15-21. On GD21, male and female placental labyrinth zones were collected for mitochondrial respirometry assessments, mitochondrial content, and markers of mitochondrial biogenesis, fusion and fission. Prenatal hypoxia reduced complex IV activity and fusion in male placentae, while nMitoQ improved complex IV activity in hypoxic male placentae. In female placentae, prenatal hypoxia decreased respiration through the S-pathway (complex II) and increased N-pathway (complex I) respiration, while nMitoQ increased fusion in hypoxic female placentae. No changes in mitochondrial content, biogenesis or fission were found. In conclusion, nMitoQ improved placental mitochondrial function in male and female placentae from fetuses exposed to prenatal hypoxia, which may contribute to improved placental function. However, the mechanisms (ie, changes in mitochondrial respiratory capacity and mitochondrial fusion) were distinct between the sexes. Treatment strategies targeted against placental oxidative stress could improve placental mitochondrial function in complicated pregnancies.


Asunto(s)
Antioxidantes/uso terapéutico , Hipoxia Fetal/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Nanopartículas/química , Compuestos Organofosforados/uso terapéutico , Placenta/efectos de los fármacos , Ubiquinona/análogos & derivados , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Respiración de la Célula , Femenino , Masculino , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Compuestos Organofosforados/administración & dosificación , Compuestos Organofosforados/farmacología , Placenta/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley , Factores Sexuales , Ubiquinona/administración & dosificación , Ubiquinona/farmacología , Ubiquinona/uso terapéutico
4.
Pharmacol Res ; 165: 105461, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33513355

RESUMEN

Offspring born from complicated pregnancies are at greater risk of cardiovascular disease in adulthood. Prenatal hypoxia is a common pregnancy complication that results in placental oxidative stress and impairs fetal development. Adult offspring exposed to hypoxia during fetal life are more susceptible to develop cardiac dysfunction, and show decreased cardiac tolerance to an ischemia/reperfusion (I/R) insult. To improve offspring cardiac outcomes, we have assessed the use of a placenta-targeted intervention during hypoxic pregnancies, by encapsulating the mitochondrial antioxidant MitoQ into nanoparticles (nMitoQ). We hypothesized that maternal nMitoQ treatment during hypoxic pregnancies improves cardiac tolerance to I/R insult in adult male and female offspring. Pregnant Sprague-Dawley rats were exposed to normoxia (21 % O2) or hypoxia (11 % O2) from gestational day 15-20, after injection with 100 µL saline or nMitoQ (125 µM) on GD15 (n=6-8/group). Male and female offspring were aged to 4 months. Both male and female offspring from hypoxic pregnancies showed reduced cardiac tolerance to I/R (assessed ex vivo using the isolated working heart technique) which was ameliorated by nMitoQ treatment. To identify potential molecular mechanisms for the changes in cardiac tolerance to I/R, cardiac levels/phosphorylation of proteins important for intracellular Ca2+ cycling were assessed with Western blotting. In prenatally hypoxic male offspring, improved cardiac recovery from I/R by nMitoQ was accompanied by increased cardiac phospholamban and phosphatase 2Ce levels, and a trend to decreased Ca2+/calmodulin-dependent protein kinase IIδ phosphorylation. In contrast, in female offspring, nMitoQ treatment in hypoxic pregnancies increased phospholamban and protein kinase Cε phosphorylation. Maternal nMitoQ treatment improves cardiac tolerance to I/R insult in adult offspring and thus has the potential to improve the later-life trajectory of cardiovascular health of adult offspring born from pregnancies complicated by prenatal hypoxia.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Hipoxia/metabolismo , Compuestos Organofosforados/administración & dosificación , Placenta/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Daño por Reperfusión/metabolismo , Ubiquinona/análogos & derivados , Factores de Edad , Animales , Antioxidantes/administración & dosificación , Enfermedades Cardiovasculares/prevención & control , Femenino , Hipoxia/tratamiento farmacológico , Masculino , Nanopartículas/administración & dosificación , Placenta/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/tratamiento farmacológico , Ubiquinona/administración & dosificación
5.
Exp Physiol ; 105(9): 1507-1514, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32749725

RESUMEN

NEW FINDINGS: What is the central question of this study? Does treatment of hypoxic dams with a placenta-targeted antioxidant prevent the release of placenta-derived factors that impair maturation or growth of fetal cardiomyocytes in vitro? What is the main finding and its importance? Factors released from hypoxic placentae impaired fetal cardiomyocyte maturation (induced terminal differentiation) and growth (increased cell size) in vitro, which was prevented by maternal treatment with a placenta-targeted antioxidant (nMitoQ). Moreover, there were no sex differences in the effects of placental factors on fetal cardiomyocyte maturation and growth. Overall, our data suggest that treatment targeted against placental oxidative stress could prevent fetal programming of cardiac diseases via the release of placental factors. ABSTRACT: Pregnancy complications associated with placental oxidative stress may impair fetal organ development through the release of placenta-derived factors into the fetal circulation. We assessed the effect of factors secreted from placentae previously exposed to prenatal hypoxia on fetal cardiomyocyte development and developed a treatment strategy that targets placental oxidative stress by encapsulating the antioxidant MitoQ into nanoparticles (nMitoQ). We used a rat model of prenatal hypoxia (gestational day (GD) 15-21), which was treated with saline or nMitoQ on GD15. On GD21, placentae were harvested, placed in culture, and conditioned medium (containing placenta-derived factors) was collected after 24 h. This conditioned medium was then added to cultured cardiomyocytes from control dam fetuses. Conditioned medium from prenatally hypoxic placentae increased the percentage of binucleated cardiomyocytes (marker of terminal differentiation) and the size of mononucleated and binucleated cardiomyocytes (sign of hypertrophy), effects that were prevented by nMitoQ treatment. Our data suggest that factors derived from placentae previously exposed to prenatal hypoxia lead to abnormal fetal cardiomyocyte development, and show that treatment against placental oxidative stress may prevent fetal programming of cardiac disease.


Asunto(s)
Antioxidantes/farmacología , Desarrollo Fetal/efectos de los fármacos , Hipoxia/tratamiento farmacológico , Miocitos Cardíacos/fisiología , Placenta/fisiología , Animales , Células Cultivadas , Medios de Cultivo Condicionados , Femenino , Masculino , Compuestos Organofosforados/farmacología , Estrés Oxidativo , Embarazo , Ratas , Ratas Sprague-Dawley , Ubiquinona/análogos & derivados , Ubiquinona/farmacología
6.
Pharmacol Res ; 134: 332-342, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29778808

RESUMEN

Intrauterine growth restriction, a common consequence of prenatal hypoxia, is a leading cause of fetal morbidity and mortality with a significant impact on population health. Hypoxia may increase placental oxidative stress and lead to an abnormal release of placental-derived factors, which are emerging as potential contributors to developmental programming. Nanoparticle-linked drugs are emerging as a novel method to deliver therapeutics targeted to the placenta and avoid risking direct exposure to the fetus. We hypothesize that placental treatment with antioxidant MitoQ loaded onto nanoparticles (nMitoQ) will prevent the development of cardiovascular disease in offspring exposed to prenatal hypoxia. Pregnant rats were intravenously injected with saline or nMitoQ (125 µM) on gestational day (GD) 15 and exposed to either normoxia (21% O2) or hypoxia (11% O2) from GD15-21 (term: 22 days). In one set of animals, rats were euthanized on GD 21 to assess fetal body weight, placental weight and placental oxidative stress. In another set of animals, dams were allowed to give birth under normal atmospheric conditions (term: GD 22) and male and female offspring were assessed at 7 and 13 months of age for in vivo cardiac function (echocardiography) and vascular function (wire myography, mesenteric artery). Hypoxia increased oxidative stress in placentas of male and female fetuses, which was prevented by nMitoQ. 7-month-old male and female offspring exposed to prenatal hypoxia demonstrated cardiac diastolic dysfunction, of which nMitoQ improved only in 7-month-old female offspring. Vascular sensitivity to methacholine was reduced in 13-month-old female offspring exposed to prenatal hypoxia, while nMitoQ treatment improved vasorelaxation in both control and hypoxia exposed female offspring. Male 13-month-old offspring exposed to hypoxia showed an age-related decrease in vascular sensitivity to phenylephrine, which was prevented by nMitoQ. In summary, placental-targeted MitoQ treatment in utero has beneficial sex- and age-dependent effects on adult offspring cardiovascular function.


Asunto(s)
Antioxidantes/administración & dosificación , Enfermedades Cardiovasculares/prevención & control , Hipoxia Fetal/tratamiento farmacológico , Compuestos Organofosforados/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Placenta/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Ubiquinona/análogos & derivados , Factores de Edad , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Modelos Animales de Enfermedad , Femenino , Hipoxia Fetal/metabolismo , Hipoxia Fetal/fisiopatología , Edad Gestacional , Hemodinámica/efectos de los fármacos , Masculino , Exposición Materna , Contracción Miocárdica/efectos de los fármacos , Nanopartículas , Placenta/metabolismo , Placenta/fisiopatología , Embarazo , Ratas Sprague-Dawley , Factores Sexuales , Ubiquinona/administración & dosificación , Función Ventricular Izquierda/efectos de los fármacos
7.
Radiol Clin North Am ; 62(4): 619-625, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38777538

RESUMEN

Breast cancer risk prediction models based on common clinical risk factors are used to identify women eligible for high-risk screening and prevention. Unfortunately, these models have only modest discriminatory accuracy with disparities in performance in underrepresented race and ethnicity groups. The field of artificial intelligence (AI) and deep learning are rapidly advancing the field of breast cancer risk prediction with the development of mammography-based AI breast cancer risk models. Early studies suggest mammography-based AI risk models may perform better than traditional risk factor-based models with more equitable performance.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Mama , Mamografía , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Medición de Riesgo/métodos , Mamografía/métodos , Mama/diagnóstico por imagen , Factores de Riesgo , Detección Precoz del Cáncer/métodos
8.
Biol Sex Differ ; 15(1): 52, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898532

RESUMEN

BACKGROUND: Prenatal hypoxia, a common pregnancy complication, leads to impaired cardiovascular outcomes in the adult offspring. It results in impaired vasodilation in coronary and mesenteric arteries of the adult offspring, due to reduced nitric oxide (NO). Thromboxane A2 (TxA2) is a potent vasoconstrictor increased in cardiovascular diseases, but its role in the impact of prenatal hypoxia is unknown. To prevent the risk of cardiovascular disease by prenatal hypoxia, we have tested a maternal treatment using a nanoparticle-encapsulated mitochondrial antioxidant (nMitoQ). We hypothesized that prenatal hypoxia enhances vascular TxA2 responses in the adult offspring, due to decreased NO modulation, and that this might be prevented by maternal nMitoQ treatment. METHODS: Pregnant Sprague-Dawley rats received a single intravenous injection (100 µL) of vehicle (saline) or nMitoQ (125 µmol/L) on gestational day (GD)15 and were exposed to normoxia (21% O2) or hypoxia (11% O2) from GD15 to GD21 (term = 22 days). Coronary and mesenteric arteries were isolated from the 4-month-old female and male offspring, and vasoconstriction responses to U46619 (TxA2 analog) were evaluated using wire myography. In mesenteric arteries, L-NAME (pan-NO synthase (NOS) inhibitor) was used to assess NO modulation. Mesenteric artery endothelial (e)NOS, and TxA2 receptor expression, superoxide, and 3-nitrotyrosine levels were assessed by immunofluorescence. RESULTS: Prenatal hypoxia resulted in increased U46619 responsiveness in coronary and mesenteric arteries of the female offspring, and to a lesser extent in the male offspring, which was prevented by nMitoQ. In females, there was a reduced impact of L-NAME in mesenteric arteries of the prenatal hypoxia saline-treated females, and reduced 3-nitrotyrosine levels. In males, L-NAME increased U46619 responses in mesenteric artery to a similar extent, but TxA2 receptor expression was increased by prenatal hypoxia. There were no changes in eNOS or superoxide levels. CONCLUSIONS: Prenatal hypoxia increased TxA2 vasoconstrictor capacity in the adult offspring in a sex-specific manner, via reduced NO modulation in females and increased TP expression in males. Maternal placental antioxidant treatment prevented the impact of prenatal hypoxia. These findings increase our understanding of how complicated pregnancies can lead to a sex difference in the programming of cardiovascular disease in the adult offspring.


Prenatal hypoxia, when the fetus does not receive enough oxygen, is a common problem during pregnancy that impacts the developing fetus. It is associated with an increased risk of cardiovascular disease in the offspring in adulthood. While the mechanisms are not fully understood, the blood vessel function in the offspring may be impacted by prenatal hypoxia. We hypothesize that prenatal hypoxia increases the constriction of the blood vessels in the offspring. The placenta, an essential organ for fetal development, supplies oxygen and nutrients to the fetus. In prenatal hypoxia pregnancies, the placenta does not work properly. We have been studying a placental treatment (called nMitoQ) to improve placenta function and thereby the blood vessel function of the offspring. We used a rat model of prenatal hypoxia, where pregnant rats (dams) were placed in a low oxygen environment (hypoxia) during the last trimester of pregnancy. Control rats were kept in normal oxygen conditions. The dams were treated with nMitoQ, or with saline (control). Next, we studied the blood vessels of the offspring in adulthood. We found that prenatal hypoxia increases the constriction of the blood vessels, which was prevented by treating the dams with nMitoQ. Interestingly, this impact was more severe in females compared to males, and the mechanisms were different between the sexes. This study helps in the understanding of how complicated pregnancies can impair cardiovascular health in the offspring, and in a potential development of targeted and sex-specific therapies for those offspring at high risk for future cardiovascular disease.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Ratas Sprague-Dawley , Caracteres Sexuales , Tromboxano A2 , Vasoconstricción , Animales , Femenino , Embarazo , Vasoconstricción/efectos de los fármacos , Masculino , Tromboxano A2/metabolismo , Antioxidantes/farmacología , Óxido Nítrico/metabolismo , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/metabolismo , Ratas , Hipoxia/metabolismo , Hipoxia Fetal/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología
9.
Brain Behav Evol ; 77(2): 67-78, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21335939

RESUMEN

The prefrontal cortex is commonly associated with cognitive capacities related to human uniqueness: purposeful actions towards higher-level goals, complex social information processing, introspection, and language. Comparative investigations of the prefrontal cortex may thus shed more light on the neural underpinnings of what makes us human. Using histological data from 19 anthropoid primate species (6 apes including humans and 13 monkeys), we investigate cross-species relative size changes along the anterior (prefrontal) and posterior (motor) axes of the cytoarchitectonically defined frontal lobe in both hemispheres. Results reveal different scaling coefficients in the left versus right prefrontal hemisphere, suggest that the primary factor underlying the evolution of primate brain architecture is left hemispheric prefrontal hyperscaling, and indicate that humans are the extreme of a left prefrontal ape specialization in relative white to grey matter volume. These results demonstrate a neural adaptive shift distinguishing the ape from the monkey radiation possibly related to a cognitive grade shift between (great) apes and other primates.


Asunto(s)
Evolución Biológica , Lateralidad Funcional/fisiología , Hominidae/anatomía & histología , Corteza Prefrontal/anatomía & histología , Animales , Hominidae/crecimiento & desarrollo , Humanos , Masculino , Corteza Prefrontal/crecimiento & desarrollo
10.
Mutat Res ; 683(1-2): 1-8, 2010 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-19800897

RESUMEN

The bystander effect is a feature of low dose radiation exposure and is characterized by a signaling process from irradiated cells to non irradiated cells, which causes DNA and chromosome damage in these 'nearest neighbour' cells. Here we show that a low and short dose of Cr(VI) can induce stem cells, cancer cells and fibroblasts to chronically secrete bystander signals, which cause DNA damage in neighboring cells. The Cr(VI) induced bystander signaling depended on the telomerase status of either cell. Telomerase negative fibroblasts were able to receive DNA damaging signals from telomerase positive or negative fibroblasts or telomerase positive cancer cells. However telomerase positive fibroblasts were resistant to signals from Cr(VI) exposed telomerase positive fibroblasts or cancer cells. Human embryonic stem cells, with positive Oct4 staining as a marker of pluripotency, showed no significant increase of DNA damage from adjacent Cr and mitomycin C exposed fibroblasts whilst those cells that were negatively stained did. This selectivity of DNA damaging bystander signaling could be an important consideration in developing therapies against cancer and in the safety and effectiveness of tissue engineering and transplantation using stem cells.


Asunto(s)
Efecto Espectador/fisiología , Cromo/toxicidad , Daño del ADN , Células Madre Embrionarias/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Telomerasa/metabolismo , Neoplasias de la Tiroides/tratamiento farmacológico , Ácido Ascórbico/farmacología , Células Cultivadas , Células Madre Embrionarias/metabolismo , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Histonas/metabolismo , Humanos , Pruebas de Micronúcleos , Transducción de Señal , Neoplasias de la Tiroides/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
11.
Neurobiol Stress ; 13: 100281, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33344732

RESUMEN

Maternal exposure to stress during pregnancy is associated with an increased risk of psychiatric disorders in the offspring in later life. The mechanisms through which the effects of maternal stress are transmitted to the fetus are unclear, however the placenta, as the interface between mother and fetus, is likely to play a key role. Using a rat model, we investigated a role for placental oxidative stress in conveying the effects of maternal social stress to the fetus and the potential for treatment using a nanoparticle-bound antioxidant to prevent adverse outcomes in the offspring. Maternal psychosocial stress increased circulating corticosterone in the mother, but not in the fetuses. Maternal stress also induced oxidative stress in the placenta, but not in the fetal brain. Blocking oxidative stress using an antioxidant prevented the prenatal stress-induced anxiety phenotype in the male offspring, and prevented sex-specific neurobiological changes, specifically a reduction in dendrite lengths in the hippocampus, as well as reductions in the number of parvalbumin-positive neurons and GABA receptor subunits in the hippocampus and basolateral amygdala of the male offspring. Importantly, many of these effects were mimicked in neuronal cultures by application of placental-conditioned medium or fetal plasma from stressed pregnancies, indicating molecules released from the placenta may mediate the effects of prenatal stress on the fetal brain. Indeed, both placenta-conditioned medium and fetal plasma contained differentially abundant microRNAs following maternal stress, and their predicted targets were enriched for genes relevant to nervous system development and psychiatric disorders. The results highlight placental oxidative stress as a key mediator in transmitting the maternal social stress effects on the offspring's brain and behavior, and offer a potential intervention to prevent stress-induced fetal programming of affective disorders.

12.
Mutagenesis ; 24(1): 25-33, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18776173

RESUMEN

Genomic instability is considered to be an important component in carcinogenesis. It can be caused by low-dose exposure to agents, which appear to act through induction of stress-response pathways related to oxidative stress. These agents have been studied mostly in the radiation field but evidence is accumulating that chemicals, especially heavy metals such as Cr (VI), can also act in the same manner. Previous work showed that metal ions could initiate long-term genomic instability in human primary fibroblasts and this phenomenon was regulated by telomerase. The aim of this study was to examine the difference in clonogenic survival and cytogenetic damage after exposure to Cr (VI) and radiation both singly and in combination in normal human fibroblasts (hTERT- cells) and engineered human fibroblasts, infected with a retrovirus carrying a cDNA encoding hTERT, which rendered these cells telomerase positive and replicatively immortal (hTERT+ cells). Cr (VI) induced genomic instability in hTERT- cells but not in hTERT+ cells, whereas radiation induced genomic instability in hTERT+ cells and to a lesser extent in hTERT- cells. Combined exposure caused genomic instability in both types of cells. However, this genomic instability was more pronounced in hTERT- cells after radiation followed by Cr (VI) and more pronounced in hTERT+ cells after Cr (VI) followed by radiation. Moreover, the biological effects provoked by combined exposure of Cr (VI) and radiation also led to a synergistic action in both types of cells, compared to either Cr (VI) treatment only or radiation exposure only. This study suggests that telomerase can prevent genomic instability caused by Cr (VI), but not by radiation. Furthermore, genomic instability may be prevented by telomerase when cells are exposed to radiation and then Cr (VI) but not after exposure to Cr (VI) and then radiation.


Asunto(s)
Cromo/toxicidad , Rayos gamma , Inestabilidad Genómica , Telomerasa/metabolismo , Línea Celular , Supervivencia Celular , ADN/efectos de los fármacos , ADN/efectos de la radiación , Inestabilidad Genómica/genética , Humanos , Dicromato de Potasio/toxicidad , Telomerasa/genética
13.
Sci Rep ; 9(1): 4370, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30867444

RESUMEN

For many diseases with a foetal origin, the cause for the disease initiation remains unknown. Common childhood acute leukaemia is thought to be caused by two hits, the first in utero and the second in childhood in response to infection. The mechanism for the initial DNA damaging event are unknown. Here we have used in vitro, ex vivo and in vivo models to show that a placental barrier will respond to agents that are suspected of initiating childhood leukaemia by releasing factors that cause DNA damage in cord blood and bone marrow cells, including stem cells. We show that DNA damage caused by in utero exposure can reappear postnatally after an immune challenge. Furthermore, both foetal and postnatal DNA damage are prevented by prenatal exposure of the placenta to a mitochondrially-targeted antioxidant. We conclude that the placenta might contribute to the first hit towards leukaemia initiation by bystander-like signalling to foetal haematopoietic cells.


Asunto(s)
Daño del ADN , Leucemia Mieloide Aguda/etiología , Leucemia Mieloide Aguda/metabolismo , Placenta/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/etiología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Transducción de Señal , Carcinógenos/farmacología , Aberraciones Cromosómicas , Medios de Cultivo Condicionados , Daño del ADN/efectos de los fármacos , Femenino , Fibroblastos/metabolismo , Humanos , Recién Nacido , Leucemia Mieloide Aguda/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Embarazo , Transducción de Señal/efectos de los fármacos , Células Madre/metabolismo , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo
14.
Front Physiol ; 10: 562, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178743

RESUMEN

Pregnancy complications associated with chronic fetal hypoxia have been linked to the development of adult cardiovascular disease in the offspring. Prenatal hypoxia has been shown to increase placental oxidative stress and impair placental function in a sex-specific manner, thereby affecting fetal development. As oxidative stress is central to placental dysfunction, we developed a placenta-targeted treatment strategy using the antioxidant MitoQ encapsulated into nanoparticles (nMitoQ) to reduce placental oxidative/nitrosative stress and improve placental function without direct drug exposure to the fetus in order to avoid off-target effects during development. We hypothesized that, in a rat model of prenatal hypoxia, nMitoQ prevents hypoxia-induced placental oxidative/nitrosative stress, promotes angiogenesis, improves placental morphology, and ultimately improves fetal oxygenation. Additionally, we assessed whether there were sex differences in the effectiveness of nMitoQ treatment. Pregnant rats were intravenously injected with saline or nMitoQ (100 µl of 125 µM) on gestational day (GD) 15 and exposed to either normoxia (21% O2) or hypoxia (11% O2) from GD15 to 21. On GD21, placentae from both sexes were collected for detection of superoxide, nitrotyrosine, nitric oxide, CD31 (endothelial cell marker), and fetal blood spaces, Vegfa and Igf2 mRNA expression in the placental labyrinth zone. Prenatal hypoxia decreased male fetal weight, which was not changed by nMitoQ treatment; however, placental efficiency (fetal/placental weight ratio) decreased by hypoxia and was increased by nMitoQ in both males and females. nMitoQ treatment reduced the prenatal hypoxia-induced increase in placental superoxide levels in both male and female placentae but improved oxygenation in only female placentae. Nitrotyrosine levels were increased in hypoxic female placentae and were reduced by nMitoQ. Prenatal hypoxia reduced placental Vegfa and Igf2 expression in both sexes, while nMitoQ increased Vegfa and Igf2 expression only in hypoxic female placentae. In summary, our study suggests that nMitoQ treatment could be pursued as a potential preventative strategy against placental oxidative stress and programming of adult cardiovascular disease in offspring exposed to hypoxia in utero. However, sex differences need to be taken into account when developing therapeutic strategies to improve fetal development in complicated pregnancies, as nMitoQ treatment was more effective in placentae from females than males.

15.
Biomaterials ; 192: 140-148, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30448698

RESUMEN

Fetal development may be compromised by adverse events at the placental interface between mother and fetus. However, it is still unclear how the communication between mother and fetus occurs through the placenta. In vitro - models of the human placental barrier, which could help our understanding and which recreate three-dimensional (3D) structures with biological functionalities and vasculatures, have not been reported yet. Here we present a 3D-vascularized human primary placental barrier model which can be constructed in 1 day. We illustrate the similarity of our model to first trimester human placenta, both in its structure and in its ability to respond to altered oxygen and to secrete factors that cause damage cells across the barrier including embryonic cortical neurons. We use this model to highlight the possibility that both the trophoblast and the endothelium within the placenta might play a role in the fetomaternal dialogue.


Asunto(s)
Células del Tejido Conectivo/citología , Endotelio Vascular/citología , Placenta/irrigación sanguínea , Trofoblastos/citología , Células Cultivadas , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neuronas/citología , Placenta/citología , Embarazo
16.
Crit Rev Toxicol ; 38(8): 645-74, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18720105

RESUMEN

Humans are exposed to cobalt (Co) and chromium (Cr) from industry and surgical devices, most notably orthopedic joint replacements. This review compares the potential health effects of exposure to Co and Cr contaminants from these two different sources, both in the locally exposed tissues and at sites distant to the primary exposure. Surgical implantation results largely in exposures to ions, corrosion products, and particles of Co and Cr. Industrial exposures are predominantly to metal compounds and particles. Although there are large literatures on industrial and surgical exposures to these metals, there has yet to be a systematic comparison of the two to test whether more general lessons might be learned about the human toxicology of Co and Cr. Both industrial and surgical exposures cause inflammatory and other immune reactions in the directly exposed tissues. In the lung there is a well-established risk of cancer following long-term exposures to hexavalent Cr; however, the development of sarcoma in the connective tissues adjacent to implants in response to metal particles is rare. Both types of exposure are associated with changes in the peripheral blood, including evidence of oxidative stress, and altered numbers of circulating immune cells. There is dissemination of Co and Cr to sites distant to the orthopedic implant, but less is known about systemic dissemination of these metals away from the lung. The effects of industrial exposures in the reproductive, renal, and cardiac systems have been investigated, but this has yet to be explored after surgical exposures. The form of the metal (and associated elements) in both instances is key to the toxicological effects arising in the body and further characterization of debris released from devices is certainly recommended, as is the impact of nanotoxicology on the health and safety of workers and patients. Biomonitoring schemes currently used in industry could be translated, if required, into suitable programs for orthopedic out-patients. Cross-communication between experts in industrial and occupational medicine and regulatory agencies may be useful.


Asunto(s)
Artroplastia de Reemplazo/efectos adversos , Cromo/toxicidad , Cobalto/toxicidad , Contaminantes Ambientales/toxicidad , Industria Química , Humanos , Sistema Inmunológico/efectos de los fármacos , Pruebas de Mutagenicidad , Neoplasias/inducido químicamente , Estrés Oxidativo , Reproducción/efectos de los fármacos , Factores de Riesgo
17.
Mutat Res ; 643(1-2): 11-9, 2008 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-18614183

RESUMEN

Particles of surgical cobalt chrome alloy are cytotoxic and genotoxic to human fibroblasts in vitro. In vivo orthopaedic patients are exposed to cobalt chrome particles as a result of wear of a joint replacement. Many of the wear debris particles that are produced are phagocytosed by macrophages that accumulate at the site of the worn implant and are disseminated to local and distant lymph nodes the liver and the spleen. In this study we have tested whether this process of phagocytosis could have altered the cytotoxic and genotoxic properties of the cobalt chrome particles. Quartz particles have been investigated as a control. Micron-sized particles of cobalt chrome alloy were internalised by either white cells of peripheral blood or by THP-1 monocytes for 1 week and 1 day, respectively. The particles were then extracted and presented at different doses to fibroblasts for 1 day. There was a reduction of the cytotoxicity and genotoxicity of the cobalt chrome particles after phagocytosis by white cells or THP-1 cells. Cobalt chrome particles that were internalised by fibroblasts also showed a reduction of their cytotoxicity but not their genotoxicity. In contrast the cytotoxicity and genotoxicity of quartz particles was increased after internalisation by THP-1 cells. The surface morphology of the cobalt chrome particles but not the quartz particles was changed after phagocytosis by THP-1 cells. This study suggests that the genotoxic and cytotoxic properties of particles that fall within the size range for phagocytosis may be highly complex in vivo and depend on the combination of material type and previous phagocytosis. These results may have relevance for particle exposure from orthopaedic implants and from environmental or industrial pollution.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Aleaciones de Cromo/farmacología , Macrófagos/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Cuarzo/farmacología , Células Cultivadas , Ensayo Cometa , Fibroblastos/efectos de los fármacos , Fibroblastos/ultraestructura , Humanos , Técnicas In Vitro , Macrófagos/ultraestructura , Fagocitos/efectos de los fármacos
18.
Neuronal Signal ; 2(4): NS20180139, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32714596

RESUMEN

Prenatal development is a critical period for programming of neurological disease. Preeclampsia, a pregnancy complication involving oxidative stress in the placenta, has been associated with long-term health implications for the child, including an increased risk of developing schizophrenia and autism spectrum disorders in later life. To investigate if molecules released by the placenta may be important mediators in foetal programming of the brain, we analysed if placental tissue delivered from patients with preeclampsia secreted molecules that could affect cortical cells in culture. Application of culture medium conditioned by preeclamptic placentae to mixed cortical cultures caused changes in neurons and astrocytes that were related to key changes observed in brains of patients with schizophrenia and autism, including effects on dendrite lengths, astrocyte number as well as on levels of glutamate and γ-aminobutyric acid receptors. Treatment of the placental explants with an antioxidant prevented neuronal abnormalities. Furthermore, we identified that bidirectional communication between neurons and astrocytes, potentially via glutamate, is required to produce the effects of preeclamptic placenta medium on cortical cells. Analysis of possible signalling molecules in the placenta-conditioned medium showed that the secretion profile of extracellular microRNAs, small post-transcriptional regulators, was altered in preeclampsia and partially rescued by antioxidant treatment of the placental explants. Predicted targets of these differentially abundant microRNAs were linked to neurodevelopment and the placenta. The present study provides further evidence that the diseased placenta may release factors that damage cortical cells and suggests the possibility of targeted antioxidant treatment of the placenta to prevent neurodevelopmental disorders.

19.
Nat Nanotechnol ; 13(5): 427-433, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29610530

RESUMEN

The potential for maternal nanoparticle (NP) exposures to cause developmental toxicity in the fetus without the direct passage of NPs has previously been shown, but the mechanism remained elusive. We now demonstrate that exposure of cobalt and chromium NPs to BeWo cell barriers, an in vitro model of the human placenta, triggers impairment of the autophagic flux and release of interleukin-6. This contributes to the altered differentiation of human neural progenitor cells and DNA damage in the derived neurons and astrocytes. Crucially, neuronal DNA damage is mediated by astrocytes. Inhibiting the autophagic degradation in the BeWo barrier by overexpression of the dominant-negative human ATG4BC74A significantly reduces the levels of DNA damage in astrocytes. In vivo, indirect NP toxicity in mice results in neurodevelopmental abnormalities with reactive astrogliosis and increased DNA damage in the fetal hippocampus. Our results demonstrate the potential importance of autophagy to elicit NP toxicity and the risk of indirect developmental neurotoxicity after maternal NP exposure.


Asunto(s)
Astrocitos/metabolismo , Modelos Biológicos , Nanopartículas/toxicidad , Neuronas/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Placenta/patología , Complicaciones del Embarazo/metabolismo , Animales , Astrocitos/patología , Línea Celular , Femenino , Humanos , Masculino , Ratones , Trastornos del Neurodesarrollo/inducido químicamente , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/patología , Neuronas/patología , Síndromes de Neurotoxicidad/patología , Embarazo , Complicaciones del Embarazo/inducido químicamente , Complicaciones del Embarazo/patología
20.
Oncogene ; 25(24): 3424-35, 2006 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-16449970

RESUMEN

There is currently a great interest in delayed chromosomal and other damaging effects of low-dose exposure to a variety of pollutants which appear collectively to act through induction of stress-response pathways related to oxidative stress and ageing. These have been studied mostly in the radiation field but evidence is accumulating that the mechanisms can also be triggered by chemicals, especially heavy metals. Humans are exposed to metals, including chromium (Cr) (VI) and vanadium (V) (V), from the environment, industry and surgical implants. Thus, the impact of low-dose stress responses may be larger than expected from individual toxicity projections. In this study, a short (24 h) exposure of human fibroblasts to low doses of Cr (VI) and V (V) caused both acute chromosome damage and genomic instability in the progeny of exposed cells for at least 30 days after exposure. Acutely, Cr (VI) caused chromatid breaks without aneuploidy while V (V) caused aneuploidy without chromatid breaks. The longer-term genomic instability was similar but depended on hTERT positivity. In telomerase-negative hTERT- cells, Cr (VI) and V (V) caused a long lasting and transmissible induction of dicentric chromosomes, nucleoplasmic bridges, micronuclei and aneuploidy. There was also a long term and transmissible reduction of clonogenic survival, with an increased beta-galactosidase staining and apoptosis. This instability was not present in telomerase-positive hTERT+ cells. In contrast, in hTERT+ cells the metals caused a persistent induction of tetraploidy, which was not noted in hTERT- cells. The growth and survival of both metal-exposed hTERT+ and hTERT- cells differed if they were cultured at subconfluent levels or plated out as colonies. Genomic instability is considered to be a driving force towards cancer. This study suggests that the type of genomic instability in human cells may depend critically on whether they are telomerase-positive or -negative and that their sensitivities to metals could depend on whether they are clustered or diffuse.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Inestabilidad Genómica , Telomerasa/fisiología , Apoptosis , Carcinógenos/toxicidad , Supervivencia Celular , Cromo/farmacología , Aberraciones Cromosómicas , Proteínas de Unión al ADN/metabolismo , Fibroblastos/metabolismo , Humanos , Hibridación Fluorescente in Situ , Iones , Pruebas de Micronúcleos , Telomerasa/metabolismo , Factores de Tiempo , Vanadio/farmacología , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA