Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Pharmacol Res ; 159: 104922, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32464326

RESUMEN

Down-regulation of Connexin43 (Cx43) has often been associated with the development of cardiac fibrosis. We showed previously that Scn5a heterozygous knockout mice (Scn5a+/-), which mimic familial progressive cardiac conduction defect, exhibit an age-dependent decrease of Cx43 expression and phosphorylation concomitantly with activation of TGF-ß pathway and fibrosis development in the myocardium between 45 and 60 weeks of age. The aim of this study was to investigate whether Gap-134 prevents Cx43 down-regulation with age and fibrosis development in Scn5a+/- mice. We observed in 60-week-old Scn5a+/- mouse heart a Cx43 expression and localization remodeling correlated with fibrosis. Chronic administration of a potent and selective gap junction modifier, Gap-134 (danegaptide), between 45 and 60 weeks, increased Cx43 expression and phosphorylation on serine 368 and prevented Cx43 delocalization. Furthermore, we found that Gap-134 prevented fibrosis despite the persistence of the conduction defects and the TGF-ß canonical pathway activation. In conclusion, the present study demonstrates that the age-dependent decrease of Cx43 expression is involved in the ventricular fibrotic process occurring in Scn5a+/- mice. Finally, our study suggests that gap junction modifier, such as Gap-134, could be an effective anti-fibrotic agent in the context of age-dependent fibrosis in progressive cardiac conduction disease.


Asunto(s)
Benzamidas/farmacología , Cardiomiopatías/prevención & control , Conexina 43/metabolismo , Fibroblastos/efectos de los fármacos , Miocardio/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/deficiencia , Prolina/análogos & derivados , Animales , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Ratones de la Cepa 129 , Ratones Noqueados , Miocardio/patología , Canal de Sodio Activado por Voltaje NAV1.5/genética , Fosforilación , Prolina/farmacología , Pirazoles/farmacología , Transducción de Señal , Regulación hacia Arriba , Remodelación Ventricular/efectos de los fármacos
2.
Angew Chem Int Ed Engl ; 59(22): 8355-8366, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-31944500

RESUMEN

In the past few years, numerous investigations have been reported on the role of heavy-atom tunneling in the area of pericyclic reactions, π-bond-shifting, and other processes. These studies illustrate unique strategies for the experimental detection of heavy-atom tunneling and the increased use of calculations to predict it. This Minireview focuses primarily on carbon tunneling in ground-state processes but also highlights nitrogen tunneling and the first example of excited-state heavy-atom tunneling. Salient features of these reactions along with potential limitations are discussed, as well as challenges and directions for future investigation.

3.
J Am Chem Soc ; 141(13): 5286-5293, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30845804

RESUMEN

Midsized annulenes are known to undergo rapid π-bond shifting. Given that heavy-atom tunneling plays a role in planar bond shifting of cyclobutadiene, we computationally explored the contribution of heavy-atom tunneling to planar π-bond shifting in the major (CTCTCTCT, 5a) and minor (CTCTTCTT, 6a) known isomers of [16]annulene. UM06-2X/cc-pVDZ calculations yield bond-shifting barriers of ca. 10 kcal/mol. The results also reveal extremely narrow barrier widths, suggesting a high probability of tunneling for these bond-shifting reactions. Rate constants were calculated using canonical variational transition state theory (CVT) as well as with small curvature tunneling (SCT) contributions, via direct dynamics. For the major isomer 5a, the computed SCT rate constant for bond shifting at 80 K is 0.16 s-1, corresponding to a half-life of 4.3 s, and indicating that bond shifting is rapid at cryogenic temperatures despite a 10 kcal/mol barrier. This contrasts with the CVT rate constant of 8.0 × 10-15 s-1 at 80 K. The minor isomer 6a is predicted to undergo rapid bond shifting via tunneling even at 10 K. For both isomers, bond shifting is predicted to be much faster than competing conformation change despite lower barriers for the latter process. The preference for bond shifting represents cases of tunneling control in which the preferred reaction is dominated by heavy-atom motions. At all temperatures below -50 °C, tunneling is predicted to dominate the bond shifting process for both 5a and 6a. Thus, [16]annulene is predicted to be an example of tunneling by 16 carbons. Bond shifting in both isomers is predicted to be rapid at temperatures accessible by solution-phase NMR spectroscopy, and an experiment is proposed to verify these predictions.

4.
J Mol Cell Cardiol ; 123: 13-25, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30144447

RESUMEN

AIM: Deletion of QKP1507-1509 amino-acids in SCN5A gene product, the voltage-gated Na+ channel Nav1.5, has been associated with a large phenotypic spectrum of type 3 long QT syndrome, conduction disorder, dilated cardiomyopathy and high incidence of sudden death. The aim of this study was to develop and characterize a novel model of type 3 long QT syndrome to study the consequences of the QKP1507-1509 deletion. METHODS AND RESULTS: We generated a knock-in mouse presenting the delQKP1510-1512 mutation (Scn5a+/ΔQKP) equivalent to human deletion. Scn5a+/ΔQKP mice showed prolonged QT interval, conduction defects and ventricular arrhythmias at the age of 2 weeks, and, subsequently, structural defects and premature mortality. The mutation increased Na+ window current and generated a late Na+ current. Ventricular action potentials from Scn5a+/ΔQKP mice were prolonged. At the age of 4 weeks, Scn5a+/ΔQKP mice exhibited a remodeling leading to [Ca2+]i transients with higher amplitude and slower kinetics, combined with enhanced SR Ca2+ load. SERCA2 expression was not altered. However, total phospholamban expression was higher whereas the amount of Ca2+-calmodulin-dependent kinase II (CaMKII)-dependent T17-phosphorylated form was lower, in hearts from 4-week-old mice only. This was associated with a lower activity of CaMKII and lower calmodulin expression. In addition, Scn5a+/ΔQKP cardiomyocytes showed larger Ca2+ waves, correlated with the presence of afterdepolarizations during action potential recording. Ranolazine partially prevented action potential and QT interval prolongation in 4-week-old Scn5a+/ΔQKP mice and suppressed arrhythmias. CONCLUSION: The Scn5a+/ΔQKP mouse model recapitulates the clinical phenotype of mutation carriers and provides new and unexpected insights into the pathological development of the disease in patients carrying the QKP1507-1509 deletion.


Asunto(s)
Calcio/metabolismo , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Síndrome de QT Prolongado/complicaciones , Síndrome de QT Prolongado/metabolismo , Potenciales de Acción , Animales , Cardiomiopatías/diagnóstico , Cardiomiopatías/mortalidad , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ecocardiografía , Electrocardiografía , Pruebas de Función Cardíaca , Inmunohistoquímica , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/tratamiento farmacológico , Ratones , Ratones Noqueados , Imagen Molecular , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Fenotipo , Propranolol/farmacología , Transducción de Señal , Tasa de Supervivencia
5.
J Org Chem ; 83(1): 314-322, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29224344

RESUMEN

Density functional and coupled cluster results are presented for hydrogen shifts in radicals derived from polycyclic aromatic hydrocarbons (PAHs) and for rearrangement mechanisms for several phenylenes. RCCSD(T)/cc-pVDZ//UBLYP/cc-pVDZ free energy barriers for 1,4-H shifts at 298 K are consistently predicted to be ca. 25 kcal/mol, whereas barriers for 1,5- and 1,6-shifts range from 6 to 28 kcal/mol. The barriers correlate reasonably well with the distance from the radical center to the shifting hydrogen in the reactant. Proposed mechanisms (via diradical intermediates) of known rearrangements of linear [3]phenylene, benzo[b]biphenylene, and angular [4]phenylene have BD(T)/cc-pVDZ//(U)BLYP/cc-pVDZ computed barriers of 74-82 kcal/mol, consistent with pyrolysis temperatures of 900 to 1100 °C. Hydrogen shift reactions in most of the aryl diradicals arising from phenylenes produce m-benzyne intermediates which, despite being 8-15 kcal/mol more stable than other diradicals involved in the pathways, do not significantly lower the computed overall free energies of activation.

6.
J Org Chem ; 80(8): 3825-31, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25843555

RESUMEN

Mechanisms for Stone-Wales rearrangements (SWRs) in polycyclic unsaturated hydrocarbons containing a pentafulvalene core have been studied using density functional, coupled cluster, and multiconfigurational methods. At the BD(T)/cc-pVDZ//(U)M06-2X/cc-pVDZ level of theory, free energies of activation (at 1000 °C) range from ca. 70 kcal/mol for the model system pentafulvalene → naphthalene (1 → 2) to >110 kcal/mol for the degenerate SWR of pyracyclene (3). Systems studied that do not contain a pyracyclene subunit are predicted to have ΔG(‡) less than about 90 kcal/mol and to proceed by a carbene-type mechanism. Substrates containing a pyracyclene subunit should proceed via a cyclobutyl mechanism, and appropriate benzannelation of 3 lowers the activation free energy considerably. Computed ΔG(‡) values are consistent with experimental observations reported for known systems. SWRs of two untested substrates, cyclopent[fg]aceanthrylene (18) and dicyclopenta[fg,op]tetracene (21), are predicted to have ΔG(‡) < 95 kcal/mol and thus to be accessible via flash vacuum pyrolysis.

7.
J Org Chem ; 80(23): 11718-25, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26301994

RESUMEN

Carbene, cyclobutyl, and potential diradical mechanisms were studied computationally for Stone-Wales rearrangements in several derivatives of as-indacene and pyracyclene, including cyclopent[hi]acephenanthrylene, dicyclopenta[cd,fg]pyrene, corannulene, diindeno[1,2,3,4-defg;1',2',3',4'-mnop]chrysene, and semibuckminsterfullerene. At the UM06-2X/cc-pVDZ and BD(T)/cc-pVDZ//UM06-2X/cc-pVDZ levels of theory, free energies of reaction reveal that transformations involving an increase in curvature are thermodynamically unfavorable. In addition, the carbene transition states or intermediates (corrected to 1000 °C) are generally around 100-120 kcal/mol higher than starting substrates, except for as-indacene (80 kcal/mol), which is the only process considered here that is predicted to have a barrier accessible under typical flash vacuum pyrolysis conditions. For pyracyclene derivatives, the relative free energy of cyclobutyl intermediates rises steadily with increasing curvature of the substrate and increasing annelation. Singlet acetylenic diradicals related to pyracyclene, diindenochrysene, and semibuckminsterfullerene are predicted to be second- or higher-order saddle points that lie more than 40 kcal/mol higher than the corresponding carbenes and cyclobutyl intermediates.

8.
JACC Basic Transl Sci ; 9(4): 535-552, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38680954

RESUMEN

Among its many cardiovascular benefits, exercise training improves heart function and protects the heart against age-related decline, pathological stress, and injury. Here, we focus on cardiac benefits with an emphasis on more recent updates to our understanding. While the cardiomyocyte continues to play a central role as both a target and effector of exercise's benefits, there is a growing recognition of the important roles of other, noncardiomyocyte lineages and pathways, including some that lie outside the heart itself. We review what is known about mediators of exercise's benefits-both those intrinsic to the heart (at the level of cardiomyocytes, fibroblasts, or vascular cells) and those that are systemic (including metabolism, inflammation, the microbiome, and aging)-highlighting what is known about the molecular mechanisms responsible.

9.
Hypertension ; 81(6): 1272-1284, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38563161

RESUMEN

BACKGROUND: Preeclampsia is a pregnancy-specific hypertensive disorder associated with an imbalance in circulating proangiogenic and antiangiogenic proteins. Preclinical evidence implicates microvascular dysfunction as a potential mediator of preeclampsia-associated cardiovascular risk. METHODS: Women with singleton pregnancies complicated by severe antepartum-onset preeclampsia and a comparator group with normotensive deliveries underwent cardiac positron emission tomography within 4 weeks of delivery. A control group of premenopausal, nonpostpartum women was also included. Myocardial flow reserve, myocardial blood flow, and coronary vascular resistance were compared across groups. sFlt-1 (soluble fms-like tyrosine kinase receptor-1) and PlGF (placental growth factor) were measured at imaging. RESULTS: The primary cohort included 19 women with severe preeclampsia (imaged at a mean of 15.3 days postpartum), 5 with normotensive pregnancy (mean, 14.4 days postpartum), and 13 nonpostpartum female controls. Preeclampsia was associated with lower myocardial flow reserve (ß, -0.67 [95% CI, -1.21 to -0.13]; P=0.016), lower stress myocardial blood flow (ß, -0.68 [95% CI, -1.07 to -0.29] mL/min per g; P=0.001), and higher stress coronary vascular resistance (ß, +12.4 [95% CI, 6.0 to 18.7] mm Hg/mL per min/g; P=0.001) versus nonpostpartum controls. Myocardial flow reserve and coronary vascular resistance after normotensive pregnancy were intermediate between preeclamptic and nonpostpartum groups. Following preeclampsia, myocardial flow reserve was positively associated with time following delivery (P=0.008). The sFlt-1/PlGF ratio strongly correlated with rest myocardial blood flow (r=0.71; P<0.001), independent of hemodynamics. CONCLUSIONS: In this exploratory cross-sectional study, we observed reduced coronary microvascular function in the early postpartum period following preeclampsia, suggesting that systemic microvascular dysfunction in preeclampsia involves coronary microcirculation. Further research is needed to establish interventions to mitigate the risk of preeclampsia-associated cardiovascular disease.


Asunto(s)
Circulación Coronaria , Preeclampsia , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Resistencia Vascular , Humanos , Femenino , Preeclampsia/fisiopatología , Preeclampsia/sangre , Embarazo , Adulto , Resistencia Vascular/fisiología , Circulación Coronaria/fisiología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/sangre , Microcirculación/fisiología , Tomografía de Emisión de Positrones/métodos , Factor de Crecimiento Placentario/sangre , Periodo Posparto , Índice de Severidad de la Enfermedad , Reserva del Flujo Fraccional Miocárdico/fisiología , Vasos Coronarios/fisiopatología , Vasos Coronarios/diagnóstico por imagen , Microvasos/fisiopatología , Microvasos/diagnóstico por imagen
10.
medRxiv ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38496439

RESUMEN

Background: Preeclampsia is a pregnancy-specific hypertensive disorder associated with an imbalance in circulating pro- and anti-angiogenic proteins. Preclinical evidence implicates microvascular dysfunction as a potential mediator of preeclampsia-associated cardiovascular risk. Methods: Women with singleton pregnancies complicated by severe antepartum-onset preeclampsia and a comparator group with normotensive deliveries underwent cardiac positron emission tomography (PET) within 4 weeks of delivery. A control group of pre-menopausal, non-postpartum women was also included. Myocardial flow reserve (MFR), myocardial blood flow (MBF), and coronary vascular resistance (CVR) were compared across groups. Soluble fms-like tyrosine kinase receptor-1 (sFlt-1) and placental growth factor (PlGF) were measured at imaging. Results: The primary cohort included 19 women with severe preeclampsia (imaged at a mean 16.0 days postpartum), 5 with normotensive pregnancy (mean 14.4 days postpartum), and 13 non-postpartum female controls. Preeclampsia was associated with lower MFR (ß=-0.67 [95% CI -1.21 to -0.13]; P=0.016), lower stress MBF (ß=-0.68 [95% CI, -1.07 to -0.29] mL/min/g; P=0.001), and higher stress CVR (ß=+12.4 [95% CI 6.0 to 18.7] mmHg/mL/min/g; P=0.001) vs. non-postpartum controls. MFR and CVR after normotensive pregnancy were intermediate between preeclamptic and non-postpartum groups. Following preeclampsia, MFR was positively associated with time following delivery (P=0.008). The sFlt-1/PlGF ratio strongly correlated with rest MBF (r=0.71; P<0.001), independent of hemodynamics. Conclusions: In this exploratory study, we observed reduced coronary microvascular function in the early postpartum period following severe preeclampsia, suggesting that systemic microvascular dysfunction in preeclampsia involves the coronary microcirculation. Further research is needed to establish interventions to mitigate risk of preeclampsia-associated cardiovascular disease.

11.
Sci Transl Med ; 16(743): eadi0077, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630848

RESUMEN

Peripartum cardiomyopathy (PPCM) is an idiopathic form of pregnancy-induced heart failure associated with preeclampsia. Circulating factors in late pregnancy are thought to contribute to both diseases, suggesting a common underlying pathophysiological process. However, what drives this process remains unclear. Using serum proteomics, we identified the senescence-associated secretory phenotype (SASP), a marker of cellular senescence associated with biological aging, as the most highly up-regulated pathway in young women with PPCM or preeclampsia. Placentas from women with preeclampsia displayed multiple markers of amplified senescence and tissue aging, as well as overall increased gene expression of 28 circulating proteins that contributed to SASP pathway enrichment in serum samples from patients with preeclampsia or PPCM. The most highly expressed placental SASP factor, activin A, was associated with cardiac dysfunction or heart failure severity in women with preeclampsia or PPCM. In a murine model of PPCM induced by cardiomyocyte-specific deletion of the gene encoding peroxisome proliferator-activated receptor γ coactivator-1α, inhibiting activin A signaling in the early postpartum period with a monoclonal antibody to the activin type II receptor improved heart function. In addition, attenuating placental senescence with the senolytic compound fisetin in late pregnancy improved cardiac function in these animals. These findings link senescence biology to cardiac dysfunction in pregnancy and help to elucidate the pathogenesis underlying cardiovascular diseases of pregnancy.


Asunto(s)
Cardiomiopatías , Cardiopatías , Insuficiencia Cardíaca , Preeclampsia , Humanos , Embarazo , Femenino , Ratones , Animales , Periodo Periparto , Placenta , Factores de Transcripción
12.
J Org Chem ; 78(5): 2033-9, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23106831

RESUMEN

Computational investigation of the potential energy surfaces of dehydro[10]- and dehydro[14]annulenes revealed that mechanisms involving Hückel and Möbius π-bond shifting can explain the observed or proposed configuration change reactions. Unlike the case of annulenes, in which bond-shift midpoints correspond to transition states, for transformations of dehydroannulenes with Δtrans = 0, "hidden" Hückel bond shifts occur on the side of an energy hill, on the way to a cumulenic, purely conformational transition state. For example, interconversion between CTCCTC-dehydro[14]annulene (1a) and CCTCTC-dehydro[14]annulene (2a) has a CCSD(T)/cc-pVDZ//BHLYP/6-31G* barrier of 18.7 kcal/mol, consistent with experimental observations, and proceeds via a conformational transition state, with Hückel π-bond shifts occurring both before and after the transition state. However, when Δtrans = 1, a true Möbius π-bond shift transition state was located. The isomerization of CCTC-dehydro[10]annulene (10) to CCCC-dehydro[10]annulene (11) occurs by an initial "hidden" Hückel bond shift, followed by passage through a Möbius bond-shift transition state to 11, with an overall barrier of 29.8 kcal/mol at the CASPT2(12,12)/cc-pVDZ//(U)BHLYP/6-31G* level of theory. This is the lowest energy pathway between 10 and 11, in contrast to a cyclization/ring-opening route via a bicyclic allene described in previous reports.

13.
JACC Basic Transl Sci ; 7(5): 425-441, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35530264

RESUMEN

To gain insights into the mechanisms driving cardiovascular complications in COVID-19, we performed a case-control plasma proteomics study in COVID-19 patients. Our results identify the senescence-associated secretory phenotype, a marker of biological aging, as the dominant process associated with disease severity and cardiac involvement. FSTL3, an indicator of senescence-promoting Activin/TGFß signaling, and ADAMTS13, the von Willebrand Factor-cleaving protease whose loss-of-function causes microvascular thrombosis, were among the proteins most strongly associated with myocardial stress and injury. Findings were validated in a larger COVID-19 patient cohort and the hamster COVID-19 model, providing new insights into the pathophysiology of COVID-19 cardiovascular complications with therapeutic implications.

14.
J Org Chem ; 76(2): 403-7, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21192655

RESUMEN

Density functional and coupled cluster calculations on neutral monodehydro[12]annulenes (C(12)H(10)) reveal a global minimum that should be kinetically stable. At the CCSD(T)/cc-pVDZ//BHLYP/6-31G* level, the unsymmetrical CTCTC conformer 1a lies at least 3 kcal/mol below all other isomers studied. The two isomers closest in energy to 1a are Möbius structure 5a (CCTCC) and all-cis 6a. Isomer 1a can undergo conformational automerization with E(a) = 3.9 kcal/mol, implying that this process would be rapid on the NMR time scale, and computed (1)H NMR parameters (GIAO-B3LYP/6-311+G**//RHF/6-31G*) are presented. Cumulenic dehydro[12]annulene isomers, with 1,2,3-butatriene subunits, were found to be reactive intermediates in the interconversion of different configurations of the alkyne forms. Pathways for configuration change of 1a, and for subsequent rearrangement to biphenyl, were investigated. The 28 kcal/mol overall barrier for the lowest energy pathway connecting 1a to biphenyl suggests that 1a is kinetically stable with respect to valence isomerization.


Asunto(s)
Compuestos Macrocíclicos/química , Simulación por Computador , Isomerismo , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Simulación de Dinámica Molecular , Estructura Molecular
15.
Res Sq ; 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34127963

RESUMEN

Cardiovascular complications are common in COVID-19 and strongly associated with disease severity and mortality. However, the mechanisms driving cardiac injury and failure in COVID-19 are largely unknown. We performed plasma proteomics on 80 COVID-19 patients and controls, grouped according to disease severity and cardiac involvement. Findings were validated in 305 independent COVID-19 patients and investigated in an animal model. Here we show that senescence-associated secretory proteins, markers of biological aging, strongly associate with disease severity and cardiac involvement even in age-matched cohorts. FSTL3, an indicator of Activin/TGFß signaling, was the most significantly upregulated protein associated with the heart failure biomarker, NTproBNP (ß = 0.4;p adj =4.6x10 - 7 ), while ADAMTS13, a vWF-cleaving protease whose loss-of-function causes microvascular thrombosis, was the most downregulated protein associated with myocardial injury (ß=-0.4;p adj =8x10 - 7 ). Mendelian randomization supported a causal role for ADAMTS13 in myocardial injury. These data provide important new insights into the pathophysiology of COVID-19 cardiovascular complications with therapeutic implications.

16.
Org Lett ; 21(21): 8587-8591, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31613106

RESUMEN

The contribution of heavy-atom tunneling to reactions of [12]- and [16]annulene was probed using small-curvature tunneling rate calculations. At the CCSD(T)/cc-pVDZ//M06-2X/cc-pVDZ level, tunneling is predicted to account for more than 50% of the rate for Möbius bond shifting and ca. 35% of the rate for electrocyclization in [12]annulene, and over 80% of the rate for Möbius bond shifting in [16]annulene, at temperatures at which these reactions have been observed experimentally.

17.
Org Lett ; 10(6): 1287-90, 2008 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-18302401

RESUMEN

Experimentally, tri-trans-[12]annulene and tris(cyclohexeno)[12]annulene exhibit differing reactivities. Whereas the former, after isomerizing to its di-trans isomer, undergoes sequential electrocyclizations, the latter follows a Diels-Alder pathway after initial electrocyclization. B3PW91/6-31+G*//B3LYP/6-31G* calculations indicate that cyclohexenofusion simultaneously hinders the second electrocyclization and facilitates Diels-Alder reaction, primarily by inducing greater puckering in the intermediate eight-membered ring.

18.
J Org Chem ; 73(22): 8745-54, 2008 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-18939874

RESUMEN

We report density functional and coupled cluster calculations on numerous monocyclic and bicyclic (CH)12(*-) isomers. At the RCCSD(T)/cc-pVDZ//UB3LYP/6-31+G* level, a nearly planar, bond-equalized radical anion of 1,7-di-trans-[12]annulene (4a(*-)) is lowest in energy; several other isomers and conformations lie within 3 kcal/mol of 4a(*-). RCCSD(T)/AUG-cc-pVDZ//UB3LYP/6-31+G* results place the all-cis isomer 3(*-) slightly below 4a(*-) in energy. Validation studies on the heptalene radical anion, [16]annulene radical anion, and tri-trans-[12]annulene radical anion indicate that electron spin resonance (ESR) hyperfine coupling constants (aH values) computed at the BLYP/EPR-III level on DFT geometries give much better agreement with experimental values than those computed using B3LYP/6-31G*. We were unable to locate any C12H12(*-) isomer that could account for the ESR spectrum previously attributed to a highly twisted structure for the 1,7-di-trans-[12]annulene radical anion. Our computed energetic and ESR data for [12]annulene radical anions and their valence isomers suggest that 4a(*-) may have been made, yet its ESR spectrum was incorrectly assigned to the bicyclic isomer 6b(*-). Finally, the computed (1)H NMR shift values of the dianion of 4 reveal a distinct diatropic ring current that should aid in its characterization.

19.
Org Lett ; 4(20): 3431-4, 2002 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-12323036

RESUMEN

Aromatic Möbius [4n]annulenes with 4n pi electrons, originally conceived by Heilbronner, are characterized computationally. These (CH)(12), (CH)(16), and (CH)(20) minima have nearly equal C-C bond lengths, small twist angles around the rings, and magnetic properties (NICS, nucleus-independent chemical shifts--see above at various positions in [16]annulene--and magnetic susceptibility exaltations) indicating significantly diatropic ring currents. The Möbius forms are not the most stable isomers but may contribute significantly to the chemistry of these annulenes. [structure: see text]

20.
Org Lett ; 12(5): 972-5, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20121256

RESUMEN

Mechanisms linking dihydrooctalenes and the corresponding [14]annulene isomers have been investigated computationally. CCSD(T)/cc-pVDZ//BHLYP/6-31G* calculations suggest that the cis/trans isomerization steps required by these mechanisms can occur with reasonable activation barriers by pi-bond shifting, in some cases with two-twist topology, and in others in a planar but nondegenerate fashion. In addition, numerous Mobius conformational minima were located for [14]annulene isomers directly related to the mechanisms studied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA