Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
World J Urol ; 40(12): 3107-3111, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36350384

RESUMEN

INTRODUCTION: To evaluate urethral strictures and to determine appropriate surgical reconstructive options, retrograde urethrograms (RUG) are used. Herein, we develop a convolutional neural network (CNN)-based machine learning algorithm to characterize RUG images between those with urethral strictures and those without urethral strictures. METHODS: Following approval from institutional REB from participating institutions (The Hospital for Sick Children [Toronto, Canada], St. Luke's Medical Centre [Quezon City, Philippines], East Virginia Medical School [Norfolk, United States of America]), retrograde urethrogram images were collected and anonymized. Additional RUG images were downloaded online using web scraping method through Selenium and Python 3.8.2. A CNN with three convolutional layers and three pooling layers were built (Fig. 1). Data augmentation was applied with zoom, contrast, horizontal flip, and translation. The data were split into 90% training and 10% testing set. The model was trained with one hundred epochs. RESULTS: A total of 242 RUG images were identified. 196 were identified as strictures and 46 as normal. Following training, our model achieved accuracy of up to 92.2% with its training data set in characterizing RUG images to stricture and normal images. The validation accuracy using our testing set images showed that it was able to characterize 88.5% of the images correctly. CONCLUSION: It is feasible to use a machine learning algorithm to accurately differentiate between a stricture and normal RUG. Further development of the model with additional RUGs may allow characterization of stricture location and length to suggest optimal operative approach for repair.


Asunto(s)
Estrechez Uretral , Niño , Humanos , Estrechez Uretral/diagnóstico por imagen , Estrechez Uretral/cirugía , Constricción Patológica , Redes Neurales de la Computación , Aprendizaje Automático , Cistografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA