Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 187(4): 962-980.e19, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309258

RESUMEN

Microglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries. At these boundaries between structures that grow in distinct directions, embryonic MG accumulate, display a state resembling post-natal axon-tract-associated microglia (ATM) and prevent the progression of microcavities into large cavitary lesions, in part via a mechanism involving the ATM-factor Spp1. MG and Spp1 furthermore contribute to the rapid repair of lesions, collectively highlighting protective functions that preserve the fetal brain from physiological morphogenetic stress and injury. Our study thus highlights key major roles for embryonic MG and Spp1 in maintaining structural integrity during morphogenesis, with major implications for our understanding of MG functions and brain development.


Asunto(s)
Encéfalo , Microglía , Axones , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Macrófagos/fisiología , Microglía/patología , Morfogénesis
2.
Proc Natl Acad Sci U S A ; 120(32): e2301730120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523544

RESUMEN

The brain employs distinct circuitries to encode positive and negative valence stimuli, and dysfunctions of these neuronal circuits have a key role in the etiopathogenesis of many psychiatric disorders. The Dorsal Raphè Nucleus (DRN) is involved in various behaviors and drives the emotional response to rewarding and aversive experiences. Whether specific subpopulations of neurons within the DRN encode these behaviors with different valence is still unknown. Notably, microRNA expression in the mammalian brain is characterized by tissue and neuronal specificity, suggesting that it might play a role in cell and circuit functionality. However, this specificity has not been fully exploited. Here, we demonstrate that microRNA-34a (miR-34a) is selectively expressed in a subpopulation of GABAergic neurons of the ventrolateral DRN. Moreover, we report that acute exposure to both aversive (restraint stress) and rewarding (chocolate) stimuli reduces GABA release in the DRN, an effect prevented by the inactivation of DRN miR-34a or its genetic deletion in GABAergic neurons in aversive but not rewarding conditions. Finally, miR-34a inhibition selectively reduced passive coping with severe stressors. These data support a role of miR-34a in regulating GABAergic neurotransmitter activity and behavior in a context-dependent manner and suggest that microRNAs could represent a functional signature of specific neuronal subpopulations with valence-specific activity in the brain.


Asunto(s)
Núcleo Dorsal del Rafe , MicroARNs , Humanos , Animales , Núcleo Dorsal del Rafe/metabolismo , Neuronas GABAérgicas/metabolismo , MicroARNs/metabolismo , Mamíferos
3.
Eur J Neurosci ; 56(10): 5763-5783, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36117291

RESUMEN

Child maltreatment disrupts trajectories of brain development, but the underlying pathways are unclear. Stressful stimuli in early life interfere with maturation of local inhibitory circuitry and deposition of perineuronal nets (PNNs), specialized extracellular matrix structures involved in the closure of critical periods of development. Alterations in cortical PNN and parvalbumin (PV) following early-life stress (ELS) have been detected in human and animal studies. Aberrations in the anterior cingulate cortex (ACC) are the most consistent neuroimaging findings in maltreated people, but the molecular mechanisms linking ELS with ACC dysfunctions are unknown. Here, we employed a mouse model of early social threat to test whether ELS experienced in a sensitive period for ACC maturation could induce long-term aberrations of PNN and PV development in the ACC, with consequences on plasticity and ACC-dependent behavior. We found that ELS increased PNN but not PV expression in the ACC of young adult mice. This was associated with reduced frequency of inhibitory postsynaptic currents and long-term potentiation impairments and expression of intense object phobia. Our findings provide information on the long-term effects of ELS on ACC functionality and PNN formation and present evidence for a novel neurobiological pathway underlying the impact of early adversity on the brain.


Asunto(s)
Experiencias Adversas de la Infancia , Giro del Cíngulo , Humanos , Niño , Ratones , Animales , Giro del Cíngulo/metabolismo , Parvalbúminas/metabolismo , Matriz Extracelular/metabolismo
4.
Semin Cell Dev Biol ; 94: 164-175, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31004753

RESUMEN

Recently, the xenobiotic hypothesis has implicated the immune system in targeting substances of abuse as foreign molecules and stimulating inflammatory responses. Microglial cells are the resident immune cells of the central nervous system and function in homeostatic surveillance. Microglial changes that are induced by exposure to substances of abuse appear to mediate in part the establishment of addiction and the persistence of drug-mediated biological and behavioral changes. In this context, interest in the study of drug-microglia interactions has increased recently. This review summarizes the most recent preclinical rodent and clinical studies on the interaction between microglia and various classes of drugs of abuse, such as ethanol, psychostimulants, and opioids. The principal biological mechanisms of the communication between substances of abuse and microglia will be described to consider putative mechanisms of the establishment of drug addiction and future potential targets for treating substance use disorder.


Asunto(s)
Inflamación/tratamiento farmacológico , Microglía/efectos de los fármacos , Psicotrópicos/farmacología , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Animales , Humanos , Inflamación/inmunología , Inflamación/patología , Microglía/inmunología , Microglía/patología , Trastornos Relacionados con Sustancias/psicología
5.
Brain Behav Immun ; 94: 89-103, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33677027

RESUMEN

Trauma to the central nervous system (CNS) is a devastating condition resulting in severe functional impairments that strongly vary among patients. Patients' features, such as age, social and cultural environment, and pre-existing psychiatric conditions may be particularly relevant for determining prognosis after CNS trauma. Although several studies demonstrated the impact of adult psycho-social stress exposure on functional recovery after CNS damage, no data exist regarding the long-term effects of the exposure to such experience at an early age. Here, we assessed whether early life stress (ELS) hampers the neuroinflammatory milieuand the functional recovery after focal brain injury in adulthood by using a murine model of ELS exposure combined with hemicerebellectomy (HCb), a model of remote damage. We found that ELS permanently altered microglia responses such that, once experienced HCb, they produced an exaggerated remote inflammatory response - consistent with a primed phenotype - associated with increased cell death and worse functional recovery. Notably, prevention of microglia/macrophages activation by GW2580 treatment during ELS exposure significantly reduced microglia responses, cell death and improved functional recovery. Conversely, GW2580 treatment administered in adulthood after HCb was ineffective in reducing inflammation and cell death or improving functional recovery. Our findings highlight that ELS impacts the immune system maturation producing permanent changes, and that it is a relevant factor modulating the response to a CNS damage. Further studies are needed to clarify the mechanisms underlying the interaction between ELS and brain injury with the aim of developing targeted treatments to improve functional recovery after CNS damage.


Asunto(s)
Experiencias Adversas de la Infancia , Lesiones Encefálicas , Adulto , Animales , Muerte Celular , Humanos , Ratones , Microglía , Recuperación de la Función
6.
Mol Neurobiol ; 59(6): 3913-3932, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35435618

RESUMEN

Early life stress (ELS) is known to modify trajectories of brain dopaminergic development, but the mechanisms underlying have not been determined. ELS perturbs immune system and microglia reactivity, and inflammation and microglia influence dopaminergic transmission and development. Whether microglia mediate the effects of ELS on dopamine (DA) system development is still unknown. We explored the effects of repeated early social stress on development of the dopaminergic system in male and female mice through histological, electrophysiological, and transcriptomic analyses. Furthermore, we tested whether these effects could be mediated by ELS-induced altered microglia/immune activity through a pharmacological approach. We found that social stress in early life altered DA neurons morphology, reduced dopamine transporter (DAT) and tyrosine hydroxylase expression, and lowered DAT-mediated currents in the ventral tegmental area but not substantia nigra of male mice only. Notably, stress-induced DA alterations were prevented by minocycline, an inhibitor of microglia activation. Transcriptome analysis in the developing male ventral tegmental area revealed that ELS caused downregulation of dopaminergic transmission and alteration in hormonal and peptide signaling pathways. Results from this study offer new insight into the mechanisms of stress response and altered brain dopaminergic maturation after ELS, providing evidence of neuroimmune interaction, sex differences, and regional specificity.


Asunto(s)
Neuronas Dopaminérgicas , Minociclina , Estrés Psicológico , Factores de Edad , Animales , Neuronas Dopaminérgicas/metabolismo , Femenino , Masculino , Ratones , Minociclina/farmacología , Factores Sexuales , Sustancia Negra/patología , Tirosina 3-Monooxigenasa/metabolismo , Área Tegmental Ventral/metabolismo
7.
J Clin Med ; 9(2)2020 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-32046333

RESUMEN

The putative effects of early-life stress (ELS) on later behavior and neurobiology have been widely investigated. Recently, microglia have been implicated in mediating some of the effects of ELS on behavior. In this review, findings from preclinical and clinical literature with a specific focus on microglial alterations induced by the exposure to ELS (i.e., exposure to behavioral stressors or environmental agents and infection) are summarized. These studies were utilized to interpret changes in developmental trajectories based on the time at which the stress occurred, as well as the paradigm used. ELS and microglial alterations were found to be associated with a wide array of deficits including cognitive performance, memory, reward processing, and processing of social stimuli. Four general conclusions emerged: (1) ELS interferes with microglial developmental programs, including their proliferation and death and their phagocytic activity; (2) this can affect neuronal and non-neuronal developmental processes, which are dynamic during development and for which microglial activity is instrumental; (3) the effects are extremely dependent on the time point at which the investigation is carried out; and (4) both pre- and postnatal ELS can prime microglial reactivity, indicating a long-lasting alteration, which has been implicated in behavioral abnormalities later in life.

8.
Neurobiol Stress ; 13: 100249, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33344704

RESUMEN

The existence of a proportional relationship between the number of early-life stress (ELS) events experienced and the impoverishment of child mental health has been hypothesized. However, different types of ELS experiences may be associated with different neuro-psycho-biological impacts, due to differences in the intrinsic nature of the stress. DNA methylation is one of the molecular mechanisms that have been implicated in the "translation" of ELS exposure into neurobiological and behavioral abnormalities during adulthood. Here, we investigated whether different ELS experiences resulted in differential impacts on global DNA methylation levels in the brain and blood samples from mice and humans. ELS exposure in mice resulted in observable changes in adulthood, with exposure to social isolation inducing more dramatic alterations in global DNA methylation levels in several brain structures compared with exposure to a social threatening environment. Moreover, these two types of stress resulted in differential impacts on the epigenetic programming of different brain regions and cellular populations, namely microglia. In a pilot clinical study, blood global DNA methylation levels and exposure to childhood neglect or abuse were investigated in patients presenting with major depressive disorder or substance use disorder. A significant effect of the mental health diagnosis on global methylation levels was observed, but no effect of either childhood abuse or neglect was detected. These findings demonstrate that different types of ELS have differential impacts on epigenetic programming, through DNA methylation in specific brain regions, and that these differential impacts are associated with the different behavioral outcomes observed after ELS experiences.

9.
Biol Psychiatry ; 84(12): 905-916, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30029767

RESUMEN

BACKGROUND: Experiencing traumatic childhood is a risk factor for developing substance use disorder, but the mechanisms that underlie this relationship have not been determined. Adverse childhood experiences affect the immune system, and the immune system mediates the effects of psychostimulants. However, whether this system is involved in the etiology of substance use disorder in individuals who have experienced early life stress is unknown. METHODS: In this study, we performed a series of ex vivo and in vivo experiments in mice and humans to define the function of the immune system in the early life stress-induced susceptibility to the neurobehavioral effects of cocaine. RESULTS: We provide evidence that exposure to social stress at an early age permanently sensitizes the peripheral (splenocytes) and brain (microglia) immune responses to cocaine in mice. In the brain, microglial activation in the ventral tegmental area of social-stress mice was associated with functional alterations in dopaminergic neurotransmission, as measured by whole-cell voltage clamp recordings in dopamine neurons. Notably, preventing immune activation during the social-stress exposure reverted the effects of dopamine in the ventral tegmental area and the cocaine-induced behavioral phenotype to control levels. In humans, cocaine modulated toll-like receptor 4-mediated innate immunity, an effect that was enhanced in those addicted to cocaine who had experienced a difficult childhood. CONCLUSIONS: Collectively, our findings demonstrate that sensitization to cocaine in early life-stressed individuals involves brain and peripheral immune responses and that this mechanism is shared between mice and humans.


Asunto(s)
Trastornos Relacionados con Cocaína/inmunología , Trastornos Relacionados con Cocaína/psicología , Sistema Inmunológico/efectos de los fármacos , Medio Social , Estrés Psicológico/inmunología , Animales , Cocaína/farmacología , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Comportamiento de Búsqueda de Drogas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos DBA , Técnicas de Placa-Clamp , Autoadministración , Síndrome de Abstinencia a Sustancias/inmunología , Síndrome de Abstinencia a Sustancias/psicología , Transmisión Sináptica , Área Tegmental Ventral/efectos de los fármacos
11.
Physiol Behav ; 171: 7-12, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28025089

RESUMEN

Psychostimulants induce stable changes in neural plasticity and behavior in a transcription-dependent manner. Further, stable cellular changes require transcription that is regulated by epigenetic mechanisms that alter chromatin structure, such as histone acetylation. This mechanism is typically catalyzed by enzymes with histone acetyltransferase or histone deacetylase (HDAC) activity. Class IIa HDACs are notable for their high expression in important regions of the brain reward circuitry and their neural activity-dependent shuttling in and out of the cell nucleus. In particular, HDAC5 has an important modulatory function in cocaine-induced behaviors and social defeat stress-induced effects. Although a mutation in HDAC5 has been shown to cause hypersensitive responses to chronic cocaine use whether this response worsens during chronic early life stress has not been examined yet. In this study, we exposed mouse pups to two different early life stress paradigms (social isolation, ESI, and social threat, EST) to determine whether the heterozygous null mutation in HDAC5 (HDAC5+/-) moderated the effects of exposure to stress in early life on adult cocaine-induced conditioned place preference (CPP). Notably, HDAC5+/- mice that had been exposed to ESI were more susceptible to developing cocaine-induced CPP and more resistant to extinguishing this behavior. The same effect was not observed for HDAC5+/- mice experiencing EST, suggesting that only ESI induces behavioral changes by acting precisely through HDAC5-related biological pathways. Finally, an analysis of c-Fos expression performed to discover the neurobiological substrates that mediated this phenotype, identified the dorsolateral striatum as an important structure that mediates the interaction between HDAC5 mutation and ESI. Our data demonstrate that decreased HDAC5 function is able to exacerbate the long-term behavioral effects of adverse rearing environment in mouse.


Asunto(s)
Cocaína/farmacología , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Inhibidores de Captación de Dopamina/farmacología , Histona Desacetilasas/metabolismo , Estrés Psicológico/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Histona Desacetilasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosfopiruvato Hidratasa/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Aislamiento Social/psicología , Estrés Psicológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA