Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36834484

RESUMEN

Neuroinflammation is a common event in degenerative diseases of the central and peripheral nervous system, triggered by alterations in the immune system or inflammatory cascade. The pathophysiology of these disorders is multifactorial, whereby the therapy available has low clinical efficacy. This review propounds the relationship between the deregulation of T helper cells and hypoxia, mainly Th17 and HIF-1α molecular pathways, events that are involved in the occurrence of the neuroinflammation. The clinical expression of neuroinflammation is included in prevalent pathologies such as multiple sclerosis, Guillain-Barré syndrome, and Alzheimer's disease, among others. In addition, therapeutic targets are analyzed in relation to the pathways that induced neuroinflammation.


Asunto(s)
Síndrome de Guillain-Barré , Enfermedades Neuroinflamatorias , Humanos , Síndrome de Guillain-Barré/patología , Hipoxia/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia , Células Th17
2.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37108713

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common cancer among children worldwide, characterized by an overproduction of undifferentiated lymphoblasts in the bone marrow. The treatment of choice for this disease is the enzyme L-asparaginase (ASNase) from bacterial sources. ASNase hydrolyzes circulating L-asparagine in plasma, leading to starvation of leukemic cells. The ASNase formulations of E. coli and E. chrysanthemi present notorious adverse effects, especially the immunogenicity they generate, which undermine both their effectiveness as drugs and patient safety. In this study, we developed a humanized chimeric enzyme from E. coli L-asparaginase which would reduce the immunological problems associated with current L-asparaginase therapy. For these, the immunogenic epitopes of E. coli L-asparaginase (PDB: 3ECA) were determined and replaced with those of the less immunogenic Homo sapiens asparaginase (PDB:4O0H). The structures were modeled using the Pymol software and the chimeric enzyme was modeled using the SWISS-MODEL service. A humanized chimeric enzyme with four subunits similar to the template structure was obtained, and the presence of asparaginase enzymatic activity was predicted by protein-ligand docking.


Asunto(s)
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Asparaginasa/genética , Asparaginasa/uso terapéutico , Escherichia coli/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Asparagina , Proteínas Recombinantes de Fusión/uso terapéutico , Antineoplásicos/uso terapéutico
3.
Rev Med Chil ; 150(10): 1351-1360, 2022 Oct.
Artículo en Español | MEDLINE | ID: mdl-37358094

RESUMEN

The systemic effects of oxygen deficiency or excess are not thoroughly described. Knowledge is evolving towards the description of beneficial and detrimental effects of both extremes of partial pressure of oxygen (PaO2). The cellular and tissue mediators derived from the modulation of the oxidative tone and the production of reactive oxygen species (ROS) are widely characterized biochemically, but the pathophysiological characterization is lacking. Preclinical models support the use of hypobaric hypoxia preconditioning, based on its beneficial effects on ventricular function or its reduction in infarct size. A very important use of oxygen today is in commercial diving. However, novel clinical indications for oxygen such as the healing of diabetic foot ulcers and bone injury caused by radiotherapy are increasingly used. On the other hand, the modulation of the hypoxic response associated with exposure to high altitude environments (hypobaric), favors Chile and its highlands as a natural laboratory to determine certain cardiovascular, cerebral and metabolic responses in the resident population. Also, the consequences of the intermittent exposure to high altitudes in workers also deserves attention. This review discusses the physiopathological response to hypo and hyperoxemia, associated with environments with different oxygen concentrations, and brings back the concept of oxygen as a pharmacological mediator in extreme environments such as high altitudes and hyperbaric medicine in divers, decompression sickness, osteonecrosis associated with radiotherapy and sudden sensorineural hearing loss.


Asunto(s)
Enfermedad de Descompresión , Buceo , Pérdida Auditiva Sensorineural , Humanos , Oxígeno , Enfermedad de Descompresión/etiología , Hipoxia/complicaciones , Hipoxia/metabolismo , Altitud
4.
Int J Mol Sci ; 19(2)2018 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-29373484

RESUMEN

More than 140 million people live and works (in a chronic or intermittent form) above 2500 m worldwide and 35 million live in the Andean Mountains. Furthermore, in Chile, it is estimated that 55,000 persons work in high altitude shifts, where stays at lowlands and interspersed with working stays at highlands. Acute exposure to high altitude has been shown to induce oxidative stress in healthy human lowlanders, due to an increase in free radical formation and a decrease in antioxidant capacity. However, in animal models, intermittent hypoxia (IH) induce preconditioning, like responses and cardioprotection. Here, we aimed to describe in a rat model the responses on cardiac and vascular function to 4 cycles of intermittent hypobaric hypoxia (IHH). Twelve adult Wistar rats were randomly divided into two equal groups, a four-cycle of IHH, and a normobaric hypoxic control. Intermittent hypoxia was induced in a hypobaric chamber in four continuous cycles (1 cycle = 4 days hypoxia + 4 days normoxia), reaching a barometric pressure equivalent to 4600 m of altitude (428 Torr). At the end of the first and fourth cycle, cardiac structural, and functional variables were determined by echocardiography. Thereafter, ex vivo vascular function and biomechanical properties were determined in femoral arteries by wire myography. We further measured cardiac oxidative stress biomarkers (4-Hydroxy-nonenal, HNE; nytrotirosine, NT), reactive oxygen species (ROS) sources (NADPH and mitochondrial), and antioxidant enzymes activity (catalase, CAT; glutathione peroxidase, GPx, and superoxide dismutase, SOD). Our results show a higher ejection and shortening fraction of the left ventricle function by the end of the 4th cycle. Further, femoral vessels showed an improvement of vasodilator capacity and diminished stiffening. Cardiac tissue presented a higher expression of antioxidant enzymes and mitochondrial ROS formation in IHH, as compared with normobaric hypoxic controls. IHH exposure determines a preconditioning effect on the heart and femoral artery, both at structural and functional levels, associated with the induction of antioxidant defence mechanisms. However, mitochondrial ROS generation was increased in cardiac tissue. These findings suggest that initial states of IHH are beneficial for cardiovascular function and protection.


Asunto(s)
Hipoxia/fisiopatología , Estrés Oxidativo , Vasodilatación , Función Ventricular Izquierda , Adaptación Fisiológica , Animales , Hipoxia/metabolismo , Masculino , Mitocondrias Musculares/metabolismo , Miocardio/metabolismo , Ratas , Ratas Wistar
5.
Exp Cell Res ; 334(2): 270-82, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-25845496

RESUMEN

Cholesterol plays an important role in inducing pancreatic ß-cell dysfunction, characterized by an impaired insulin secretory response to glucose, representing a hallmark of the transition from pre-diabetes to diabetes. 3,4 dihydroxyphenylacetic acid (ES) is a scarcely studied microbiota-derived metabolite of quercetin with antioxidant properties. The aim of this study was to determine the protective effect of ES against apoptosis, mitochondrial dysfunction and oxidative stress induced by cholesterol in Min6 pancreatic ß-cells. Cholesterol decreased viability, induced apoptosis and mitochondrial dysfunction by reducing complex I activity, mitochondrial membrane potential, ATP levels and oxygen consumption. Cholesterol promoted oxidative stress by increasing cellular and mitochondrial reactive oxygen species and lipid peroxidation and decreasing antioxidant enzyme activities; in addition, it slightly increased Nrf2 translocation to the nucleus. These events resulted in the impairment of the glucose-induced insulin secretion. ES increased Nrf2 translocation to the nucleus and protected pancreatic ß-cells against impaired insulin secretion induced by cholesterol by preventing oxidative stress, apoptosis and mitochondrial dysfunction. Nrf2 activation seems to be involved in the mechanisms underlying the antioxidant protection exerted by ES in addition to preventing the disruption of antioxidant enzymatic defenses. Although additional in vivo experiments are required, this metabolite is suggested as a promising drug target for the prevention of the pathological development from a pre-diabetic to a diabetic state.


Asunto(s)
Ácido 3,4-Dihidroxifenilacético/metabolismo , Ácido 3,4-Dihidroxifenilacético/farmacología , Colesterol/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Quercetina/metabolismo , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Ratones , Relación Estructura-Actividad
6.
J Biomed Sci ; 22: 8, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25613908

RESUMEN

BACKGROUND: Intermittent hypobaric hypoxia (IHH) induces changes in the redox status and structure in rat testis. These effects may be present in people at high altitudes, such as athletes and miners. Polyunsaturated fatty acids (PUFA) can be effective in counteracting these oxidative modifications due to their antioxidants properties. The aim of the work was to test whether PUFA supplementation attenuates oxidative damage in testis by reinforcing the antioxidant defense system. The animals were divided into four groups (7 rats per group): normobaric normoxia (~750 tor; pO2 156 mmHg; Nx); Nx + PUFA, supplemented with PUFA (DHA: EPA = 3:1; 0.3 g kg(-1) of body weight per day); hypoxic hypoxia (~428 tor; pO2 90 mmHg; Hx) and, Hx + PUFA. The hypoxic groups were exposed in 4 cycles to 96 h of HH followed by 96 h of normobaric normoxia for 32 days. Total antioxidant capacity (FRAP) and lipid peroxidation (malondialdehyde, MDA) in plasma and reduced (GSH)/oxidized glutathione (GSSG) ratio, tissue lipid peroxidation (TBARS) and antioxidant enzymes activity were assessed at the end of the study in testis. Also, SIRTUIN 1 and HIF-1 protein expression in testis were determined. RESULTS: IHH increased lipid peroxidation in plasma and HIF-1 protein levels in testis. In addition, IHH reduced FRAP levels in plasma, antioxidant enzymes activities and SIRTUIN 1 protein levels in testis. PUFA supplementation attenuated these effects, inducing the increases in FRAP, in the antioxidant enzymes activity and HIF-1 levels. CONCLUSIONS: These results suggest that the IHH model induces a prooxidant status in plasma and testis. The molecular protective effect of PUFA may involve the induction of an antioxidant mechanism.


Asunto(s)
Antioxidantes/metabolismo , Ácidos Grasos Insaturados/farmacología , Hipoxia/fisiopatología , Testículo/efectos de los fármacos , Testículo/lesiones , Animales , Dieta , Suplementos Dietéticos/análisis , Modelos Animales de Enfermedad , Ácidos Grasos Insaturados/administración & dosificación , Masculino , Ratas , Ratas Wistar
7.
Mar Drugs ; 13(2): 838-60, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25658050

RESUMEN

Intermittent hypobaric hypoxia (IH) is linked with oxidative stress, impairing cardiac function. However, early IH also activate cardio-protective mechanisms. Omega 3 fatty acids (Ω3) induce cardioprotection by reducing infarct size and reinforcing antioxidant defenses. The aim of this work was to determine the combined effects of IH and Ω3 on cardiac function; oxidative balance and inflammatory state. Twenty-eight rats were randomly divided into four groups: normobaric normoxia (N); N + Ω3 (0.3 g·kg-1·day-1); IH; and IH + Ω3. IH was induced by 4 intercalate periods of hypoxia (4 days)-normoxia (4 days) in a hypobaric chamber during 32 days. At the end of the exposure, hearts were mounted in a Langendorff system and subjected to 30 min of ischemia followed by 120 min of reperfusion. In addition, we determined HIF-1α and ATP levels, as well as oxidative stress by malondialdehyde and nitrotyrosine quantification. Further, the expression of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase was determined. NF-kappaB and myeloperoxidase levels were assessed in the hearts. Relative to N hearts, IH improved left ventricular function (Left ventricular developed pressure: N; 21.8 ± 3.4 vs. IH; 42.8 ± 7.1 mmHg; p < 0.05); reduced oxidative stress (Malondialdehyde: N; 14.4 ± 1.8 vs. IH; 7.3 ± 2.1 µmol/mg prot.; p < 0.05); and increased antioxidant enzymes expression. Supplementation with Ω3 induces similar responses as IH group. Our findings suggest that both, IH and Ω3 in an independent manner, induce functional improvement by antioxidant and anti-inflammatory mechanisms, establishing cardio-protection.


Asunto(s)
Mal de Altura/tratamiento farmacológico , Antioxidantes/farmacología , Cardiotónicos/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Hipoxia/tratamiento farmacológico , Adenosina Trifosfato/metabolismo , Mal de Altura/metabolismo , Animales , Suplementos Dietéticos , Metabolismo Energético/efectos de los fármacos , Corazón/efectos de los fármacos , Hipoxia/complicaciones , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Técnicas In Vitro , Inflamación/metabolismo , Inflamación/prevención & control , Masculino , Miocardio/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Función Ventricular Izquierda/efectos de los fármacos
8.
Cell Biochem Funct ; 32(3): 274-81, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24166314

RESUMEN

Currently, controversial clinical data about the protective effects in the consumption of n-3 polyunsaturated fatty acids (PUFAs) in ischaemic heart diseases exist. Improved myocardial resistance to ischaemia-reperfusion (IR) injury results in non-lethal myocardial infarction, which is a relevant factor in the myocardial function. We hypothesized that chronic supplementation with PUFAs reduced infarct size (IS) and induced an improvement on oxidative stress-related parameters in IR model. Rats were supplemented with two doses of PUFAs D1 (n = 7) (0.6 g kg(-1) d(-1) ) and D2 (n = 7) (1.2 g kg(-1) d(-1) ) for 8 weeks. Control group (n = 7) received only standard diet. In ex vivo model, all rat hearts were subjected to 30 min of global ischaemia followed by 120 min of reperfusion. The IS and left ventricular function were assessed. Lipid peroxidation, reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio and antioxidant enzyme activity were measured in the whole heart. The results show a reduction in IS in a dose-dependent manner with PUFAs D1 (30.6%) and D2 (48.5%) and higher values of left ventricular developed pressure, at the end of the reperfusion, for each dose, respectively (p < 0.05). The two PUFAs groups showed higher values of GSH/GSSG ratio and lipid peroxidation, and higher values of activity of antioxidant enzymes catalase, superoxide dismutase and glutathione peroxidase at basal condition (p < 0.05). At the end of reperfusion, the GSH/GSSG ratio and antioxidants enzyme activity did not show a significant drop in their values (p > 0.05). These findings suggested that the supplementation with PUFAs induces cardioprotection against IR injury, associated with reinforcement of the antioxidant defense system.


Asunto(s)
Antioxidantes/metabolismo , Ácidos Grasos Omega-3/administración & dosificación , Daño por Reperfusión Miocárdica/prevención & control , Animales , Dieta , Hemodinámica , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Estrés Oxidativo , Ratas
9.
Cell Biochem Funct ; 31(6): 451-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23760768

RESUMEN

Reactive oxygen species such as superoxide anion radicals (O2 (-) ) and hydrogen peroxide (H2 O2 ) have for long time been recognized as undesirable by-products of the oxidative mitochondrial generation of adenosine triphosphate (ATP). Recently, these highly reactive species have been associated to important signaling pathways in diverse physiological conditions such as those activated in hypoxic microenvironments. The molecular response to hypoxia requires fast-acting mechanisms acting within a wide range of partial pressures of oxygen (O2 ). Intracellular O2 sensing is an evolutionary preserved feature, and the best characterized molecular responses to hypoxia are mediated through transcriptional activation. The transcription factor, hypoxia-inducible factor 1 (HIF-1), is a critical mediator of these adaptive responses, and its activation by hypoxia involves O2 -dependent posttranslational modifications and nuclear translocation. Through the induction of the expression of its target genes, HIF-1 coordinately regulates tissue O2 supply and energetic metabolism. Other transcription factors such as nuclear factor κB are also redox sensitive and are activated in pro-oxidant and hypoxic conditions. The purpose of this review is to summarize new developments in HIF-mediated O2 sensing mechanisms and their interactions with reactive oxygen species-generating pathways in normal and abnormal physiology.


Asunto(s)
Adenosina Trifosfato/metabolismo , Metabolismo Energético/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica , Humanos , Peróxido de Hidrógeno/metabolismo , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Mitocondrias/metabolismo , Oxígeno/metabolismo , Transducción de Señal
10.
Biol Res ; 46(2): 207-13, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23959020

RESUMEN

Oxidant/antioxidant imbalance has been reported in some infectious diseases, including community-acquired pneumonia (CAP). The aim was to assess the antioxidant status in adults with CAP and its relationship with clinical severity at admission. Fifty-nine patients with CAP were enrolled and categorized at admission by the FINE score, from July 2010 to October 2012. In the same period 61 controls were enrolled. Plasma samples were obtained at admission for determination of the ferric reducing ability of plasma (FRAP) and lipid peroxidation (8-isoprostane). Erythrocyte reduced (GSH)/oxidized (GSSG) glutathione, malondialdehyde (MDA) and antioxidant enzyme activity were assessed. Antioxidant status in adults with CAP represented by FRAP and the GSH/GSSG ratio were 16.8% (p=0.03) and 39.7% (p=0.04) lower than control values, respectively. In addition, FRAP values showed a positive correlation with GSH/GSSG ratio (r=0.852; p<0.02; n=59). The CAP group showed greater lipid peroxidation in both plasma and erythrocytes. The FINE score correlated negatively with FRAP (r= -0.718; p<0.05; n=59) and positively with MDA and F2 isoprostane levels (r=0.673; p<0.05; n=59; r=0.892; p<0.01; n=59, respectively). Antioxidant status alterations correlated with clinical severity. The FRAP assay and lipid peroxidation biomarkers may provide a useful parameter for estimating the severity and the clinical outcome of patients with CAP.


Asunto(s)
Eritrocitos/metabolismo , Glutatión/sangre , Peroxidación de Lípido/fisiología , Estrés Oxidativo/fisiología , Neumonía/metabolismo , Anciano , Biomarcadores/metabolismo , Estudios de Casos y Controles , Catalasa/sangre , Catalasa/metabolismo , Infecciones Comunitarias Adquiridas/metabolismo , Estudios Transversales , F2-Isoprostanos/sangre , Femenino , Glutatión Peroxidasa/sangre , Glutatión Peroxidasa/metabolismo , Humanos , Masculino , Malondialdehído/sangre , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Superóxido Dismutasa/sangre , Superóxido Dismutasa/metabolismo
11.
Life Sci ; 326: 121800, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37245841

RESUMEN

AIMS: Chronic intermittent hypobaric hypoxia (CIHH) exposure due to shift work occurs mainly in 4 × 4 or 7 × 7 days shifts in mining, astronomy, and customs activities, among other institutions. However, the long-lasting effects of CIHH on cardiovascular structure and function are not well characterized. We aimed to investigate the effects of CIHH on the cardiac and vascular response of adult rats simulating high-altitude (4600 m) x low-altitude (760 m) working shifts. MAIN METHODS: We analyzed in vivo cardiac function through echocardiography, ex vivo vascular reactivity by wire myography, and in vitro cardiac morphology by histology and protein expression and immunolocalization by molecular biology and immunohistochemistry techniques in 12 rats, 6 exposed to CIHH in the hypoxic chamber, and respective normobaric normoxic controls (n = 6). KEY FINDINGS: CIHH induced cardiac dysfunction with left and right ventricle remodeling, associated with an increased collagen content in the right ventricle. In addition, CIHH increased HIF-1α levels in both ventricles. These changes are associated with decreased antioxidant capacity in cardiac tissue. Conversely, CIHH decreased contractile capacity with a marked decreased in nitric oxide-dependent vasodilation in both, carotid and femoral arteries. SIGNIFICANCE: These data suggest that CIHH induces cardiac and vascular dysfunction by ventricular remodeling and impaired vascular vasodilator function. Our findings highlight the impact of CIHH in cardiovascular function and the importance of a periodic cardiovascular evaluation in high-altitude workers.


Asunto(s)
Altitud , Hipoxia , Ratas , Animales , Ratas Sprague-Dawley , Corazón , Ventrículos Cardíacos/metabolismo
12.
Antioxidants (Basel) ; 11(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35739940

RESUMEN

More than 80 million people live and work (in a chronic or intermittent form) above 2500 masl, and 35 million live in the Andean Mountains. Furthermore, in Chile, it is estimated that 100,000 people work in high-altitude shifts, where stays in the lowlands are interspersed with working visits in the highlands. Acute exposure to high altitude has been shown to induce oxidative stress in healthy human lowlanders due to increased free radical formation and decreased antioxidant capacity. However, intermittent hypoxia (IH) induces preconditioning in animal models, generating cardioprotection. Here, we aim to describe the responses of a cardiac function to four cycles of intermittent hypobaric hypoxia (IHH) in a rat model. The twelve adult Wistar rats were randomly divided into two equal groups, a four-cycle of IHH and a normobaric hypoxic control. Intermittent hypoxia was induced in a hypobaric chamber in four continuous cycles (1 cycle = 4 days of hypoxia + 4 days of normoxia), reaching a barometric pressure equivalent to 4600 m of altitude (428 Torr). At the end of the fourth cycle, cardiac structural and functional variables were also determined by echocardiography; furthermore, cardiac oxidative stress biomarkers (4-Hydroxynonenal, HNE; nitrotyrosine, NT), antioxidant enzymes, and NLRP3 inflammasome panel expression are also determined. Our results show a higher ejection and a shortening fraction of the left ventricle function by the end of the fourth cycle. Furthermore, cardiac tissue presented a decreased expression of antioxidant proteins. However, a decrease in IL-1ß, TNF-αn, and oxidative stress markers is observed in IHH compared to normobaric hypoxic controls. Non-significant differences were found in protein levels of NLRP3 and caspase-1. IHH exposure determines structural and functional heart changes. These findings suggest that initial states of IHH are beneficial for cardiovascular function and protection.

13.
3 Biotech ; 12(11): 286, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36276451

RESUMEN

Helicobacter pylori has become the causal agent of multiple forms of gastric disease worldwide, including gastric cancer. The enzyme l-asparaginase (ASNase) has been studied as a virulence factor. In this work, we performed an in silico investigation to characterize the immunological profile of H. pylori ASNase (HpASNase) to ascertain the possible implication of HpASNase immunogenicity in the H. pylori virulence mechanism. We applied a workflow based on bioinformatics tools, which, by calculating the relative frequency of immunogenic T-cell and B-cell epitopes, allowed us to predict the immunogenicity and allergenicity of HpASNase in silico. We also visualized the epitopes by mapping them into the native structure of the enzyme. We report for the first time the T-cell and B-cell epitope composition that contributes to the immunogenicity of this HpASNase, as well as the regions that could generate a hypersensitivity response in humans. ASNase from H. pylori resulted in highly immunogenic and allergenic. The high immunogenicity of HpASNase could imply the pathogenic mechanisms of H. pylori. This knowledge could be important for the development of new drugs against H. pylori infections. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03359-0.

14.
Oxid Med Cell Longev ; 2021: 8863789, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33574985

RESUMEN

Anthracycline-induced cardiotoxicity (AIC) persists as a significant cause of morbidity and mortality in cancer survivors. Although many protective strategies have been evaluated, cardiotoxicity remains an ongoing threat. The mechanisms of AIC remain unclear; however, several pathways have been proposed, suggesting a multifactorial origin. When the central role of topoisomerase 2ß in the pathophysiology of AIC was described some years ago, the classical reactive oxygen species (ROS) hypothesis shifted to a secondary position. However, new insights have reemphasized the importance of the role of oxidative stress-mediated signaling as a common pathway and a critical modulator of the different mechanisms involved in AIC. A better understanding of the mechanisms of cardiotoxicity is crucial for the development of treatment strategies. It has been suggested that the available therapeutic interventions for AIC could act on the modulation of oxidative balance, leading to a reduction in oxidative stress injury. These indirect antioxidant effects make them an option for the primary prevention of AIC. In this review, our objective is to provide an update of the accumulated knowledge on the role of oxidative stress in AIC and the modulation of the redox balance by potential preventive strategies.


Asunto(s)
Antraciclinas/efectos adversos , Cardiotoxicidad/patología , Cardiotoxicidad/prevención & control , Estrés Oxidativo , Animales , Antioxidantes/metabolismo , Cardiotoxicidad/genética , Predisposición Genética a la Enfermedad , Humanos , Oxidación-Reducción , Estrés Oxidativo/genética
15.
Front Physiol ; 12: 705256, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603075

RESUMEN

Ischemia is a severe condition in which blood supply, including oxygen (O), to organs and tissues is interrupted and reduced. This is usually due to a clog or blockage in the arteries that feed the affected organ. Reinstatement of blood flow is essential to salvage ischemic tissues, restoring O, and nutrient supply. However, reperfusion itself may lead to major adverse consequences. Ischemia-reperfusion injury is often prompted by the local and systemic inflammatory reaction, as well as oxidative stress, and contributes to organ and tissue damage. In addition, the duration and consecutive ischemia-reperfusion cycles are related to the severity of the damage and could lead to chronic wounds. Clinical pathophysiological conditions associated with reperfusion events, including stroke, myocardial infarction, wounds, lung, renal, liver, and intestinal damage or failure, are concomitant in due process with a disability, morbidity, and mortality. Consequently, preventive or palliative therapies for this injury are in demand. Tissue engineering offers a promising toolset to tackle ischemia-reperfusion injuries. It devises tissue-mimetics by using the following: (1) the unique therapeutic features of stem cells, i.e., self-renewal, differentiability, anti-inflammatory, and immunosuppressants effects; (2) growth factors to drive cell growth, and development; (3) functional biomaterials, to provide defined microarchitecture for cell-cell interactions; (4) bioprocess design tools to emulate the macroscopic environment that interacts with tissues. This strategy allows the production of cell therapeutics capable of addressing ischemia-reperfusion injury (IRI). In addition, it allows the development of physiological-tissue-mimetics to study this condition or to assess the effect of drugs. Thus, it provides a sound platform for a better understanding of the reperfusion condition. This review article presents a synopsis and discusses tissue engineering applications available to treat various types of ischemia-reperfusions, ultimately aiming to highlight possible therapies and to bring closer the gap between preclinical and clinical settings.

16.
Redox Biol ; 22: 101128, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30771751

RESUMEN

Chronic hypobaric hypoxia during fetal and neonatal life induces neonatal pulmonary hypertension. Hypoxia and oxidative stress are driving this condition, which implies an increase generation of reactive oxygen species (ROS) and/or decreased antioxidant capacity. Melatonin has antioxidant properties that decrease oxidative stress and improves pulmonary vascular function when administered postnatally. However, the effects of an antenatal treatment with melatonin in the neonatal pulmonary function and oxidative status are unknown. Therefore, we hypothesized that an antenatal therapy with melatonin improves the pulmonary arterial pressure and antioxidant status in high altitude pulmonary hypertensive neonates. Twelve ewes were bred at high altitude (3600 m); 6 of them were used as a control group (vehicle 1.4% ethanol) and 6 as a melatonin treated group (10 mg d-1 melatonin in vehicle). Treatments were given once daily during the last third of gestation (100-150 days). Lambs were born and raised with their mothers until 12 days old, and neonatal pulmonary arterial pressure and resistance, plasma antioxidant capacity and the lung oxidative status were determined. Furthermore, we measured the pulmonary expression and activity for the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase, and the oxidative stress markers 8-isoprostanes, 4HNE and nitrotyrosine. Finally, we assessed pulmonary pro-oxidant sources by the expression and function of NADPH oxidase, mitochondria and xanthine oxidase. Melatonin decreased the birth weight. However, melatonin enhanced the plasma antioxidant capacity and decreased the pulmonary antioxidant activity, associated with a diminished oxidative stress during postnatal life. Interestingly, melatonin also decreased ROS generation at the main pro-oxidant sources. Our findings suggest that antenatal administration of melatonin programs an enhanced antioxidant/pro-oxidant status, modulating ROS sources in the postnatal lung.


Asunto(s)
Antioxidantes/metabolismo , Hipertensión Pulmonar/metabolismo , Melatonina/metabolismo , Oxidantes/metabolismo , Animales , Animales Recién Nacidos , Biomarcadores , Peso al Nacer , Análisis de los Gases de la Sangre , Femenino , Regulación Enzimológica de la Expresión Génica , Glutatión/metabolismo , Pruebas de Función Cardíaca , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/fisiopatología , Melatonina/sangre , Estrés Oxidativo , Embarazo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Pruebas de Función Respiratoria , Ovinos
17.
Front Pharmacol ; 10: 1450, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31920645

RESUMEN

Covalent attachment of therapeutic proteins to polyethylene glycol (PEG) is widely used for the improvement of its pharmacokinetic and pharmacological properties, as well as the reduction in reactogenicity and related side effects. This technique named PEGylation has been successfully employed in several approved drugs to treat various diseases, even cancer. Some methods have been developed to obtain PEGylated proteins, both in multiple protein sites or in a selected amino acid residue. This review focuses mainly on traditional and novel examples of chemical and enzymatic methods for site-selective PEGylation, emphasizing in N-terminal PEGylation, that make it possible to obtain products with a high degree of homogeneity and preserve bioactivity. In addition, the main assay methods that can be applied for the characterization of PEGylated molecules in complex biological samples are also summarized in this paper.

18.
Front Pharmacol ; 10: 1641, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32184718

RESUMEN

Dexmedetomidine (DEX) is a highly selective α2-adrenergic agonist with sedative and analgesic properties, with minimal respiratory effects. It is used as a sedative in the intensive care unit and the operating room. The opioid-sparing effect and the absence of respiratory effects make dexmedetomidine an attractive adjuvant drug for anesthesia in obese patients who are at an increased risk for postoperative respiratory complications. The pharmacodynamic effects on the cardiovascular system are known; however the mechanisms that induce cardioprotection are still under study. Regarding the pharmacokinetics properties, this drug is extensively metabolized in the liver by the uridine diphosphate glucuronosyltransferases. It has a relatively high hepatic extraction ratio, and therefore, its metabolism is dependent on liver blood flow. This review shows, from a basic clinical approach, the evidence supporting the use of dexmedetomidine in different settings, from its use in animal models of ischemia-reperfusion, and cardioprotective signaling pathways. In addition, pharmacokinetics and pharmacodynamics studies in obese subjects and the management of patients subjected to mechanical ventilation are described. Moreover, the clinical efficacy of delirium incidence in patients with indication of non-invasive ventilation is shown. Finally, the available evidence from DEX is described by a group of Chilean pharmacologists and clinicians who have worked for more than 10 years on DEX.

19.
Pharmacol Rep ; 70(3): 503-508, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29660653

RESUMEN

BACKGROUND: Neuropathic pain, and subsequent hypernociception, can be induced in mice by paclitaxel (PTX) administration and partial sciatic nerve ligation (PSNL). Its pharmacotherapy has been a clinical challenge, due to a lack of effective treatment. In two models of mouse neuropathic pain (PTX and PSNL) the antinociception induced by rosuvastatin and the participation of proinflammatory biomarkers, interleukin (IL)- 1ß, TBARS and glutathione were evaluated. METHODS: A dose-response curve for rosuvastatin ip was obtained on cold plate, hot plate and Von Frey assays. Changes on spinal cord levels of IL-1ß, glutathione and lipid peroxidation were measured at 7 and 14days in PTX and PSNL murine models. RESULTS: PTX or PSNL were able to induce in mice peripheral neuropathy with hypernociception, either to 7 and 14days. Rosuvastatin induced a dose dependent antinociception in hot plate, cold plate and Von Frey assays. The increased levels of IL-1ß or TBARS induced by pretreatment with PTX or PSNL were reduced by rosuvastatin. The reduction of spinal cord glutathione, by PTX or PSNL, expressed as the ratio GSH/GSSG, were increased significantly in animals pretreated with rosuvastatin. The anti-inflammatory properties of statins could underlie their beneficial effects on neuropathic pain by reduction of proinflammatory biomarkers and activation of glia. CONCLUSION: The findings of this study suggest a potential usefulness of rosuvastatin in the treatment of neuropathic pain.


Asunto(s)
Analgésicos/farmacología , Neuralgia/tratamiento farmacológico , Rosuvastatina Cálcica/farmacología , Animales , Antiinflamatorios/farmacología , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Interleucina-1beta/metabolismo , Masculino , Ratones , Neuralgia/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Nervio Ciático/efectos de los fármacos , Nervio Ciático/metabolismo , Médula Espinal/efectos de los fármacos
20.
Oxid Med Cell Longev ; 2018: 7239123, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29576853

RESUMEN

Alterations in cardiac energy metabolism play a key role in the pathogenesis of diabetic cardiomyopathy. Hypercholesterolemia associated with bioenergetic impairment and oxidative stress has not been well characterized in the cardiac function under glycemic control deficiency conditions. This work aimed to determine the cardioprotective effects of quercetin (QUE) against the damage induced by a high-cholesterol (HC) diet in hyperglycemic rats, addressing intracellular antioxidant mechanisms and bioenergetics. Quercetin reduced HC-induced alterations in the lipid profile and glycemia in rats. In addition, QUE attenuated cardiac diastolic dysfunction (increased E:A ratio), prevented cardiac cholesterol accumulation, and reduced the increase in HC-induced myocyte density. Moreover, QUE reduced HC-induced oxidative stress by preventing the decrease in GSH/GSSG ratio, Nrf2 nuclear translocation, HO-1 expression, and antioxidant enzymatic activity. Quercetin also counteracted HC-induced bioenergetic impairment, preventing a reduction in ATP levels and alterations in PGC-1α, UCP2, and PPARγ expression. In conclusion, the mechanisms that support the cardioprotective effect of QUE in rats with HC might be mediated by the upregulation of antioxidant mechanisms and improved bioenergetics on the heart. Targeting bioenergetics with QUE can be used as a pharmacological approach to modulate structural and functional changes of the heart under hypercholesterolemic and hyperglycemic conditions.


Asunto(s)
Dieta/efectos adversos , Soplos Cardíacos/prevención & control , Hipercolesterolemia/tratamiento farmacológico , Quercetina/farmacología , Animales , Colesterol/administración & dosificación , Metabolismo Energético , Soplos Cardíacos/tratamiento farmacológico , Soplos Cardíacos/etiología , Hipercolesterolemia/patología , Hiperglucemia/etiología , Hiperglucemia/fisiopatología , Masculino , Estrés Oxidativo , Distribución Aleatoria , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA