Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 597(7874): 77-81, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34471275

RESUMEN

The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.


Asunto(s)
Ciclo del Carbono , Bosques , Insectos/metabolismo , Árboles/metabolismo , Animales , Secuestro de Carbono , Clima , Ecosistema , Mapeo Geográfico , Cooperación Internacional
2.
Ecology ; 105(7): e4324, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838008

RESUMEN

We present a data set resulting from the first round of a national monitoring program of forest reserves. It contains 9538 permanent plots, distributed across 111 study sites in mainland France (including Corsica). Notably focusing on dead wood measurement, this protocol has primarily been applied in strict forest reserves and special nature reserves (sensu Bollmann & Braunisch 2013), with 68% (6494) of the plots being currently located in strict forest reserves (unmanaged) and 24.7% (2363 plots) in forests unmanaged for at least 50 years. Sites cover a large variety of ecological conditions, from lowland to subalpine forests, but with an underrepresentation of Mediterranean forests (Table 1). The protocol assesses all the stages of a tree's life cycle, from seedling to decomposed lying dead wood. On each plot, a combination of three sampling techniques was used: (1) fixed-area inventory for regeneration, standing dead trees, living trees, and coarse woody debris (CWD) with diameter over 30 cm; (2) transect lines for CWD with diameter <30 cm; and (3) fixed-angle plot method for living trees with diameter at breast height (DBH) >30 cm (using a relascopic angle of 3%). Measurements include exact tree location (azimuth, distance), species, diameter(s), tree-related microhabitats, decay stage and bark cover, and seedling cover. With ongoing climate change, the program network can also provide important information to monitor changes in forest ecosystems. It can also be used as forest management monitoring or conservation status assessment. These data are freely available for noncommercial scientific use (Creative Commons Attribution 4.0 CC BY SA 4.0) with attribution, and this paper must be cited if this material is reused.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Árboles , Francia , Árboles/fisiología , Conservación de los Recursos Naturales/métodos , Agricultura Forestal/métodos , Monitoreo del Ambiente/métodos
3.
Sci Data ; 8(1): 220, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404811

RESUMEN

Primary forests, defined here as forests where the signs of human impacts, if any, are strongly blurred due to decades without forest management, are scarce in Europe and continue to disappear. Despite these losses, we know little about where these forests occur. Here, we present a comprehensive geodatabase and map of Europe's known primary forests. Our geodatabase harmonizes 48 different, mostly field-based datasets of primary forests, and contains 18,411 individual patches (41.1 Mha) spread across 33 countries. When available, we provide information on each patch (name, location, naturalness, extent and dominant tree species) and the surrounding landscape (biogeographical regions, protection status, potential natural vegetation, current forest extent). Using Landsat satellite-image time series (1985-2018) we checked each patch for possible disturbance events since primary forests were identified, resulting in 94% of patches free of significant disturbances in the last 30 years. Although knowledge gaps remain, ours is the most comprehensive dataset on primary forests in Europe, and will be useful for ecological studies, and conservation planning to safeguard these unique forests.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Bases de Datos Factuales , Europa (Continente)
4.
PLoS One ; 14(5): e0216500, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31071149

RESUMEN

Managing forests to preserve biodiversity requires a good knowledge not only of the factors driving its dynamics but also of the structural elements that actually support biodiversity. Tree-related microhabitats (e.g. cavities, cracks, conks of fungi) are tree-borne features that are reputed to support specific biodiversity for at least a part of species' life cycles. While several studies have analysed the drivers of microhabitats number and occurrence at the tree scale, they remain limited to a few tree species located in relatively narrow biogeographical ranges. We used a nationwide database of forest reserves where microhabitats were inventoried on more than 22,000 trees. We analysed the effect of tree diameter and living status (alive or dead) on microhabitat number and occurrence per tree, taking into account biogeoclimatic variables and tree genus. We confirmed that larger trees and dead trees bore more microhabitats than their smaller or living counterparts did; we extended these results to a wider range of tree genera and ecological conditions than those studied before. Contrary to our expectations, the total number of microhabitat types per tree barely varied with tree genus-though we did find slightly higher accumulation levels for broadleaves than for conifers-nor did it vary with elevation or soil pH, whatever the living status. We observed the same results for the occurrence of individual microhabitat types. However, accumulation levels with diameter and occurrence on dead trees were higher for microhabitats linked with wood decay processes (e.g. dead branches or woodpecker feeding holes) than for other, epixylic, microhabitats such as epiphytes (ivy, mosses and lichens). Promoting large living and dead trees of several tree species may be a relevant, and nearly universal, way to favour microhabitats and enhance the substrates needed to support specific biodiversity. In the future, a better understanding of microhabitat drivers and dynamics at the tree scale may help to better define their role as biodiversity indicators for large-scale monitoring.


Asunto(s)
Biodiversidad , Aves/fisiología , Ecosistema , Microclima , Densidad de Población , Árboles/fisiología , Distribución Animal , Animales , Conservación de los Recursos Naturales , Agricultura Forestal , Bosques , Árboles/anatomía & histología
5.
PLoS One ; 13(5): e0197847, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29772015

RESUMEN

Flightless saproxylic beetles were selected in order to study the impact of temporal and spatial discontinuity of forests. They were chosen because: (1) they are unable to fly, making them dispersal-limited species, (2) they have a saproxylic diet, which means they are closely linked to the forest, and (3), they have rarely been studied. Forest temporal continuity was expected to be the main factor explaining the presence of these species, modulated by the past and present amount of forest in the surrounding landscape. Twenty-seven forests, distributed into three zones, were sampled in southwestern France. Flightless saproxylic beetles were surveyed using a Winkler extractor and a Berlese funnel. Their presence/absence were modelled using generalised linear mixed models, with zone variable as random effect. Two species showed significant zone effect and were only or more present in the zone with the highest present forest amount in a 0.5 km radius. In the model that converged, the only selected variable was the past amount of forest in the landscape. The size of the forest, the presence of dead wood and the forest temporal continuity were not included in this model. The importance of the amount of forest in the landscape supports the hypothesis that dispersal-limited species are affected by landscape characteristics. This study demonstrates an important link between the presence of Dienerella clathrata and the amount of forest in the past, which led to an indicator species analysis being performed.


Asunto(s)
Escarabajos , Ecosistema , Bosques , Análisis Espacio-Temporal , Animales , Encuestas y Cuestionarios
7.
C R Biol ; 338(1): 58-73, 2015 Jan.
Artículo en Francés | MEDLINE | ID: mdl-25455000

RESUMEN

Ancientness and maturity are two major qualities of forest ecosystems. They are components of naturalness and are affected by human impact. These qualities and the associated terms are often mixed up and incorrectly used. We have carried out a synthesis in order to propose an adapted French terminology based on international literature. The topics of ancientness and maturity for biodiversity and soil characteristics are explained. This review leads us to submit different potential thresholds for ancientness and maturity. An analysis on ancientness and maturity on forest data for France leads to the conclusion that about 29% of all forests can be considered "ancient woodland", and less than 3% of the even-age forest is older than the harvesting age.


Asunto(s)
Biodiversidad , Ecosistema , Bosques , Francia , Humanos , Suelo/química , Terminología como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA