Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 12(6): 385-92, 2011 06.
Artículo en Inglés | MEDLINE | ID: mdl-21527953

RESUMEN

The improper distribution of chromosomes during mitosis compromises cellular functions and can reduce cellular fitness or contribute to malignant transformation. As a countermeasure, higher eukaryotes have developed strategies for eliminating mitosis-incompetent cells, one of which is mitotic catastrophe. Mitotic catastrophe is driven by a complex and poorly understood signalling cascade but, from a functional perspective, it can be defined as an oncosuppressive mechanism that precedes (and is distinct from) apoptosis, necrosis or senescence. Accordingly, the disruption of mitotic catastrophe precipitates tumorigenesis and cancer progression, and its induction constitutes a therapeutic endpoint.


Asunto(s)
Aneuploidia , Aberraciones Cromosómicas , Inestabilidad Genómica , Mitosis/genética , Huso Acromático/metabolismo , Animales , Apoptosis/genética , Autofagia , Ciclo Celular/genética , División Celular , Cromosomas , Humanos , Ratones , Necrosis/genética
2.
EMBO J ; 37(14)2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29875130

RESUMEN

Cisplatin is the most widely used chemotherapeutic agent, and resistance of neoplastic cells against this cytoxicant poses a major problem in clinical oncology. Here, we explored potential metabolic vulnerabilities of cisplatin-resistant non-small human cell lung cancer and ovarian cancer cell lines. Cisplatin-resistant clones were more sensitive to killing by nutrient deprivation in vitro and in vivo than their parental cisplatin-sensitive controls. The susceptibility of cisplatin-resistant cells to starvation could be explained by a particularly strong dependence on glutamine. Glutamine depletion was sufficient to restore cisplatin responses of initially cisplatin-resistant clones, and glutamine supplementation rescued cisplatin-resistant clones from starvation-induced death. Mass spectrometric metabolomics and specific interventions on glutamine metabolism revealed that, in cisplatin-resistant cells, glutamine is mostly required for nucleotide biosynthesis rather than for anaplerotic, bioenergetic or redox reactions. As a result, cisplatin-resistant cancers became exquisitely sensitive to treatment with antimetabolites that target nucleoside metabolism.


Asunto(s)
Antimetabolitos/farmacología , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Cisplatino/farmacología , Resistencia a Antineoplásicos , Glutamina/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Muerte Celular , Línea Celular Tumoral , Metabolismo Energético , Femenino , Humanos , Espectrometría de Masas , Metaboloma , Modelos Biológicos , Nucleótidos/biosíntesis
3.
Proc Natl Acad Sci U S A ; 111(8): 3020-5, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24516128

RESUMEN

Tetraploidy constitutes a genomically metastable state that can lead to aneuploidy and genomic instability. Tetraploid cells are frequently found in preneoplastic lesions, including intestinal cancers arising due to the inactivation of the tumor suppressor adenomatous polyposis coli (APC). Using a phenotypic screen, we identified resveratrol as an agent that selectively reduces the fitness of tetraploid cells by slowing down their cell cycle progression and by stimulating the intrinsic pathway of apoptosis. Selective killing of tetraploid cells was observed for a series of additional agents that indirectly or directly stimulate AMP-activated protein kinase (AMPK) including salicylate, whose chemopreventive action has been established by epidemiological studies and clinical trials. Both resveratrol and salicylate reduced the formation of tetraploid or higher-order polyploid cells resulting from the culture of human colon carcinoma cell lines or primary mouse epithelial cells lacking tumor protein p53 (TP53, best known as p53) in the presence of antimitotic agents, as determined by cytofluorometric and videomicroscopic assays. Moreover, oral treatment with either resveratrol or aspirin, the prodrug of salicylate, repressed the accumulation of tetraploid intestinal epithelial cells in the Apc(Min/+) mouse model of colon cancer. Collectively, our results suggest that the chemopreventive action of resveratrol and aspirin involves the elimination of tetraploid cancer cell precursors.


Asunto(s)
Poliposis Adenomatosa del Colon/prevención & control , Aspirina/uso terapéutico , Muerte Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Estilbenos/uso terapéutico , Tetraploidía , Animales , Aspirina/farmacología , Línea Celular Tumoral , Células Epiteliales/química , Citometría de Flujo , Procesamiento de Imagen Asistido por Computador , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos C57BL , Microscopía por Video , Resveratrol , Estilbenos/farmacología
4.
EMBO J ; 29(7): 1272-84, 2010 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-20186124

RESUMEN

Tetraploidy can constitute a metastable intermediate between normal diploidy and oncogenic aneuploidy. Here, we show that the absence of p53 is not only permissive for the survival but also for multipolar asymmetric divisions of tetraploid cells, which lead to the generation of aneuploid cells with a near-to-diploid chromosome content. Multipolar mitoses (which reduce the tetraploid genome to a sub-tetraploid state) are more frequent when p53 is downregulated and the product of the Mos oncogene is upregulated. Mos inhibits the coalescence of supernumerary centrosomes that allow for normal bipolar mitoses of tetraploid cells. In the absence of p53, Mos knockdown prevents multipolar mitoses and exerts genome-stabilizing effects. These results elucidate the mechanisms through which asymmetric cell division drives chromosomal instability in tetraploid cells.


Asunto(s)
Carcinoma/metabolismo , Neoplasias del Colon/metabolismo , Genes mos , Mitosis , Poliploidía , Proteína p53 Supresora de Tumor/metabolismo , Aneuploidia , Animales , Carcinoma/genética , Línea Celular Tumoral , Centrosoma/metabolismo , Inestabilidad Cromosómica , Neoplasias del Colon/genética , Femenino , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Desnudos , Proteína p53 Supresora de Tumor/genética
5.
Nat Med ; 13(1): 54-61, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17187072

RESUMEN

Anthracyclin-treated tumor cells are particularly effective in eliciting an anticancer immune response, whereas other DNA-damaging agents such as etoposide and mitomycin C do not induce immunogenic cell death. Here we show that anthracyclins induce the rapid, preapoptotic translocation of calreticulin (CRT) to the cell surface. Blockade or knockdown of CRT suppressed the phagocytosis of anthracyclin-treated tumor cells by dendritic cells and abolished their immunogenicity in mice. The anthracyclin-induced CRT translocation was mimicked by inhibition of the protein phosphatase 1/GADD34 complex. Administration of recombinant CRT or inhibitors of protein phosphatase 1/GADD34 restored the immunogenicity of cell death elicited by etoposide and mitomycin C, and enhanced their antitumor effects in vivo. These data identify CRT as a key feature determining anticancer immune responses and delineate a possible strategy for immunogenic chemotherapy.


Asunto(s)
Apoptosis/inmunología , Calreticulina/inmunología , Neoplasias del Colon/metabolismo , Animales , Antraciclinas/farmacología , Antraciclinas/uso terapéutico , Antígenos de Diferenciación/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Calreticulina/genética , Calreticulina/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/inmunología , Membrana Celular/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Células Dendríticas/inmunología , Electroforesis en Gel Bidimensional , Etopósido/farmacología , Etopósido/uso terapéutico , Immunoblotting , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mitomicina/farmacología , Mitomicina/uso terapéutico , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/metabolismo , Fagocitosis/inmunología , Proteína Fosfatasa 1 , Transporte de Proteínas/efectos de los fármacos , Interferencia de ARN , Proteínas Recombinantes/farmacología
6.
Cell Death Dis ; 15(4): 249, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582872

RESUMEN

Acyl-CoA binding protein (ACBP) encoded by diazepam binding inhibitor (DBI) is an extracellular inhibitor of autophagy acting on the gamma-aminobutyric acid A receptor (GABAAR) γ2 subunit (GABAARγ2). Here, we show that lipoanabolic diets cause an upregulation of GABAARγ2 protein in liver hepatocytes but not in other major organs. ACBP/DBI inhibition by systemically injected antibodies has been demonstrated to mediate anorexigenic and organ-protective, autophagy-dependent effects. Here, we set out to develop a new strategy for developing ACBP/DBI antagonists. For this, we built a molecular model of the interaction of ACBP/DBI with peptides derived from GABAARγ2. We then validated the interaction between recombinant and native ACBP/DBI protein and a GABAARγ2-derived eicosapeptide (but not its F77I mutant) by pull down experiments or surface plasmon resonance. The GABAARγ2-derived eicosapeptide inhibited the metabolic activation of hepatocytes by recombinant ACBP/DBI protein in vitro. Moreover, the GABAARγ2-derived eicosapeptide (but not its F77I-mutated control) blocked appetite stimulation by recombinant ACBP/DBI in vivo, induced autophagy in the liver, and protected mice against the hepatotoxin concanavalin A. We conclude that peptidomimetics disrupting the interaction between ACBP/DBI and GABAARγ2 might be used as ACBP/DBI antagonists. This strategy might lead to the future development of clinically relevant small molecules of the ACBP/DBI system.


Asunto(s)
Inhibidor de la Unión a Diazepam , Ácido gamma-Aminobutírico , Animales , Ratones , Inhibidor de la Unión a Diazepam/farmacología
7.
Cell Stress ; 7(1): 1-6, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36743979

RESUMEN

The deletion of the gene coding for poly(ADP-ribose) polymerase-1 (PARP1) or its pharmacological inhibition protects mice against cerebral ischemia and Parkinson's disease. In sharp contrast, PARP1 inhibitors are in clinical use for the eradication of vulnerable cancer cells. It appears that excessive PARP1 activation is involved in a specific cell death pathway called parthanatos, while inhibition of PARP1 in cancer cells amplifies DNA damage to a lethal level. Hence, PARP1 plays a context-dependent role in cell fate decisions. In addition, it appears that PARP1 plays an ambiguous role in organismal aging.

8.
Oncoimmunology ; 11(1): 2111915, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35979387

RESUMEN

High levels of intracellular poly(ADP-ribose) (PAR) resulting from an elevated activity of PAR polymerase-1 (PARP1) correlate with poor infiltration of non-small cell lung cancers by cytotoxic T lymphocytes and dismal patient prognosis. Preclinical experimentation now demonstrates that PARP1 inhibition in cancer cells mediates strong immunostimulatory effects.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Humanos , Inmunidad , Neoplasias Pulmonares/tratamiento farmacológico , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Poli(ADP-Ribosa) Polimerasas/uso terapéutico
9.
J Immunother Cancer ; 10(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35772809

RESUMEN

BACKGROUND: High activity of poly(ADP-ribose) polymerase-1 (PARP1) in non-small cell lung cancer (NSCLC) cells leads to an increase in immunohistochemically detectable PAR, correlating with poor prognosis in patients with NSCLC, as well as reduced tumor infiltration by cytotoxic T lymphocytes (CTLs). Intrigued by this observation, we decided to determine whether PARP1 activity in NSCLC cells may cause an alteration of anticancer immunosurveillance. METHODS: Continuous culture of mouse NSCLC cells in the presence of cisplatin led to the generation of cisplatin-resistant PARhigh clones. As compared with their parental controls, such PARhigh cells formed tumors that were less infiltrated by CTLs when they were injected into immunocompetent mice, suggesting a causative link between high PARP1 activity and compromised immunosurveillance. To confirm this cause-and-effect relationship, we used CRISPR/Cas9 technology to knock out PARP1 in two PARhigh NSCLC mouse cell lines (Lewis lung cancer [LLC] and tissue culture number one [TC1]), showing that the removal of PARP1 indeed restored cisplatin-induced cell death responses. RESULTS: PARP1 knockout (PARP1KO) cells became largely resistant to the PARP inhibitor niraparib, meaning that they exhibited less cell death induction, reduced DNA damage response, attenuated metabolic shifts and no induction of PD-L1 and MHC class-I molecules that may affect their immunogenicity. PARhigh tumors implanted in mice responded to niraparib irrespective of the presence or absence of T lymphocytes, suggesting that cancer cell-autonomous effects of niraparib dominate over its possible immunomodulatory action. While PARhigh NSCLC mouse cell lines proliferated similarly in immunocompetent and T cell-deficient mice, PARP1KO cells were strongly affected by the presence of T cells. PARP1KO LLC tumors grew more quickly in immunodeficient than in immunocompetent mice, and PARP1KO TC1 cells could only form tumors in T cell-deficient mice, not in immunocompetent controls. Importantly, as compared with PARhigh controls, the PARP1KO LLC tumors exhibited signs of T cell activation in the immune infiltrate such as higher inducible costimulator (ICOS) expression and lower PD-1 expression on CTLs. CONCLUSIONS: These results prove at the genetic level that PARP1 activity within malignant cells modulates the tumor microenvironment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Cisplatino/farmacología , Cisplatino/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Monitorización Inmunológica , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Microambiente Tumoral
10.
J Exp Med ; 201(2): 279-89, 2005 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-15642743

RESUMEN

The proapoptotic activity of the transcription factor p53 critically depends on the phosphorylation of serine 46 (p53S46P). Here, we show that syncytia containing p53S46P could be detected in lymph node biopsies from human immunodeficiency virus (HIV)-1 carriers, in the brain of patients with HIV-1-associated dementia and in cocultures of HeLa expressing the HIV-1 envelope glycoprotein complex (Env) with HeLa cells expressing CD4. In this latter model, cell death was the result of a sequential process involving cell fusion, nuclear fusion (karyogamy), phosphorylation of serine 15 (p53S15P), later on serine 46 (p53S46P), and transcription of p53 target genes. Cytoplasmic p38 mitogen-activated protein kinase (MAPK) was found to undergo an activating phosphorylation (p38T180/Y182P [p38 with phosphorylated threonine 180 and tyrosine 182]) before karyogamy and to translocate into karyogamic nuclei. p38T180/Y182P colocalized and coimmunoprecipitated with p53S46P. Recombinant p38 phosphorylated recombinant p53 on serine 46 in vitro. Inhibition of p38 MAPK by pharmacological inhibitors, dominant-negative p38, or small interfering RNA, suppressed p53S46P (but not p53S15P), the expression of p53-inducible genes, the conformational activation of proapoptotic Bax and Bak, the release of cytochrome c from mitochondria, and consequent apoptosis. p38T180/Y182P was also detected in HIV-1-induced syncytia, in vivo, in patients' lymph nodes and brains. Dominant-negative MKK3 or MKK6 inhibited syncytial activation of p38, p53S46P, and apoptosis. Altogether, these findings indicate that p38 MAPK-mediated p53 phosphorylation constitutes a critical step of Env-induced apoptosis.


Asunto(s)
Apoptosis/fisiología , Infecciones por VIH/enzimología , VIH-1 , Proteína p53 Supresora de Tumor/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Infecciones por VIH/metabolismo , Humanos , Fosforilación , Serina/metabolismo , Transcripción Genética/fisiología
11.
Oncoimmunology ; 10(1): 1950954, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34290910

RESUMEN

Malignant cells adapt to the hostile tumor microenvironment by escaping from, or actively suppressing, anticancer immune responses. In the past, we reported that reduced synthesis of active vitamin B6 (due to downregulation of pyridoxal kinase) or overactivation of poly(ADP-ribose) polymerase confers resistance to chemotherapy with cisplatin. Recently, we found that these prognostically adverse alterations in oncometabolism also correlate with the rarefaction of immune effectors in the tumor bed.


Asunto(s)
Neoplasias , Poli Adenosina Difosfato Ribosa , Microambiente Tumoral/inmunología , Cisplatino/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Poli(ADP-Ribosa) Polimerasas , Piridoxal Quinasa
12.
J Immunother Cancer ; 9(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34162714

RESUMEN

BACKGROUND: Tumors rewire their metabolism to achieve robust anabolism and resistance against therapeutic interventions like cisplatin treatment. For example, a prolonged exposure to cisplatin causes downregulation of pyridoxal kinase (PDXK), the enzyme that generates the active vitamin B6, and upregulation of poly ADP-ribose (PAR) polymerase-1 (PARP1) activity that requires a supply of nicotinamide (vitamin B3) adenine dinucleotide. We investigated the impact of the levels of PDXK and PAR on the local immunosurveillance (ie, density of the antigen presenting cells and adaptive immune response by CD8 T lymphocytes) in two different tumor types. METHODS: Tumors from patients with locally advanced cervical carcinoma (LACC) and non-small cell lung cancer (NSCLC) were stained for PAR, PDXK, dendritic cell lysosomal associated membrane glycoprotein (DC-LAMP) and CD8 T cell infiltration. Their correlations and prognostic impact were assessed. Cisplatin-resistant NSCLC cell clones isolated from Lewis-lung cancer (LLC) cells were evaluated for PAR levels by immunoblot. Parental (PARlow) and cisplatin-resistant (PARhigh) clones were subcutaneously injected into the flank of C57BL/6 mice. Tumors were harvested to evaluate their immune infiltration by flow cytometry. RESULTS: The infiltration of tumors by CD8 T and DC-LAMP+ cells was associated with a favorable overall survival in patients with LACC (p=0.006 and p=0.008, respectively) and NSCLC (p<0.001 for both CD8 T and DC-LAMP cells). We observed a positive correlation between PDXK expression and the infiltration by DC-LAMP (R=0.44, p=0.02 in LACC, R=0.14, p=0.057 in NSCLC), and a negative correlation between PAR levels and CD8 T lymphocytes (R=-0.39, p=0.034 in LACC, R=-0.18, p=0.017 in NSCLC). PARP1 is constitutively hyperactivated in cisplatin-resistant LLC cells manifesting elevated intracellular levels of poly(ADP-ribosyl)ated proteins (PARhigh). Tumors formed by such cancer cells injected into immunocompetent mice were scarcely infiltrated by CD8 T (p=0.028) and antigen presenting cells (p=0.086). CONCLUSIONS: Oncometabolic features can impact local immunosurveillance, providing new functional links between cisplatin resistance and therapeutic failure.


Asunto(s)
Inmunoterapia/métodos , Monitorización Inmunológica/métodos , Neoplasias/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Microambiente Tumoral/inmunología
13.
Cell Death Dis ; 12(6): 599, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108446

RESUMEN

In mice, the plasma concentrations of the appetite-stimulatory and autophagy-inhibitory factor acyl-coenzyme A binding protein (ACBP, also called diazepam-binding inhibitor, DBI) acutely increase in response to starvation, but also do so upon chronic overnutrition leading to obesity. Here, we show that knockout of Acbp/Dbi in adipose tissue is sufficient to prevent high-fat diet-induced weight gain in mice. We investigated ACBP/DBI plasma concentrations in several patient cohorts to discover a similar dual pattern of regulation. In relatively healthy subjects, ACBP/DBI concentrations independently correlated with body mass index (BMI) and age. The association between ACBP/DBI and BMI was lost in subjects that underwent major weight gain in the subsequent 3-9 years, as well as in advanced cancer patients. Voluntary fasting, undernutrition in the context of advanced cancer, as well as chemotherapy were associated with an increase in circulating ACBP/DBI levels. Altogether, these results support the conclusion that ACBP/DBI may play an important role in body mass homeostasis as well as in its failure.


Asunto(s)
Índice de Masa Corporal , Peso Corporal/efectos de los fármacos , Inhibidor de la Unión a Diazepam/farmacología , Animales , Estudios de Cohortes , Femenino , Francia , Alemania , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Obesidad/patología
14.
J Exp Med ; 199(5): 629-40, 2004 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-14993250

RESUMEN

The coculture of cells expressing the HIV-1 envelope glycoprotein complex (Env) with cells expressing CD4 results into cell fusion, deregulated mitosis, and subsequent cell death. Here, we show that NF-kappaB, p53, and AP1 are activated in Env-elicited apoptosis. The nuclear factor kappaB (NF-kappaB) super repressor had an antimitotic and antiapoptotic effect and prevented the Env-elicited phosphorylation of p53 on serine 15 and 46, as well as the activation of AP1. Transfection with dominant-negative p53 abolished apoptosis and AP1 activation. Signs of NF-kappaB and p53 activation were also detected in lymph node biopsies from HIV-1-infected individuals. Microarrays revealed that most (85%) of the transcriptional effects of HIV-1 Env were blocked by the p53 inhibitor pifithrin-alpha. Macroarrays led to the identification of several Env-elicited, p53-dependent proapoptotic transcripts, in particular Puma, a proapoptotic "BH3-only" protein from the Bcl-2 family known to activate Bax/Bak. Down modulation of Puma by antisense oligonucleotides, as well as RNA interference of Bax and Bak, prevented Env-induced apoptosis. HIV-1-infected primary lymphoblasts up-regulated Puma in vitro. Moreover, circulating CD4+ lymphocytes from untreated, HIV-1-infected donors contained enhanced amounts of Puma protein, and these elevated Puma levels dropped upon antiretroviral therapy. Altogether, these data indicate that NF-kappaB and p53 cooperate as the dominant proapoptotic transcription factors participating in HIV-1 infection.


Asunto(s)
Apoptosis/fisiología , Productos del Gen env/fisiología , VIH-1/patogenicidad , FN-kappa B/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Reguladoras de la Apoptosis , Secuencia de Bases , Técnicas de Cocultivo , Cartilla de ADN/genética , Expresión Génica , VIH-1/fisiología , Células HeLa , Humanos , Modelos Biológicos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Factor de Transcripción AP-1/metabolismo , Transfección , Proteína p53 Supresora de Tumor/genética
15.
Trends Cell Biol ; 12(7): 293-5, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12185842

RESUMEN

Cell death is most frequently the result of apoptosis, an event that is often controlled by mitochondrial membrane permeabilization (MMP). Recent data reveal unexpected functional links between apoptosis and autophagic cell death, in the sense that MMP can trigger autophagy of damaged mitochondria. Conversely, one of the major signal-transducing molecules involved in the activation of autophagy during apoptosis--the so-called DAP kinase--can induce cell death through MMP. Connections are also emerging between apoptosis, autophagy, replicative senescence and cancer-specific metabolic changes.


Asunto(s)
Muerte Celular/fisiología , Animales , Proteínas Reguladoras de la Apoptosis , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular , Hexoquinasa/metabolismo , Humanos , Membranas Intracelulares , Mitocondrias/ultraestructura , Permeabilidad , Transducción de Señal/fisiología , Proteína p53 Supresora de Tumor/metabolismo
16.
Rev Lat Am Enfermagem ; 17(2): 201-6, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19551273

RESUMEN

The greatest challenge posed by Systemic Hypertension (SH) is related to patients' compliance with treatment. Thus, this study aimed to determine attendance of these patients to medical appointments and the percentage of adherence to medication and non-medication regimens, and also identify the main reasons hypertensive patients report for non-adherence. This is a descriptive study with 68 hypertensive patients (64.71% women with average age of 63.9 years) at a teaching outpatient clinic. The instruments used for data collection were: multi-professional team care report form, the Morisky-Green test and telephone interview. The results show that 61.76% attended the medical consultations, 86.76% did not comply with the medication regimen and 85.29% did not comply with the non-medication regimen, reporting at least one non-healthy life habit. The emotional factor was the most reported (69.12%) among patients' reasons for non-adherence to treatment. The study can support interventions in care delivery to patients with systemic hypertension, with a view to improving their level of adherence and quality of life.


Asunto(s)
Hipertensión/terapia , Cooperación del Paciente , Anciano , Citas y Horarios , Femenino , Humanos , Masculino , Persona de Mediana Edad
17.
Oncoimmunology ; 8(6): e1571389, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31069148

RESUMEN

The expression of two metabolic enzymes, i.e., aldehyde dehydrogenase 7 family, member A1 (ALDH7A1) and lipase C, hepatic type (LIPC) by malignant cells, has been measured by immunohistochemical methods in non-small cell lung carcinoma (NSCLC) biopsies, and has been attributed negative and positive prognostic value, respectively. Here, we demonstrate that the protein levels of ALDH7A1 and LIPC correlate with the levels of the corresponding mRNAs. Bioinformatic analyses of gene expression data from 4921 cancer patients revealed that the expression of LIPC positively correlates with abundant tumor infiltration by myeloid and lymphoid cells in NSCLC, breast carcinoma, colorectal cancer and melanoma samples. In contrast, high levels of ALDH7A1 were associated with a paucity of immune effectors within the tumor bed. These data reinforce the notion that the metabolism of cancer cells has a major impact on immune and inflammatory processes in the tumor microenvironment, pointing to hitherto unsuspected intersections between oncometabolism and immunometabolism.

18.
Mol Cell Oncol ; 5(6): e1526004, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30525097

RESUMEN

Specific metabolic alterations have recently been observed in cisplatin-resistant cancers. As a result, cisplatin resistance can be overcome by co-administration of pyridoxine, and cisplatin-resistant cancer cells become exquisitely sensitive to killing by inhibitors of poly(ADP-ribose) polymerase, starvation, and antimetabolites targeting nucleotide biosynthesis.

19.
Mol Cell Biol ; 24(4): 1809-21, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14749395

RESUMEN

The transcription factors MyoD and Myf-5 control myoblast identity and differentiation. MyoD and Myf-5 manifest opposite cell cycle-specific expression patterns. Here, we provide evidence that MyoD plays a pivotal role at the G(2)/M transition by controlling the expression of p21(Waf1/Cip1) (p21), which is believed to regulate cyclin B-Cdc2 kinase activity in G(2). In growing myoblasts, MyoD reaccumulates during G(2) concomitantly with p21 before entry into mitosis; MyoD is phosphorylated on Ser5 and Ser200 by cyclin B-Cdc2, resulting in a decrease of its stability and down-regulation of both MyoD and p21. Inducible expression of a nonphosphorylable MyoD A5/A200 enhances the MyoD interaction with the coactivator P/CAF, thereby stimulating the transcriptional activation of a luciferase reporter gene placed under the control of the p21 promoter. MyoD A5/A200 causes sustained p21 expression, which inhibits cyclin B-Cdc2 kinase activity in G(2) and delays M-phase entry. This G(2) arrest is not observed in p21(-/-) cells. These results show that in cycling cells MyoD functions as a transcriptional activator of p21 and that MyoD phosphorylation is required for G(2)/M transition.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Mitosis , Mutación/genética , Proteína MioD/genética , Proteína MioD/metabolismo , Animales , Línea Celular , Ciclina B/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Ciclinas/metabolismo , Fase G2 , Regulación de la Expresión Génica , Histona Desacetilasa 1 , Histona Desacetilasas , Ratones , Modelos Biológicos , Músculo Esquelético , Proteína MioD/química , Mioblastos/citología , Mioblastos/enzimología , Mioblastos/metabolismo , Fosforilación , Fosfoserina/metabolismo , Unión Proteica , Factores de Tiempo , Activación Transcripcional
20.
Mol Cell Oncol ; 4(3): e1299274, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28616577

RESUMEN

Mitotic catastrophe is an oncosuppressive mechanism that targets cells experiencing defective mitoses via the activation of specific cell cycle checkpoints, regulated cell death pathways and/or cell senescence. This prevents the accumulation of karyotypic aberrations, which otherwise may drive oncogenesis and tumor progression. Here, we summarize experimental evidence confirming the role of caspase 2 (CASP2) as the main executor of mitotic catastrophe, and we discuss the signals that activate CASP2 in the presence of mitotic aberrations. In addition, we summarize the main p53-dependent and -independent effector pathways through which CASP2 limits chromosomal instability and non-diploidy, hence mediating robust oncosuppressive functions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA