Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Insect Sci ; 24(2)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38501855

RESUMEN

For many mosquito species, the females must obtain vertebrate blood to complete a gonotrophic cycle. These blood meals are frequently supplemented by feeding on sugary plant nectar, which sustains energy reserves needed for flight, mating, and overall fitness. Our understanding of mosquito nectar foraging behaviors is mostly limited to laboratory experiments and direct field observations, with little research into natural mosquito-host plant relationships done in North America. In this study, we collected nectar-fed female mosquitoes over a 2-year period in Manitoba, Canada, and amplified a fragment of the chloroplast rbcL gene to identify the plant species fed upon. We found that mosquitoes foraged from diverse plant families (e.g., grasses, trees, ornamentals, and legumes), but preferred certain species, most notably soybean and Kentucky blue grass. Moreover, there appeared to be some associations between plant feeding preferences and mosquito species, date of collection, landscape, and geographical region. Overall, this study implemented DNA barcoding to identify nectar sources forage by mosquitoes in the Canadian Prairies.


Asunto(s)
Aedes , Culex , Culicidae , Femenino , Animales , Culicidae/genética , Néctar de las Plantas , Conducta Alimentaria , Canadá , Suplementos Dietéticos , Mosquitos Vectores
2.
J Insect Sci ; 23(2)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37004145

RESUMEN

Black queen cell virus (BQCV) is a ubiquitous honeybee virus and a significant pathogen to queen bee (Apis mellifera) larvae. However, many aspects of the virus remain poorly understood, including the transmission dynamics. In this study, we used next-generation sequencing to identify BQCV in Aedes vexans (n = 4,000) collected in 2019 and 2020 from Manitoba, Canada. We assembled de novo the nearly complete (>96%) genome sequence of the virus, which is the first available from North America and the first report of BQCV being harbored by mosquitoes. Phylogenetic tree reconstructions indicated that the genome had 95.5% sequence similarity to a BQCV isolate from Sweden. Sequences of a potential vector (Varroa destructor) and a microsporidian associated with BQCV (Nosema apis) were not identified in the mosquito samples, however, we did detect sequences of plant origin. We, therefore, hypothesize that the virus was indirectly acquired by mosquitoes foraging at the same nectar sources as honeybees.


Asunto(s)
Culicidae , Virus ARN , Abejas , Animales , Filogenia , Canadá , Mosquitos Vectores , Virus ARN/genética
3.
Can J Microbiol ; 68(9): 594-604, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35863073

RESUMEN

Larvae of the greater wax moth (Galleria mellonella) are an emerging animal model to study the innate immune response and biodegradation of plastic polymers. Both of these complex biological processes are likely impacted by the plasticity of host-microbe interactions, which remains understudied in lepidopterans. Consequently, we carried out 16S rRNA sequencing to explore the effect diet (natural, artificial) has on the bacterial assemblages of G. mellonella in different tissues (gut, fat bodies, silk glands) throughout development (eggs, six instar stages, adults). The microbiome was rich in diversity, with Proteobacteria and Firmicutes being the most represented phyla. Contrary to other lepidopterans, G. mellonella appears to possess a resident microbiome dominated by Ralstonia. As larvae progress through development, the bacterial assemblages become increasingly shaped by the caterpillar's diet. In particular, a number of bacteria genera widely associated with the G. mellonella microbiome (e.g., Enterococcus and Enterbacter) were significantly enriched on an artificial diet. Overall, these results indicate that the G. mellonella microbiome is not as simplistic and homogenous as previously described. Rather, its bacterial communities are drastically affected by both diet and ontogeny, which should be taken into consideration in future studies planning to use G. mellonella as model species.


Asunto(s)
Microbiota , Mariposas Nocturnas , Animales , Bacterias/genética , Dieta , Larva/microbiología , Plásticos/metabolismo , Polímeros/metabolismo , ARN Ribosómico 16S/genética , Seda/metabolismo
4.
Plant Dis ; 105(1): 127-133, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33197380

RESUMEN

Soybean (Glycine max) is one of the most economically important crops grown in North America and in other regions worldwide. However, the plant is susceptible to a variety of foliar pathogenic microorganisms, some of which are a significant threat to production. Several molecular and serological approaches are currently available to diagnose plant pathogens, but all have limitations including their capability to accurately detect coinfections of individual plants. We therefore used 16S and internal transcribed spacer amplicon sequencing to identify the suite of bacterial and fungal organisms infecting 96 soybean leaf samples collected throughout southern Manitoba, Canada, at two growth stages (V2/3 and R6). We were able to confirm the presence of pathogens previously known to our sampling regions, such as Septoria glycines, Alternaria alternata, and Pseudomonas spp. Importantly, we found that most of plants were infected by more than one putative pathogen, with 64% of V2/3 and 26% of R6 plants infected by three or more pathogens. Amplicon sequencing also indicated the presence of residual pathogens that infect crops other than soybean, as well as nonfoliar pathogens and nonpathogenic microorganisms. We discuss some of the benefits and drawbacks of using amplicon sequencing to detect foliar pathogens of soybean.


Asunto(s)
Coinfección , Glycine max , Alternaria , Ascomicetos , Canadá , Humanos , Manitoba , América del Norte
5.
Proc Biol Sci ; 287(1922): 20200112, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32126962

RESUMEN

Recently, a few insects, including the caterpillar larva of the greater wax moth Galleria mellonella, have been identified as avid 'plastivores'. These caterpillars are able to ingest and metabolize polyethylene at unprecedented rates. While it appears that G. mellonella plays an important role in the biodegradation process, the contribution of its intestinal microbiome remains poorly understood and contested. In a series of experiments, we present strong evidence of an intricate relationship between an intact microbiome, low-density polyethylene (LDPE) biodegradation and the production of glycol as a metabolic by-product. First, we biochemically confirmed that G. mellonella larvae consume and metabolize LDPE, as individual caterpillars fed on polyethylene excreted glycol, but those excretions were reduced by antibiotic treatment. Further, while the gut bacterial communities remained relatively stable regardless of diet, we showed that during the early phases of feeding on LDPE (24-72 h), caterpillars exhibited increased microbial abundance relative to those starved or fed on their natural honeycomb diet. Finally, by isolating and growing gut bacteria with polyethylene as their exclusive carbon source for over 1 year, we identified microorganisms in the genus Acinetobacter that appeared to be involved in this biodegradation process. Taken collectively, our study indicates that during short-term exposure, the intestinal microbiome of G. mellonella is intricately associated with polyethylene biodegradation in vivo.


Asunto(s)
Microbioma Gastrointestinal , Mariposas Nocturnas/microbiología , Polietileno/metabolismo , Animales , Biodegradación Ambiental , Mariposas Nocturnas/metabolismo
6.
Environ Sci Technol ; 54(22): 14706-14715, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33103898

RESUMEN

Larvae of the greater wax moth (Galleria mellonella) possess the remarkable ability to consume and rapidly degrade low-density polyethylene. Previous studies have investigated the involvement of the animal's microbiome, but little is known about the host's actual role and if it benefits from biodegradation of this synthetic polymer. We used a combination of RNA sequencing and biochemical approaches to assess caterpillars fed honeycomb, fed polyethylene (PE), or starved for up to 72 h. Sequencing of gut transcripts revealed PE-fed larvae retain an expression profile consistent with normal intestinal function but also show distinct molecular signatures indicative of enhanced fatty acid metabolism (FAM). Further, quantification of total lipid content validated the impact of a PE diet on FAM; in contrast to lipid-depleted starved animals, PE-fed caterpillars maintain lipid reserves similar to honeycomb-fed larvae. Additionally, we found the activity of putative enzymes involved in lipid oxidation (e.g., alcohol dehydrogenase) are considerably higher in PE-fed larvae, indicating that on a functional level, these caterpillars are inducing pathways to effectively metabolize PE. Overall, we put forward a hypothesized model where the similarity in chemical structure between PE and its natural honeycomb diet has endowed larvae of G. mellonella with the extraordinary capability to derive energy from PE as an exclusive food source through pre-existing metabolic pathways.


Asunto(s)
Mariposas Nocturnas , Animales , Biodegradación Ambiental , Homeostasis , Larva , Polietileno
7.
Exp Appl Acarol ; 82(3): 379-395, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33009647

RESUMEN

N,N-Diethyl-m-toluamide (DEET) is by far the most used repellent worldwide. When applied topically to the skin, the active ingredient has been shown to provide protection from a variety of hematophagous insects, including mosquitoes and flies. DEET's effectiveness against ticks is influenced by a variety of factors (e.g., duration and concentration of application, drying time, route of exposure, tick species and developmental stage), and may differ from insects due to their unique chemosensory system that primarily involves the Haller's organ. We therefore used several approaches to investigate DEET's efficacy to repel Dermacentor variabilis at different concentrations (5, 30 or 75%), as well as explore its toxicological properties and natural variability in DEET insensitivity across populations from Manitoba, Canada. Climbing bioassays indicated that higher concentrations of DEET were more effective at repelling D. variabilis, and that ticks from some sampling localities were more sensitive to lower concentrations than others. Petri dish arena assays revealed ticks exposed to high concentrations of the repellent lose their ability to discriminate lower concentrations, perhaps due to overstimulation or habituation. Finally, our tactile assays demonstrated reduced tick survival after contact with high DEET concentrations, with mortality occurring more rapidly with increased concentration. Dermacentor variabilis from these tactile assays displayed a multitude of physiological and neurological symptoms, such as 'hot foot' and various bodily secretions. Overall, our study shows a strong association between repellency, concentration and the acaricidal effects of DEET on D. variabilis.


Asunto(s)
DEET , Dermacentor , Repelentes de Insectos , Rhipicephalus sanguineus , Animales , Canadá
8.
Plant Dis ; 103(6): 1075-1083, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31009362

RESUMEN

Soybean (Glycine max) has become an important crop in Manitoba, Canada, with a 10-fold increase in dedicated acreage over the past decade. Given the rapid increase in production, scarce information about foliar diseases present in the province has been recorded. In order to describe the foliar pathogens affecting this legume, we harnessed next-generation sequencing (NGS) to carry out a comprehensive survey across Manitoba in 2016. Fields were sampled during the V2/3 (33 fields) and R6 (70 fields) growth stages, with at least three symptomatic leaves per field collected and subjected to RNA sequencing. We successfully detected several bacteria, fungi, and viruses known to infect soybean, including Pseudomonas savastanoi pv. glycinea, Septoria glycines, and Peronospora manshurica, as well as pathogens not previously identified in the province (e.g., Pseudomonas syringae pv. tabaci, Cercospora sojina, and Bean yellow mosaic virus). For some microorganisms, we were able to disentangle the different pathovars present and/or assemble their genome sequence. Since NGS generates data on the entire flora and fauna occupying a leaf sample, we also identified residual pathogens (i.e., pathogens of crops other than soybean) and multiple species of arthropod pests. Finally, the sequence information produced by NGS allowed for the development of polymerase chain reaction-based diagnostics for some of the most widespread and important pathogens. Although there are many benefits of using NGS for large-scale plant pathogen diagnoses, we also discuss some of the limitations of this technology.


Asunto(s)
Agricultura/métodos , Bacterias/genética , Hongos/genética , Glycine max , Secuenciación de Nucleótidos de Alto Rendimiento , Virus de Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Manitoba , Glycine max/microbiología , Glycine max/virología
9.
BMC Genomics ; 18(1): 472, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28645245

RESUMEN

BACKGROUND: Genetic resistance of soybean [Glycine max (L.) Merr] against Aphis glycines provides effective management of this invasive pest, though the underlying molecular mechanisms are largely unknown. This study aimed to investigate genome-wide changes in gene expressions of soybean near-isogenic lines (NILs) either with the Rag5 allele for resistance or the rag5 allele for susceptibility to the aphid following infestation with soybean aphid biotype 2. RESULTS: The resistant (R)-NIL responded more rapidly to aphid infestation than the susceptible (S)-NIL, with differential expressions of 2496 genes during first 12 h of infestation (hai), compared to the aphid-free control. Although the majority of the differentially expressed genes (DEGs) in the R-NIL also responded to aphid infestation in S-NIL, overall the response time was longer and/or the magnitude of change was smaller in the S-NIL. In addition, 915 DEGs in R-NIL continued to be regulated at all time points (0, 6, 12, and 48 hai), while only 20 DEGs did so in S-NIL. Enriched gene ontology of the 2496 DEGs involved in plant defense responses including primary metabolite catalysis, oxidative stress reduction, and phytohormone-related signaling. By comparing R- vs. S-NIL, a total of 556 DEGs were identified. Of the 13 genes annotated in a 120-kb window of the Rag5 locus, two genes (Glyma.13 g190200 and Glyma.13 g190600) were differentially expressed (upregulated in S- or R-NIL), and another gene (Glyma.13 g190500) was induced up to 4-fold in the R-NIL at 6 and 12 h following aphid infestation. CONCLUSIONS: This study strengthens our understanding of the defense dynamics in compatible and incompatible interactions of soybean and soybean aphid biotype 2. Several DEGs (e.g., Glyma.13 g190200, Glyma.13 g190500, and Glyma.13 g190600) near the Rag5 locus are strong candidate genes for further investigations.


Asunto(s)
Alelos , Áfidos/fisiología , Perfilación de la Expresión Génica , Glycine max/genética , Glycine max/fisiología , Animales , Cromosomas de las Plantas/genética , Sitios Genéticos/genética , ARN Mensajero/genética
10.
Insect Mol Biol ; 24(4): 422-31, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25845267

RESUMEN

Vertically transmitted bacterial symbionts are common in arthropods. Aphids undergo an obligate symbiosis with Buchnera aphidicola, which provides essential amino acids to its host and contributes directly to nymph growth and reproduction. We previously found that newly adult Aphis glycines feeding on soybean infected with the beetle-transmitted Bean pod mottle virus (BPMV) had significantly reduced fecundity. We hypothesized that the reduced fecundity was attributable to detrimental impacts of the virus on the aphid microbiome, namely Buchnera. To test this, mRNA sequencing and quantitative real-time PCR were used to assay Buchnera transcript abundance and titre in A. glycines feeding on Soybean mosaic virus-infected, BPMV-infected, and healthy soybean for up to 14 days. Our results indicated that Buchnera density was lower and ultimately suppressed in aphids feeding on virus-infected soybean. While the decreased Buchnera titre may be associated with reduced aphid fecundity, additional mechanisms are probably involved. The present report begins to describe how interactions among insects, plants, and plant pathogens influence endosymbiont population dynamics.


Asunto(s)
Áfidos/microbiología , Buchnera/virología , Comovirus/fisiología , Glycine max/virología , Virus del Mosaico , Animales , Buchnera/genética , Fertilidad , Genes Bacterianos , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/virología , Dinámica Poblacional , Glycine max/parasitología , Simbiosis , Transcriptoma
11.
Phytopathology ; 105(7): 956-65, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25822185

RESUMEN

In sub-Saharan Africa, maize is a staple food and key determinant of food security for smallholder farming communities. Pest and disease outbreaks are key constraints to maize productivity. In September 2011, a serious disease outbreak, later diagnosed as maize lethal necrosis (MLN), was reported on maize in Kenya. The disease has since been confirmed in Rwanda and the Democratic Republic of Congo, and similar symptoms have been reported in Tanzania, Uganda, South Sudan, and Ethiopia. In 2012, yield losses of up to 90% resulted in an estimated grain loss of 126,000 metric tons valued at $52 million in Kenya alone. In eastern Africa, MLN was found to result from coinfection of maize with Maize chlorotic mottle virus (MCMV) and Sugarcane mosaic virus (SCMV), although MCMV alone appears to cause significant crop losses. We summarize here the results of collaborative research undertaken to understand the biology and epidemiology of MLN in East Africa and to develop disease management strategies, including identification of MLN-tolerant maize germplasm. We discuss recent progress, identify major issues requiring further research, and discuss the possible next steps for effective management of MLN.


Asunto(s)
Potyviridae/fisiología , Tombusviridae/fisiología , Zea mays/virología , África del Sur del Sahara , Abastecimiento de Alimentos , Interacciones Huésped-Patógeno , Control de Plagas , Enfermedades de las Plantas/virología
12.
BMC Genomics ; 15: 133, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24524215

RESUMEN

BACKGROUND: Insects are the most important epidemiological factors for plant virus disease spread, with >75% of viruses being dependent on insects for transmission to new hosts. The black-faced leafhopper (Graminella nigrifrons Forbes) transmits two viruses that use different strategies for transmission: Maize chlorotic dwarf virus (MCDV) which is semi-persistently transmitted and Maize fine streak virus (MFSV) which is persistently and propagatively transmitted. To date, little is known regarding the molecular and cellular mechanisms in insects that regulate the process and efficiency of transmission, or how these mechanisms differ based on virus transmission strategy. RESULTS: RNA-Seq was used to examine transcript changes in leafhoppers after feeding on MCDV-infected, MFSV-infected and healthy maize for 4 h and 7 d. After sequencing cDNA libraries constructed from whole individuals using Illumina next generation sequencing, the Rnnotator pipeline in Galaxy was used to reassemble the G. nigrifrons transcriptome. Using differential expression analyses, we identified significant changes in transcript abundance in G. nigrifrons. In particular, transcripts implicated in the innate immune response and energy production were more highly expressed in insects fed on virus-infected maize. Leafhoppers fed on MFSV-infected maize also showed an induction of transcripts involved in hemocoel and cell-membrane linked immune responses within four hours of feeding. Patterns of transcript expression were validated for a subset of transcripts by quantitative real-time reverse transcription polymerase chain reaction using RNA samples collected from insects fed on healthy or virus-infected maize for between a 4 h and seven week period. CONCLUSIONS: We expected, and found, changes in transcript expression in G. nigrifrons feeding of maize infected with a virus (MFSV) that also infects the leafhopper, including induction of immune responses in the hemocoel and at the cell membrane. The significant induction of the innate immune system in G. nigrifrons fed on a foregut-borne virus (MCDV) that does not infect leafhoppers was less expected. The changes in transcript accumulation that occur independent of the mode of pathogen transmission could be key for identifying insect factors that disrupt vector-mediated plant virus transmission.


Asunto(s)
Hemípteros/genética , Hemípteros/virología , Virus de la Veta de Maíz/fisiología , Transcriptoma , Waikavirus/fisiología , Zea mays/virología , Animales , Metabolismo Energético/genética , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunidad Innata/genética , Insectos Vectores/genética , Factores de Tiempo , Regulación hacia Arriba
13.
Mol Ecol ; 23(9): 2242-59, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24673723

RESUMEN

Divergent selection based on aquatic larval ecology is a likely factor in the recent isolation of two broadly sympatric and morphologically identical African mosquito species, the malaria vectors Anopheles gambiae and An. coluzzii. Population-based genome scans have revealed numerous candidate regions of recent positive selection, but have provided few clues as to the genetic mechanisms underlying behavioural and physiological divergence between the two species, phenotypes which themselves remain obscure. To uncover possible genetic mechanisms, we compared global transcriptional profiles of natural and experimental populations using gene-based microarrays. Larvae were sampled as second and fourth instars from natural populations in and around the city of Yaoundé, capital of Cameroon, where the two species segregate along a gradient of urbanization. Functional enrichment analysis of differentially expressed genes revealed that An. coluzzii--the species that breeds in more stable, biotically complex and potentially polluted urban water bodies--overexpresses genes implicated in detoxification and immunity relative to An. gambiae, which breeds in more ephemeral and relatively depauperate pools and puddles in suburbs and rural areas. Moreover, our data suggest that such overexpression by An. coluzzii is not a transient result of induction by xenobiotics in the larval habitat, but an inherent and presumably adaptive response to repeatedly encountered environmental stressors. Finally, we find no significant overlap between the differentially expressed loci and previously identified genomic regions of recent positive selection, suggesting that transcriptome divergence is regulated by trans-acting factors rather than cis-acting elements.


Asunto(s)
Anopheles/genética , Ecosistema , Insectos Vectores/genética , Transcriptoma , Animales , Camerún , Genética de Población , Geografía , Larva/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Urbanización
14.
mSphere ; 9(7): e0020324, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38912793

RESUMEN

The microbiome plays vital roles in the life history of mosquitoes, including their development, immunity, longevity, and vector competence. Recent advances in sequencing technologies have allowed for detailed exploration into the diverse microorganisms harbored by these medically important insects. Although these meta-studies have cataloged the microbiomes of mosquitoes in several continents, much of the information currently available for North America is limited to the state of California. In this study, we collected >35,000 mosquitoes throughout Manitoba, Canada, over a 3-year period and then harnessed RNA sequencing and targeted reverse transcriptase-PCR to characterize the microbiomes of the eight most pervasive and important vector and pest species. The consensus microbiome of each species was overwhelmingly composed of viruses but also included fungi, bacteria, protozoa, and parasitic invertebrates. The microbial assemblages were heterogeneous between species, even within the same genus. We detected notable pathogens, including the causal agents of Cache Valley Fever, avian malaria, and canine heartworm. The remaining microbiome consisted largely of putatively insect-specific viruses that are not well characterized, including 17 newly discovered viruses from 10 different families. Future research should focus on evaluating the potential application of these viruses in biocontrol, as biomarkers, and/or in disrupting mosquito vectorial capacity. Interestingly, we also detected viruses that naturally infect honeybees and thrips, which were presumably acquired indirectly through nectar foraging behaviors. Overall, we provide the first comprehensive catalog of the microorganisms harbored by the most common and important mosquito vectors and pests in the Canadian Prairies. IMPORTANCE: Mosquitoes are the most dangerous animals on the planet, responsible for over 800,000 deaths per year globally. This is because they carry and transmit a plethora of human disease-causing microorganisms, such as West Nile virus and the malaria parasite. Recent innovations in nucleic acid sequencing technologies have enabled researchers unparalleled opportunities to characterize the suite of microorganisms harbored by different mosquito species, including the causal agents of disease. In our study, we carried out 3 years of intensive mosquito surveillance in Canada. We collected and characterized the microorganisms harbored by >35,000 mosquitoes, including the identification of the agents of Cache Valley fever, avian malaria, and canine heartworm. We also detected insect-specific viruses and discovered 17 new viruses that have never been reported. This study, which is the first of its kind in Canada and one of only a handful globally, will greatly aid in future infectious disease research.


Asunto(s)
Culicidae , Mosquitos Vectores , Animales , Mosquitos Vectores/microbiología , Mosquitos Vectores/virología , Culicidae/microbiología , Culicidae/virología , Virus/genética , Virus/clasificación , Virus/aislamiento & purificación , Manitoba , Microbiota/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/virología , Canadá , Transcriptoma
15.
Front Plant Sci ; 14: 1277585, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023885

RESUMEN

Expression of quantitative disease resistance in many host-pathogen systems is controlled by genes at multiple loci, each contributing a small effect to the overall response. We used a systems genomics approach to study the molecular underpinnings of quantitative disease resistance in the soybean-Phytophthora sojae pathosystem, incorporating expression quantitative trait loci (eQTL) mapping and gene co-expression network analysis to identify the genes putatively regulating transcriptional changes in response to inoculation. These findings were compared to previously mapped phenotypic (phQTL) to identify the molecular mechanisms contributing to the expression of this resistance. A subset of 93 recombinant inbred lines (RILs) from a Conrad × Sloan population were inoculated with P. sojae isolate 1.S.1.1 using the tray-test method; RNA was extracted, sequenced, and the normalized read counts were genetically mapped from tissue collected at the inoculation site 24 h after inoculation from both mock and inoculated samples. In total, more than 100,000 eQTLs were mapped. There was a switch from predominantly cis-eQTLs in the mock treatment to an almost entirely nonoverlapping set of predominantly trans-eQTLs in the inoculated treatment, where greater than 100-fold more eQTLs were mapped relative to mock, indicating vast transcriptional reprogramming due to P. sojae infection occurred. The eQTLs were organized into 36 hotspots, with the four largest hotspots from the inoculated treatment corresponding to more than 70% of the eQTLs, each enriched for genes within plant-pathogen interaction pathways. Genetic regulation of trans-eQTLs in response to the pathogen was predicted to occur through transcription factors and signaling molecules involved in plant-pathogen interactions, plant hormone signal transduction, and MAPK pathways. Network analysis identified three co-expression modules that were correlated with susceptibility to P. sojae and associated with three eQTL hotspots. Among the eQTLs co-localized with phQTLs, two cis-eQTLs with putative functions in the regulation of root architecture or jasmonic acid, as well as the putative master regulators of an eQTL hotspot nearby a phQTL, represent candidates potentially underpinning the molecular control of these phQTLs for resistance.

16.
Pest Manag Sci ; 79(2): 526-536, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36196672

RESUMEN

BACKGROUND: The long-lived terricolous larvae of click beetles, colloquially called wireworms, pose a significant threat to agriculture worldwide. Several economically important pest species have been documented in the Canadian Prairies, including Hypnoidus bicolor, Limonius californicus and Hypnoidus abbreviatus. However, most monitoring activities are performed in the early spring and there is evidence from other geographical regions of seasonal shifts in wireworm species composition and prevalence. Further, little is known about the overwintering physiology or behaviors of wireworms, which undoubtedly contribute to their population dynamics. RESULTS: We surveyed wireworm populations from four Manitoban fields six times throughout the 2020 and 2021 growing seasons. Both Hypnoidus species were active throughout the spring and summer; however, L. californicus did not become active until later in the spring. Chill-coma recovery assays indicated Hypnoidus species recovered quicker than L. californicus from cold acclimation. Vertical migration assays simulating progressively lower ambient temperatures experienced by overwintering larvae identified H. bicolor throughout the soil profile, with L. californicus preferentially found at cooler, shallower depths. We speculate that these differences in species distribution within the soil column are due to the higher levels of putative cryoprotectants (for example, trehalose, sorbitol, glucose, glycerol) in L. californicus, as identified by targeted liquid chromatography tandem mass spectrometry. CONCLUSION: Our findings of a stark seasonal turnover in wireworm species prevalence and composition in the Canadian Prairies should be incorporated into future integrated pest management and surveillance activities. This study also advances our understanding of wireworm overwintering biology, which should be factored into current management approaches. © 2022 His Majesty the King in Right of Canada. Pest Management Science © 2022 Society of Chemical Industry. Reproduced with the permission of the Minister of Agriculture and Agri-Food Canada.


Asunto(s)
Escarabajos , Animales , Escarabajos/fisiología , Estaciones del Año , Pradera , Canadá , Larva/fisiología , Suelo , Biología
17.
Parasit Vectors ; 16(1): 153, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37118839

RESUMEN

BACKGROUND: Mosquito seasonal activity is largely driven by weather conditions, most notably temperature, precipitation, and relative humidity. The extent by which these weather variables influence activity is intertwined with the animal's biology and may differ by species. For mosquito vectors, changes in weather can also alter host-pathogen interactions thereby increasing or decreasing the burden of disease. METHODS: In this study, we performed weekly mosquito surveillance throughout the active season over a 2-year period in Manitoba, Canada. We then used Generalized Linear Mixed Models (GLMMs) to explore the relationships between weather variables over the preceding 2 weeks and mosquito trap counts for four of the most prevalent vector species in this region: Oc. dorsalis, Ae. vexans, Cx. tarsalis, and Cq. perturbans. RESULTS: More than 265,000 mosquitoes were collected from 17 sampling sites throughout Manitoba in 2020 and 2021, with Ae. vexans the most commonly collected species followed by Cx. tarsalis. Aedes vexans favored high humidity, intermediate degree days, and low precipitation. Coquillettidia perturbans and Oc. dorsalis activity increased with high humidity and high rainfall, respectively. Culex tarsalis favored high degree days, with the relationship between number of mosquitoes captured and precipitation showing contrasting patterns between years. Minimum trapping temperature only impacted Ae. vexans and Cq. perturbans trap counts. CONCLUSIONS: The activity of all four mosquito vectors was affected by weather conditions recorded in the 2 weeks prior to trapping, with each species favoring different conditions. Although some research has been done to explore the relationships between temperature/precipitation and Cx. tarsalis in the Canadian Prairies, to our knowledge this is the first study to investigate other commonly found vector species in this region. Overall, this study highlights how varying weather conditions can impact mosquito activity and in turn species-specific vector potential.


Asunto(s)
Aedes , Culex , Culicidae , Animales , Mosquitos Vectores , Pradera , Canadá/epidemiología , Tiempo (Meteorología) , Dinámica Poblacional
18.
Ticks Tick Borne Dis ; 13(1): 101827, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34610525

RESUMEN

DEET is the most common active ingredient in commercial repellents, providing effective protection against blood-sucking insects and ticks. However, its mode of action is not fully understood, with several theories put forward to explain its repellency effect. Unique to ticks, the Haller's organ recognizes a variety of external stimuli through non-contact mechanisms, yet the extent to which the organ plays a role in tick chemoreception is not fully known. We previously found that DEET inhibited the expression/activity of cytochrome P450s and cholinesterases in Dermacentor variabilis, however, our experimental design could not distinguish between sexes (males/females), method of exposure (volatile/tactile) or the roles of chemosensory tissues (Haller's organ). In this study, we used RNA sequencing to assess changes in transcript expression induced by volatile DEET in D. variabilis males/females with/without intact Haller's organs. Male ticks showed much greater transcriptional responses to DEET than females, which may be at least partially attributed to the sexual dimorphism of the Haller's organ. Female transcript expression profiles were most influenced by condition (i.e., intact/excised Haller's organs) with minimal changes due to repellent exposure. On the other hand, removal of the Haller's organs caused DEET treated male ticks to exhibit similar expression profiles as control (ethanol) ticks with intact Haller's organs. Consequently, the transcript-level responses to spatial DEET exposure appears largely based on males possessing their Haller's organs. The molecular signature of this response included the suppression of a large number of transcripts involved in detoxification, lipid metabolism and immunity. Taken collectively, this study furthers our understanding of the Haller's organ role in volatile DEET recognition.


Asunto(s)
Dermacentor , Repelentes de Insectos , Ixodidae , Animales , DEET/farmacología , Dermacentor/genética , Femenino , Repelentes de Insectos/farmacología , Ixodidae/fisiología , Masculino , Análisis de Secuencia de ARN
19.
FEMS Microbiol Ecol ; 98(3)2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35195242

RESUMEN

Soybean (Glycine max L.) is host to an array of foliar- and root-infecting pathogens that can cause significant yield losses. To provide insights into the roles of microorganisms in disease development, we evaluated the bacterial and fungal communities associated with the soybean rhizosphere and phyllosphere. For this, leaf and soil samples of healthy, Phytophthora sojae-infected and Septoria glycines-infected plants were sampled at three stages during the production cycle, and then subjected to 16S and Internal Transcribed Spacer (ITS) amplicon sequencing. The results indicated that biotic stresses did not have a significant impact on species richness and evenness regardless of growth stage. However, the structure and composition of soybean microbial communities were dramatically altered by biotic stresses, particularly for the fungal phyllosphere. Additionally, we cataloged a variety of microbial genera that were altered by biotic stresses and their associations with other genera, which could serve as biological indicators for disease development. In terms of soybean development, the rhizosphere and phyllosphere had distinct microbial communities, with the fungal phyllosphere most influenced by growth stage. Overall, this study characterized the phyllosphere and rhizosphere microbial communities of soybean, and described the impact of pathogen infection and plant development in shaping these bacterial and fungal communities.


Asunto(s)
Microbiota , Micobioma , Rizosfera , Microbiología del Suelo , Glycine max
20.
J Econ Entomol ; 115(3): 773-782, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35385052

RESUMEN

Wireworms are significant pests of a variety of economically important crops grown in the Canadian Prairies. These soil-dwelling larvae of click beetles feed on and burrow into the accessible underground plant tissues, which can result in cosmetic injury, stunting, wilting, and plant death. Successful management of wireworms relies on accurate estimations of their abundance and activity in infested fields. Bait trapping is the most commonly used method for sampling wireworms and standardized approaches have been developed; however, little work has been done to optimize trapping efficacy in different geographical regions. In this study, we evaluated the effect of bait trapping duration, seed formulation, and the causal relationship with CO2 production and soil temperature on the wireworm catch in three fields located in Manitoba, Canada. As expected, wireworm catch increased with trapping duration and placing traps in ground for 8 d is adequate in most cases. Both barley and wheat were more effective baits than soybean; however, barley released more CO2 (i.e., an attractant for wireworms) and performed better at elevated soil temperatures. Overall, the results of this study will serve as valuable guidelines to improve current wireworm sampling methods, and can be integrated into strategies aimed at managing these important pests to crop production.


Asunto(s)
Escarabajos , Pradera , Animales , Canadá , Dióxido de Carbono , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA