Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 27(21): 4805-4811, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29029933

RESUMEN

The discovery and selection of a highly potent and selective NaV1.7 inhibitor PF-06456384, designed specifically for intravenous infusion, is disclosed. Extensive in vitro pharmacology and ADME profiling followed by in vivo preclinical PK and efficacy model data are discussed. A proposed protein-ligand binding mode for this compound is also provided to rationalise the high levels of potency and selectivity over inhibition of related sodium channels. To further support the proposed binding mode, potent conjugates are described which illustrate the potential for development of chemical probes to enable further target evaluation.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7/química , Piperidinas/química , Piridinas/química , Sulfonamidas/química , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Animales , Sitios de Unión , Perros , Semivida , Hepatocitos/metabolismo , Humanos , Infusiones Intravenosas , Concentración 50 Inhibidora , Ratones , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Dolor/tratamiento farmacológico , Dolor/patología , Piperidinas/farmacocinética , Piperidinas/uso terapéutico , Unión Proteica , Estructura Terciaria de Proteína , Piridinas/farmacocinética , Piridinas/uso terapéutico , Ratas , Relación Estructura-Actividad , Sulfonamidas/farmacocinética , Sulfonamidas/uso terapéutico , Tiadiazoles , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacocinética , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico
2.
Proc Natl Acad Sci U S A ; 110(29): E2724-32, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23818614

RESUMEN

Voltage-gated sodium (Nav) channels play a fundamental role in the generation and propagation of electrical impulses in excitable cells. Here we describe two unique structurally related nanomolar potent small molecule Nav channel inhibitors that exhibit up to 1,000-fold selectivity for human Nav1.3/Nav1.1 (ICA-121431, IC50, 19 nM) or Nav1.7 (PF-04856264, IC50, 28 nM) vs. other TTX-sensitive or resistant (i.e., Nav1.5) sodium channels. Using both chimeras and single point mutations, we demonstrate that this unique class of sodium channel inhibitor interacts with the S1-S4 voltage sensor segment of homologous Domain 4. Amino acid residues in the "extracellular" facing regions of the S2 and S3 transmembrane segments of Nav1.3 and Nav1.7 seem to be major determinants of Nav subtype selectivity and to confer differences in species sensitivity to these inhibitors. The unique interaction region on the Domain 4 voltage sensor segment is distinct from the structural domains forming the channel pore, as well as previously characterized interaction sites for other small molecule inhibitors, including local anesthetics and TTX. However, this interaction region does include at least one amino acid residue [E1559 (Nav1.3)/D1586 (Nav1.7)] that is important for Site 3 α-scorpion and anemone polypeptide toxin modulators of Nav channel inactivation. The present study provides a potential framework for identifying subtype selective small molecule sodium channel inhibitors targeting interaction sites away from the pore region.


Asunto(s)
Acetamidas/farmacología , Fenómenos Electrofisiológicos/fisiología , Canal de Sodio Activado por Voltaje NAV1.3/metabolismo , Tiazoles/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Secuencias de Aminoácidos/genética , Sitios de Unión/genética , Células HEK293 , Humanos , Concentración 50 Inhibidora , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.3/genética , Técnicas de Placa-Clamp , Alineación de Secuencia
3.
J Clin Invest ; 132(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35900863

RESUMEN

The vast majority of people with cystic fibrosis (CF) are now eligible for CF transmembrane regulator (CFTR) modulator therapy. The remaining individuals with CF harbor premature termination codons (PTCs) or rare CFTR variants with limited treatment options. Although the clinical modulator response can be reliably predicted using primary airway epithelial cells, primary cells carrying rare CFTR variants are scarce. To overcome this obstacle, cell lines can be created by overexpression of mouse Bmi-1 and human TERT (hTERT). Using this approach, we developed 2 non-CF and 6 CF airway epithelial cell lines, 3 of which were homozygous for the W1282X PTC variant. The Bmi-1/hTERT cell lines recapitulated primary cell morphology and ion transport function. The 2 F508del-CFTR cell lines responded robustly to CFTR modulators, which was mirrored in the parent primary cells and in the cell donors' clinical response. Cereblon E3 ligase modulators targeting eukaryotic release factor 3a (eRF3a) rescued W1282X-CFTR function to approximately 20% of WT levels and, when paired with G418, rescued G542X-CFTR function to approximately 50% of WT levels. Intriguingly, eRF3a degraders also diminished epithelial sodium channel (ENaC) function. These studies demonstrate that Bmi-1/hTERT cell lines faithfully mirrored primary cell responses to CFTR modulators and illustrate a therapeutic approach to rescue CFTR nonsense mutations.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Factores de Terminación de Péptidos/metabolismo , Animales , Línea Celular , Codón sin Sentido , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Transporte Iónico/genética , Ratones , Mutación
4.
Mol Pharmacol ; 77(1): 58-68, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19805508

RESUMEN

Human ether-à-go-go-related gene (hERG) potassium channel activity helps shape the cardiac action potential and influences its duration. In this study, we report the discovery of 3-nitro-N-(4-phenoxyphenyl) benzamide (ICA-105574), a potent and efficacious hERG channel activator with a unique mechanism of action. In whole-cell patch-clamp studies of recombinant hERG channels, ICA-105574 steeply potentiated current amplitudes more than 10-fold with an EC(50) value of 0.5 +/- 0.1 microM and a Hill slope (n(H)) of 3.3 +/- 0.2. The effect on hERG channels was confirmed because the known hERG channel blockers, N-[4-[[1-[2-(6-methyl-2-pyridinyl)ethyl]-4-piperidinyl]carbonyl]phenyl]methanesulfonamide, 2HCl (E-4031) and BeKm-1, potently blocked the stimulatory effects of ICA-105574. The primary mechanism by which ICA-105574 potentiates hERG channel activity is by removing hERG channel inactivation, because ICA-105574 (2 microM) shifts the midpoint of the voltage-dependence of inactivation by >180 mV from -86 to +96 mV. In addition to the effects on inactivation, greater concentrations of ICA-105574 (3 microM) produced comparatively small hyperpolarizing shifts (up to 11 mV) in the voltage-dependence of channel activation and a 2-fold slowing of channel deactivation. In isolated guinea pig ventricular cardiac myocytes, ICA-105574 induced a concentration-dependent shortening of action potential duration (>70%, 3 microM) that could be prevented by preincubation with E-4031. In conclusion, we identified a novel agent that can prevent the inactivation of hERG potassium channels. This compound may provide a useful tool to further understand the mechanism by which hERG channels inactivate and affect cardiac function in addition to the role of hERG channels in other cell systems.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/agonistas , Bloqueadores de los Canales de Potasio/antagonistas & inhibidores , Potenciales de Acción/efectos de los fármacos , Animales , Células Cultivadas , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Cobayas , Humanos , Miocitos Cardíacos/citología , Técnicas de Placa-Clamp , Piperidinas/farmacología , Piridinas/farmacología
5.
6.
Anesth Analg ; 109(2): 632-40, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19608841

RESUMEN

BACKGROUND: A non-opioid receptor-mediated inhibition of sodium channels in dorsal root ganglia (DRGs) by kappa-opioid receptor agonists (kappa-ORAs) has been reported to contribute to the antinociceptive actions in animals and humans. In this study, we examined structurally diverse kappa-ORAs for their abilities to inhibit tetrodotoxin-resistant (TTX-r) sodium channels in adult rat DRGs. METHODS: Whole-cell recordings of TTX-r sodium currents were performed on cultured adult rat DRGs. Structurally diverse kappa-ORAs were studied for their abilities to inhibit TTX-r sodium channels. RESULTS: The racemic kappa-ORA, (+/-)U50,488, inhibited TTX-r sodium currents in a voltage-dependent manner, yielding IC(50) values of 49 and 8 muM, at prepulse potentials of -100 and -40 mV, respectively. Furthermore, we found that both the kappa-ORA U50,488 active enantiomer 1S,2S U50,488 and the inactive enantiomer 1R,2R U50,488 were equally potent inhibitors of TTX-r sodium currents. Structurally related kappa-ORAs, such as BRL 52537 and ICI 199,441 also inhibited TTX-r sodium currents. However, sodium channel inhibition and kappa-opioid receptor agonism have a distinct structure-activity relationship because another kappa-ORA (ICI 204,488) was inactive versus TTX-r sodium channels. We further investigated the sodium channel block of this class of compounds by studying (+/-)U50,488. (+/-)U50,488 was found to preferentially interact with the slow inactivated state of TTX-r sodium channels and to retard recovery from inactivation. CONCLUSION: Our results suggest that TTX-r sodium channels can be inhibited by many kappa-ORAs via an opioid receptor-independent mechanism. Although the potency for sodium channel inhibition is typically much less than apparent affinity for opioid receptors, sodium channel block may still contribute to the antinociceptive effects of this class of compounds.


Asunto(s)
Analgésicos Opioides/farmacología , Receptores Opioides kappa/agonistas , Células Receptoras Sensoriales/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/efectos de los fármacos , Tetrodotoxina/farmacología , 3,4-Dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclohexil)-bencenacetamida, (trans)-Isómero/farmacología , Analgésicos no Narcóticos/farmacología , Animales , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Dimensión del Dolor/efectos de los fármacos , Técnicas de Placa-Clamp , Piperidinas/farmacología , Pirrolidinas/farmacología , Ratas , Relación Estructura-Actividad
7.
Br J Pharmacol ; 175(14): 2926-2939, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29791744

RESUMEN

BACKGROUND AND PURPOSE: Pharmacological agents that either inhibit or enhance flux of ions through voltage-gated sodium (Nav ) channels may provide opportunities for treatment of human health disorders. During studies to characterize agents that modulate Nav 1.3 function, we identified a compound that appears to exhibit both enhancement and inhibition of sodium ion conduction that appeared to be dependent on the gating state that the channel was in. The objective of the current study was to determine if these different modulatory effects are mediated by the same or distinct interactions with the channel. EXPERIMENTAL APPROACH: Electrophysiology and site-directed mutation were used to investigate the effects of PF-06526290 on Nav channel function. KEY RESULTS: PF-06526290 greatly slows inactivation of Nav channels in a subtype-independent manner. However, upon prolonged depolarization to induce inactivation, PF-06526290 becomes a Nav subtype-selective inhibitor. Mutation of the domain 4 voltage sensor modulates inhibition of Nav 1.3 or Nav 1.7 channels by PF-06526290 but has no effect on PF-06526290 mediated slowing of inactivation. CONCLUSIONS AND IMPLICATIONS: These findings suggest that distinct interactions may underlie the two modes of Nav channel modulation by PF-06526290 and that a single compound can affect sodium channel function in several ways.


Asunto(s)
Sulfonamidas/farmacología , Tiazoles/farmacología , Agonistas del Canal de Sodio Activado por Voltaje/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Canales de Sodio Activados por Voltaje/fisiología , Animales , Células CHO , Cricetulus , Ganglios Espinales , Células HEK293 , Humanos , Ratones , Neuronas/efectos de los fármacos , Neuronas/fisiología
8.
Br J Pharmacol ; 175(12): 2272-2283, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29150838

RESUMEN

BACKGROUND AND PURPOSE: TREK two-pore-domain potassium (K2P ) channels play a critical role in regulating the excitability of somatosensory nociceptive neurons and are important mediators of pain perception. An understanding of the roles of TREK channels in pain perception and, indeed, in other pathophysiological conditions, has been severely hampered by the lack of potent and/or selective activators and inhibitors. In this study, we describe a new, selective opener of TREK channels, GI-530159. EXPERIMENTAL APPROACH: The effect of GI-530159 on TREK channels was demonstrated using 86 Rb efflux assays, whole-cell and single-channel patch-clamp recordings from recombinant TREK channels. The expression of K2P 2.1 (TREK1), K2P 10.1 (TREK2) and K2P 4.1 (TRAAK) channels was determined using transcriptome analysis from single dorsal root ganglion (DRG) cells. Current-clamp recordings from cultured rat DRG neurons were used to measure the effect of GI-530159 on neuronal excitability. KEY RESULTS: For recombinant human TREK1 channels, GI-530159 had similar low EC50 values in Rb efflux experiments and electrophysiological recordings. It activated TREK2 channels, but it had no detectable action on TRAAK channels nor any significant effect on other K channels tested. Current-clamp recordings from cultured rat DRG neurones showed that application of GI-530159 at 1 µM resulted in a significant reduction in firing frequency and a small hyperpolarization of resting membrane potential. CONCLUSIONS AND IMPLICATIONS: This study provides pharmacological evidence for the presence of mechanosensitive TREK K2P channels in sensory neurones and suggests that development of selective K2P channel openers like GI-530159 could aid in the development of novel analgesic agents. LINKED ARTICLES: This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.


Asunto(s)
Ganglios Espinales/efectos de los fármacos , Neuronas/efectos de los fármacos , Canales de Potasio de Dominio Poro en Tándem/agonistas , Animales , Células CHO , Línea Celular , Cricetulus , Relación Dosis-Respuesta a Droga , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Estructura Molecular , Neuronas/metabolismo , Ratas , Relación Estructura-Actividad
9.
ACS Med Chem Lett ; 9(2): 125-130, 2018 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-29456800

RESUMEN

Inhibitors of the renal outer medullary potassium channel (ROMK) show promise as novel mechanism diuretics, with potentially lower risk of diuretic-induced hypokalemia relative to current thiazide and loop diuretics. Here, we report the identification of a novel series of 3-sulfamoylbenzamide ROMK inhibitors. Starting from HTS hit 4, this series was optimized to provide ROMK inhibitors with good in vitro potencies and well-balanced ADME profiles. In contrast to previously reported small-molecule ROMK inhibitors, members of this series were demonstrated to be highly selective for inhibition of human over rat ROMK and to be insensitive to the N171D pore mutation that abolishes inhibitory activity of previously reported ROMK inhibitors.

10.
PLoS One ; 11(8): e0161450, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27556810

RESUMEN

The voltage dependent sodium channel Nav1.9, is expressed preferentially in peripheral sensory neurons and has been linked to human genetic pain disorders, which makes it target of interest for the development of new pain therapeutics. However, characterization of Nav1.9 pharmacology has been limited due in part to the historical difficulty of functionally expressing recombinant channels. Here we report the successful generation and characterization of human, mouse and rat Nav1.9 stably expressed in human HEK-293 cells. These cells exhibit slowly activating and inactivating inward sodium channel currents that have characteristics of native Nav1.9. Optimal functional expression was achieved by coexpression of Nav1.9 with ß1/ß2 subunits. While recombinantly expressed Nav1.9 was found to be sensitive to sodium channel inhibitors TC-N 1752 and tetracaine, potency was up to 100-fold less than reported for other Nav channel subtypes despite evidence to support an interaction with the canonical local anesthetic (LA) binding region on Domain 4 S6. Nav1.9 Domain 2 S6 pore domain contains a unique lysine residue (K799) which is predicted to be spatially near the local anesthetic interaction site. Mutation of this residue to the consensus asparagine (K799N) resulted in an increase in potency for tetracaine, but a decrease for TC-N 1752, suggesting that this residue can influence interaction of inhibitors with the Nav1.9 pore. In summary, we have shown that stable functional expression of Nav1.9 in the widely used HEK-293 cells is possible, which opens up opportunities to better understand channel properties and may potentially aid identification of novel Nav1.9 based pharmacotherapies.


Asunto(s)
Expresión Génica , Canal de Sodio Activado por Voltaje NAV1.9/genética , Canal de Sodio Activado por Voltaje NAV1.9/metabolismo , Secuencia de Aminoácidos , Anestésicos Locales/química , Anestésicos Locales/farmacología , Animales , Sitios de Unión , Células HEK293 , Humanos , Concentración 50 Inhibidora , Activación del Canal Iónico/efectos de los fármacos , Lisina/química , Lisina/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Ratones , Modelos Moleculares , Conformación Molecular , Canal de Sodio Activado por Voltaje NAV1.9/química , Unión Proteica , Ratas , Agonistas de los Canales de Sodio/química , Agonistas de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/farmacología
11.
PLoS One ; 11(4): e0152405, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27050761

RESUMEN

Human genetic studies show that the voltage gated sodium channel 1.7 (Nav1.7) is a key molecular determinant of pain sensation. However, defining the Nav1.7 contribution to nociceptive signalling has been hampered by a lack of selective inhibitors. Here we report two potent and selective arylsulfonamide Nav1.7 inhibitors; PF-05198007 and PF-05089771, which we have used to directly interrogate Nav1.7's role in nociceptor physiology. We report that Nav1.7 is the predominant functional TTX-sensitive Nav in mouse and human nociceptors and contributes to the initiation and the upstroke phase of the nociceptor action potential. Moreover, we confirm a role for Nav1.7 in influencing synaptic transmission in the dorsal horn of the spinal cord as well as peripheral neuropeptide release in the skin. These findings demonstrate multiple contributions of Nav1.7 to nociceptor signalling and shed new light on the relative functional contribution of this channel to peripheral and central noxious signal transmission.


Asunto(s)
Axones/fisiología , Canal de Sodio Activado por Voltaje NAV1.7/efectos de los fármacos , Terminales Presinápticos/fisiología , Potenciales de Acción , Animales , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/fisiología , Células HEK293 , Humanos , Masculino , Ratones , Canal de Sodio Activado por Voltaje NAV1.7/fisiología , Técnicas de Placa-Clamp , Éteres Fenílicos/farmacología , Sulfonamidas/farmacología
12.
Drug Discov Today ; 10(7): 485-93, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15809194

RESUMEN

Over the past decade, significant advances have been made in understanding how water moves in to and out of cells. Investigators have used molecular and structural biological techniques to show that nature has evolved specialized water-conducting proteins called aquaporins, which traverse biological membranes in the cells of animals, plants and even bacteria. It is becoming increasingly clear that these aquaporins have fundamental roles in normal human physiology and pathophysiology. Consequently, aquaporins are attractive targets for the development of novel drug therapies for disorders that involve aberrant water movement, such as edema and kidney disease.


Asunto(s)
Acuaporinas/química , Acuaporinas/fisiología , Diseño de Fármacos , Animales , Transporte Biológico , Agua Corporal/metabolismo , Edema/tratamiento farmacológico , Edema/metabolismo , Humanos , Riñón/metabolismo , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Sistema Nervioso/metabolismo , Fenómenos Fisiológicos Oculares , Sistema Respiratorio/metabolismo
13.
Br J Pharmacol ; 172(20): 4905-18, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26220736

RESUMEN

BACKGROUND AND PURPOSE: Aryl sulfonamide Nav 1.3 or Nav 1.7 voltage-gated sodium (Nav ) channel inhibitors interact with the Domain 4 voltage sensor domain (D4 VSD). During studies to better understand the structure-activity relationship of this interaction, an additional mode of channel modulation, specifically slowing of inactivation, was revealed by addition of a single methyl moiety. The objective of the current study was to determine if these different modulatory effects are mediated by the same or distinct interactions with the channel. EXPERIMENTAL APPROACH: Electrophysiology and site-directed mutation were used to compare the effects of PF-06526290 and its desmethyl analogue PF-05661014 on Nav channel function. KEY RESULTS: PF-05661014 selectively inhibits Nav 1.3 versus Nav 1.7 currents by stabilizing inactivated channels via interaction with D4 VSD. In contrast, PF-06526290, which differs from PF-05661014 by a single methyl group, exhibits a dual effect. It greatly slows inactivation of Nav channels in a subtype-independent manner. However, upon prolonged depolarization to induce inactivation, PF-06526290 becomes a Nav subtype selective inhibitor similar to PF-05661014. Mutation of the D4 VSD modulates inhibition of Nav 1.3 or Nav 1.7 by both PF-05661014 and PF-06526290, but has no effect on the inactivation slowing produced by PF-06526290. This finding, along with the absence of functional inhibition of PF-06526290-induced inactivation slowing by PF-05661014, suggests that distinct interactions underlie the two modes of Nav channel modulation. CONCLUSIONS AND IMPLICATIONS: Addition of a methyl group to a Nav channel inhibitor introduces an additional mode of gating modulation, implying that a single compound can affect sodium channel function in multiple ways.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.3/fisiología , Canal de Sodio Activado por Voltaje NAV1.7/fisiología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/fisiología , Sulfonamidas/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Células CHO , Cricetulus , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/fisiología , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Metilación , Ratones , Mutagénesis Sitio-Dirigida , Canal de Sodio Activado por Voltaje NAV1.3/genética , Canal de Sodio Activado por Voltaje NAV1.7/genética , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Bloqueadores de los Canales de Sodio/química , Canales de Sodio/genética , Relación Estructura-Actividad , Sulfonamidas/química
14.
Br J Pharmacol ; 143(1): 81-90, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15302680

RESUMEN

1. Openers of ATP-sensitive K(+) channels are of interest in several therapeutic indications including overactive bladder and other lower urinary tract disorders. This study reports on the in vitro and in vivo characterization of a structurally novel naphthylamide N-[2-(2,2,2-trifluoro-1-hydroxy-1-trifluoromethyl-ethyl)-naphthalen-1-yl]-acetamide (A-151892), as an opener of the ATP-sensitive potassium channels. 2. A-151892 was found to be a potent and efficacious potassium channel opener (KCO) as assessed by glibenclamide-sensitive whole-cell current and fluorescence-based membrane potential responses (-log EC(50)=7.63) in guinea-pig bladder smooth muscle cells. 3. Evidence for direct interaction with KCO binding sites was derived from displacement of binding of the 1,4-dihydropyridine opener [(125)I]A-312110. A-151892 displaced [(125)I]A-312110 binding to bladder membranes with a -log Ki value of 7.45, but lacked affinity against over 70 neurotransmitter receptor and ion channel binding sites. 4. In pig bladder strips, A-151892 suppressed phasic, carbachol-evoked and electrical field stimulus-evoked contractility in a glibenclamide-reversible manner with -log IC(50) values of 8.07, 7.33 and 7.02 respectively, comparable to that of the potencies of the prototypical cyanoguanidine KCO, P1075. The potencies to suppress contractions in thoracic aorta (-log IC(50)=7.81) and portal vein (-log IC(50)=7.98) were not substantially different from those observed for suppression of phasic contractility of the bladder smooth muscle. 5. In vivo, A-151892 was found to potently suppress unstable bladder contractions in obstructed models of unstable contractions in both pigs and rats with pED(35%) values of 8.05 and 7.43, respectively. 6. These results demonstrate that naphthylamide analogs exemplified by A-151892 are novel K(ATP) channel openers and may serve as chemotypes to exploit additional analogs with potential for the treatment of overactive bladder and lower urinary tract symptoms.


Asunto(s)
Acetamidas/farmacología , Adenosina Trifosfato/fisiología , Naftalenos/farmacología , Canales de Potasio/agonistas , Animales , Barbitúricos/metabolismo , Unión Competitiva/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Vasos Sanguíneos/efectos de los fármacos , Femenino , Guanidinas/farmacología , Cobayas , Técnicas In Vitro , Radioisótopos de Yodo , Isoxazoles/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Relajación Muscular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Técnicas de Placa-Clamp , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Porcinos , Vejiga Urinaria/efectos de los fármacos
15.
Expert Opin Ther Pat ; 20(11): 1471-503, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20726689

RESUMEN

IMPORTANCE OF THE FIELD: The human genome encodes at least 40 distinct voltage-gated potassium channel subtypes, which vary in regional expression, pharmacological and biophysical properties. Voltage-dependent potassium (Kv) channels help orchestrate many of the physiological and pathophysiological processes that promote and sometimes hinder the healthy functioning of our bodies. AREAS COVERED IN THIS REVIEW: This review summarizes patent and scientific literature reports from the past decade highlighting the opportunities that Kv channels offer for the development of new therapeutic interventions for a wide variety of disorders. WHAT THE READER WILL GAIN: The reader will gain an insight from an analysis of the associations of different Kv family members with disease processes, summary and evaluation of the development of therapeutically relevant pharmacological modulators of these channels, particularly focusing on proprietary agents being developed. TAKE HOME MESSAGE: Development of new drugs that target Kv channels continue to be of great interest but is proving to be challenging. Nevertheless, opportunities for Kv channel modulators to have an impact on a wide range of disorders in the future remain an exciting prospect.


Asunto(s)
Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Animales , Expresión Génica , Humanos , Patentes como Asunto , Canales de Potasio con Entrada de Voltaje/metabolismo
16.
Expert Rev Clin Pharmacol ; 3(3): 385-96, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-22111618

RESUMEN

The Ca(2+)-activated K(+) channel K(Ca)3.1 regulates membrane potential and calcium signaling in erythrocytes, activated T and B cells, macrophages, microglia, vascular endothelium, epithelia, and proliferating vascular smooth muscle cells and fibroblasts. K(Ca)3.1 has therefore been suggested as a potential therapeutic target for diseases such as sickle cell anemia, asthma, coronary restenosis after angioplasty, atherosclerosis, kidney fibrosis and autoimmunity, where activation and excessive proliferation of one or more of these cell types is involved in the pathology. This article will review the physiology and pharmacology of K(Ca)3.1 and critically examine the available preclinical and clinical data validating K(Ca)3.1 as a therapeutic target.

17.
Nat Rev Drug Discov ; 8(12): 982-1001, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19949402

RESUMEN

The human genome encodes 40 voltage-gated K(+) channels (K(V)), which are involved in diverse physiological processes ranging from repolarization of neuronal and cardiac action potentials, to regulating Ca(2+) signalling and cell volume, to driving cellular proliferation and migration. K(V) channels offer tremendous opportunities for the development of new drugs to treat cancer, autoimmune diseases and metabolic, neurological and cardiovascular disorders. This Review discusses pharmacological strategies for targeting K(V) channels with venom peptides, antibodies and small molecules, and highlights recent progress in the preclinical and clinical development of drugs targeting the K(V)1 subfamily, the K(V)7 subfamily (also known as KCNQ), K(V)10.1 (also known as EAG1 and KCNH1) and K(V)11.1 (also known as HERG and KCNH2) channels.


Asunto(s)
Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Animales , Anticuerpos/farmacología , Ensayos Clínicos como Asunto , Evaluación Preclínica de Medicamentos , Humanos , Péptidos/farmacología , Canales de Potasio con Entrada de Voltaje/metabolismo , Transducción de Señal/efectos de los fármacos , Ponzoñas/farmacología
18.
Bioorg Med Chem Lett ; 17(10): 2849-53, 2007 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-17350840

RESUMEN

A collection of aryl sulfonamido indanes based on the lead compound 1 was synthesized and evaluated for Kv1.5 inhibitory activity. Kv1.5 inhibitors have the potential to be atrium-selective agents for treatment of atrial fibrillation. (1R,2R)-1 has an IC(50) of 0.033microM against Kv1.5 and is selective against other cardiac ion channels, including hERG.


Asunto(s)
Canal de Potasio Kv1.5/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/síntesis química , Bloqueadores de los Canales de Potasio/farmacología , Sulfonamidas/síntesis química , Sulfonamidas/farmacología , Animales , Indanos/síntesis química , Indanos/farmacología , Concentración 50 Inhibidora , Canal de Potasio Kv1.5/metabolismo , Ratones , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/química
19.
Curr Protoc Pharmacol ; Chapter 11: Unit11.5, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-21956802

RESUMEN

This unit describes protocols to aid investigators in determining the electrophysiological and pharmacological profile of heterologously expressed voltage or calcium-activated potassium channels belonging to the Kv1.x and SK/IK gene families. Protocols for data acquisition as well as analysis are provided.


Asunto(s)
Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Técnicas de Placa-Clamp/métodos , Canales de Potasio de la Superfamilia Shaker/fisiología , Animales , Células CHO , Cricetinae , Células HEK293 , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/efectos de los fármacos , Mesocricetus , Canales de Potasio de la Superfamilia Shaker/efectos de los fármacos
20.
Bioorg Med Chem Lett ; 13(10): 1741-4, 2003 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-12729655

RESUMEN

We have discovered a novel series of N-[2-(2,2,2-trifluoro-1-hydroxy-1-trifluoromethyl-ethyl)-naphthalen-1-yl] amides that are potent openers of K(ATP) channels and investigated structure-activity relationships (SAR) around the 1,2-disubstituted naphthyl core. A-151892, a prototype compound of this series, was found to be a potent and efficacious potassium channel opener in vitro in transfected Kir6.2/SUR2B cells and pig bladder strips. Additionally, A-151892 was found to selectively inhibit unstable bladder contractions in vivo in an obstructed rat model of myogenic bladder function


Asunto(s)
Amidas/síntesis química , Amidas/farmacología , Canales de Potasio/agonistas , Transportadoras de Casetes de Unión a ATP/agonistas , Transportadoras de Casetes de Unión a ATP/genética , Amidas/administración & dosificación , Animales , Presión Sanguínea/efectos de los fármacos , Línea Celular , Colorantes Fluorescentes , Humanos , Hipertrofia/tratamiento farmacológico , Masculino , Potenciales de la Membrana/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Naftalenos/administración & dosificación , Naftalenos/síntesis química , Naftalenos/farmacología , Canales de Potasio/genética , Canales de Potasio de Rectificación Interna/agonistas , Canales de Potasio de Rectificación Interna/genética , Ratas , Ratas Sprague-Dawley , Receptores de Droga/agonistas , Receptores de Droga/genética , Relación Estructura-Actividad , Receptores de Sulfonilureas , Porcinos , Transfección , Vejiga Urinaria/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA