Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Genet Metab ; 142(4): 108519, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-39024860

RESUMEN

INTRODUCTION: Current literature lacks consensus on initial assessments and routine follow-up care of patients with alpha-mannosidosis (AM). A Delphi panel was conducted to generate and validate recommendations on best practices for initial assessment, routine follow-up care, and integrated care coordination of patients with AM. METHODS: A modified Delphi method involving 3 rounds of online surveys was used. An independent administrator and 2 nonvoting physician co-chairs managed survey development, anonymous data collection, and analysis. A multidisciplinary panel comprising 20 physicians from 12 countries responded to 57 open-ended questions in the first survey. Round 2 consisted of 11 ranking questions and 44 voting statements. In round 3, panelists voted to validate 60 consensus statements. The panel response rate was ≥95% in all 3 rounds. Panelists used 5-point Likert scales to indicate importance (score of ≥3) or agreement (score of ≥4). Consensus was defined a priori as ≥75% agreement with ≥75% of panelists voting. RESULTS: Consensus was reached on 60 statements, encompassing 3 key areas: initial assessments, routine follow-up care, and treatment-related follow-up. The panel agreed on the type and frequency of assessments related to genetic testing, baseline evaluations, quality of life, biochemical measures, affected body systems, treatment received, and integrated care coordination in patients with AM. Forty-nine statements reached 90% to 100% consensus, 8 statements reached 80% to 85% consensus, and 1 statement reached 75% consensus. Two statements each reached consensus on 15 baseline assessments to be conducted at the initial follow-up visit after diagnosis in pediatric and adult patients. CONCLUSION: This is the first Delphi study providing internationally applicable, best-practice recommendations for monitoring patients with AM that may improve their care and well-being.

2.
Mol Ther ; 29(3): 989-1000, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33186692

RESUMEN

Aspartylglucosaminuria (AGU) is an autosomal recessive lysosomal storage disease caused by loss of the enzyme aspartylglucosaminidase (AGA), resulting in AGA substrate accumulation. AGU patients have a slow but progressive neurodegenerative disease course, for which there is no approved disease-modifying treatment. In this study, AAV9/AGA was administered to Aga-/- mice intravenously (i.v.) or intrathecally (i.t.), at a range of doses, either before or after disease pathology begins. At either treatment age, AAV9/AGA administration led to (1) dose dependently increased and sustained AGA activity in body fluids and tissues; (2) rapid, sustained, and dose-dependent elimination of AGA substrate in body fluids; (3) significantly rescued locomotor activity; (4) dose-dependent preservation of Purkinje neurons in the cerebellum; and (5) significantly reduced gliosis in the brain. Treated mice had no abnormal neurological phenotype and maintained body weight throughout the whole experiment to 18 months old. In summary, these results demonstrate that treatment of Aga-/- mice with AAV9/AGA is effective and safe, providing strong evidence that AAV9/AGA gene therapy should be considered for human translation. Further, we provide a direct comparison of the efficacy of an i.v. versus i.t. approach using AAV9, which should greatly inform the development of similar treatments for other related lysosomal storage diseases.


Asunto(s)
Aspartilglucosaminuria/terapia , Aspartilglucosilaminasa/fisiología , Dependovirus/genética , Modelos Animales de Enfermedad , Terapia Genética/métodos , Células de Purkinje/metabolismo , Animales , Aspartilglucosaminuria/enzimología , Aspartilglucosaminuria/genética , Aspartilglucosaminuria/patología , Peso Corporal , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
3.
Brain ; 143(12): 3564-3573, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33242881

RESUMEN

KCNN2 encodes the small conductance calcium-activated potassium channel 2 (SK2). Rodent models with spontaneous Kcnn2 mutations show abnormal gait and locomotor activity, tremor and memory deficits, but human disorders related to KCNN2 variants are largely unknown. Using exome sequencing, we identified a de novo KCNN2 frameshift deletion in a patient with learning disabilities, cerebellar ataxia and white matter abnormalities on brain MRI. This discovery prompted us to collect data from nine additional patients with de novo KCNN2 variants (one nonsense, one splice site, six missense variants and one in-frame deletion) and one family with a missense variant inherited from the affected mother. We investigated the functional impact of six selected variants on SK2 channel function using the patch-clamp technique. All variants tested but one, which was reclassified to uncertain significance, led to a loss-of-function of SK2 channels. Patients with KCNN2 variants had motor and language developmental delay, intellectual disability often associated with early-onset movement disorders comprising cerebellar ataxia and/or extrapyramidal symptoms. Altogether, our findings provide evidence that heterozygous variants, likely causing a haploinsufficiency of the KCNN2 gene, lead to novel autosomal dominant neurodevelopmental movement disorders mirroring phenotypes previously described in rodents.


Asunto(s)
Trastornos del Movimiento/genética , Trastornos del Neurodesarrollo/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Adolescente , Adulto , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/psicología , Niño , Preescolar , Fenómenos Electrofisiológicos , Exoma , Mutación del Sistema de Lectura , Variación Genética , Haploinsuficiencia , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/psicología , Discapacidades para el Aprendizaje/genética , Discapacidades para el Aprendizaje/psicología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Trastornos del Movimiento/psicología , Mutación Missense/genética , Trastornos del Neurodesarrollo/psicología , Técnicas de Placa-Clamp , Sustancia Blanca/anomalías , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
4.
Hum Mutat ; 40(7): 842-864, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30882951

RESUMEN

Mutations in the GNPTAB and GNPTG genes cause mucolipidosis (ML) type II, type III alpha/beta, and type III gamma, which are autosomal recessively inherited lysosomal storage disorders. GNPTAB and GNPTG encode the α/ß-precursor and the γ-subunit of N-acetylglucosamine (GlcNAc)-1-phosphotransferase, respectively, the key enzyme for the generation of mannose 6-phosphate targeting signals on lysosomal enzymes. Defective GlcNAc-1-phosphotransferase results in missorting of lysosomal enzymes and accumulation of non-degradable macromolecules in lysosomes, strongly impairing cellular function. MLII-affected patients have coarse facial features, cessation of statural growth and neuromotor development, severe skeletal abnormalities, organomegaly, and cardiorespiratory insufficiency leading to death in early childhood. MLIII alpha/beta and MLIII gamma are attenuated forms of the disease. Since the identification of the GNPTAB and GNPTG genes, 564 individuals affected by MLII or MLIII have been described in the literature. In this report, we provide an overview on 258 and 50 mutations in GNPTAB and GNPTG, respectively, including 58 novel GNPTAB and seven novel GNPTG variants. Comprehensive functional studies of GNPTAB missense mutations did not only gain insights into the composition and function of the GlcNAc-1-phosphotransferase, but also helped to define genotype-phenotype correlations to predict the clinical outcome in patients.


Asunto(s)
Mucolipidosis/genética , Mutación , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Exones , Humanos , Intrones , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/clasificación , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/genética , Mucolipidosis/clasificación , Fenotipo , Pronóstico , Dominios Proteicos , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química
5.
Genet Med ; 21(9): 2036-2042, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30739909

RESUMEN

PURPOSE: To define the clinical characteristics of patients with variants in TCF20, we describe 27 patients, 26 of whom were identified via exome sequencing. We compare detailed clinical data with 17 previously reported patients. METHODS: Patients were ascertained through molecular testing laboratories performing exome sequencing (and other testing) with orthogonal confirmation; collaborating referring clinicians provided detailed clinical information. RESULTS: The cohort of 27 patients all had novel variants, and ranged in age from 2 to 68 years. All had developmental delay/intellectual disability. Autism spectrum disorders/autistic features were reported in 69%, attention disorders or hyperactivity in 67%, craniofacial features (no recognizable facial gestalt) in 67%, structural brain anomalies in 24%, and seizures in 12%. Additional features affecting various organ systems were described in 93%. In a majority of patients, we did not observe previously reported findings of postnatal overgrowth or craniosynostosis, in comparison with earlier reports. CONCLUSION: We provide valuable data regarding the prognosis and clinical manifestations of patients with variants in TCF20.


Asunto(s)
Trastorno del Espectro Autista/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/genética , Adolescente , Adulto , Anciano , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/patología , Niño , Preescolar , Exoma/genética , Femenino , Humanos , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/patología , Masculino , Persona de Mediana Edad , Mutación , Trastornos del Neurodesarrollo/epidemiología , Trastornos del Neurodesarrollo/patología , Secuenciación del Exoma , Adulto Joven
6.
J Hum Genet ; 64(6): 561-572, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30858506

RESUMEN

Variants have been identified in the embryonic ectoderm development (EED) gene in seven patients with syndromic overgrowth similar to that observed in Weaver syndrome. Here, we present three additional patients with missense variants in the EED gene. All the missense variants reported to date (including the three presented here) have localized to one of seven WD40 domains of the EED protein, which are necessary for interaction with enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2). In addition, among the seven patients reported in the literature and the three new patients presented here, all of the reported pathogenic variants except one occurred at one of four amino acid residues in the EED protein. The recurrence of pathogenic variation at these loci suggests that these residues are functionally important (mutation hotspots). In silico modeling and calculations of the free energy changes resulting from these variants suggested that they not only destabilize the EED protein structure but also adversely affect interactions between EED, EZH2, and/or H3K27me3. These cases help demonstrate the mechanism(s) by which apparently deleterious variants in the EED gene might cause overgrowth and lend further support that amino acid residues in the WD40 domain region may be mutation hotspots.


Asunto(s)
Anomalías Múltiples/genética , Hipotiroidismo Congénito/genética , Anomalías Craneofaciales/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Deformidades Congénitas de la Mano/genética , N-Metiltransferasa de Histona-Lisina/genética , Complejo Represivo Polycomb 2/genética , Anomalías Múltiples/etiología , Anomalías Múltiples/fisiopatología , Adolescente , Niño , Simulación por Computador , Hipotiroidismo Congénito/etiología , Hipotiroidismo Congénito/fisiopatología , Anomalías Craneofaciales/etiología , Anomalías Craneofaciales/fisiopatología , Proteína Potenciadora del Homólogo Zeste 2/química , Femenino , Deformidades Congénitas de la Mano/etiología , Deformidades Congénitas de la Mano/fisiopatología , N-Metiltransferasa de Histona-Lisina/química , Humanos , Masculino , Simulación de Dinámica Molecular , Tasa de Mutación , Mutación Missense/genética , Complejo Represivo Polycomb 2/química , Conformación Proteica , Repeticiones WD40/genética , Secuenciación del Exoma
7.
Brain ; 141(8): 2299-2311, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29985992

RESUMEN

The transcription factor BCL11B is essential for development of the nervous and the immune system, and Bcl11b deficiency results in structural brain defects, reduced learning capacity, and impaired immune cell development in mice. However, the precise role of BCL11B in humans is largely unexplored, except for a single patient with a BCL11B missense mutation, affected by multisystem anomalies and profound immune deficiency. Using massively parallel sequencing we identified 13 patients bearing heterozygous germline alterations in BCL11B. Notably, all of them are affected by global developmental delay with speech impairment and intellectual disability; however, none displayed overt clinical signs of immune deficiency. Six frameshift mutations, two nonsense mutations, one missense mutation, and two chromosomal rearrangements resulting in diminished BCL11B expression, arose de novo. A further frameshift mutation was transmitted from a similarly affected mother. Interestingly, the most severely affected patient harbours a missense mutation within a zinc-finger domain of BCL11B, probably affecting the DNA-binding structural interface, similar to the recently published patient. Furthermore, the most C-terminally located premature termination codon mutation fails to rescue the progenitor cell proliferation defect in hippocampal slice cultures from Bcl11b-deficient mice. Concerning the role of BCL11B in the immune system, extensive immune phenotyping of our patients revealed alterations in the T cell compartment and lack of peripheral type 2 innate lymphoid cells (ILC2s), consistent with the findings described in Bcl11b-deficient mice. Unsupervised analysis of 102 T lymphocyte subpopulations showed that the patients clearly cluster apart from healthy children, further supporting the common aetiology of the disorder. Taken together, we show here that mutations leading either to BCL11B haploinsufficiency or to a truncated BCL11B protein clinically cause a non-syndromic neurodevelopmental delay. In addition, we suggest that missense mutations affecting specific sites within zinc-finger domains might result in distinct and more severe clinical outcomes.


Asunto(s)
Trastornos del Neurodesarrollo/genética , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología , Adolescente , Animales , Niño , Preescolar , Femenino , Regulación de la Expresión Génica/genética , Mutación de Línea Germinal , Haploinsuficiencia , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Linfocitos/patología , Linfocitos/fisiología , Masculino , Ratones , Mutación , Proteínas Represoras/metabolismo , Linfocitos T/fisiología , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/metabolismo
8.
Pediatr Dermatol ; 34(3): 352-355, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28523882

RESUMEN

Phacomatosis pigmentokeratotica (PPK) is a rare epidermal nevus syndrome characterized by the co-occurrence of a nevus sebaceous arranged along the lines of Blaschko with a speckled lentiginous nevus (SLN). We report a novel KRAS mutation in a patient with a large nevus sebaceous and an SLN who subsequently developed a vaginal botryoid rhabdomyosarcoma, an association not previously reported in the literature. This case expands our knowledge of the genetic basis for phacomatosis, in which mutations in HRAS have been previously described, although this report provides evidence that activating mutations in KRAS or HRAS may cause PPK. This report confirms that PPK is a mosaic RASopathy with malignant potential and raises the question of whether screening for other RAS-associated malignancies should be performed for all children with PPK.


Asunto(s)
Nevo Pigmentado/diagnóstico , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Cutáneas/diagnóstico , Femenino , Humanos , Lactante , Mosaicismo , Mutación , Nevo Pigmentado/genética , Neoplasias Cutáneas/genética
9.
Biol Blood Marrow Transplant ; 20(11): 1847-51, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25016194

RESUMEN

Mucolipidosis type II (MLII), or I-cell disease, is a rare but severe disorder affecting localization of enzymes to the lysosome, generally resulting in death before the 10th birthday. Although hematopoietic stem cell transplantation (HSCT) has been used to successfully treat some lysosomal storage diseases, only 2 cases have been reported on the use of HSCT to treat MLII. For the first time, we describe the combined international experience in the use of HSCT for MLII in 22 patients. Although 95% of the patients engrafted, overall survival was low, with only 6 patients (27%) alive at last follow-up. The most common cause of death post-transplant was cardiovascular complications, most likely due to disease progression. Survivors were globally delayed in development and often required complex medical support, such as gastrostomy tubes for nutrition and tracheostomy with mechanical ventilation. Although HSCT has demonstrated efficacy in treating some lysosomal storage disorders, the neurologic outcome and survival for patents with MLII were poor. Therefore, new medical and cellular therapies should be sought for these patients.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas/métodos , Mucolipidosis/terapia , Acondicionamiento Pretrasplante/métodos , Preescolar , Recolección de Datos , Humanos , Lactante , Encuestas y Cuestionarios , Resultado del Tratamiento
10.
Am J Med Genet A ; 164A(9): 2317-23, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25044831

RESUMEN

We report on a series of 514 consecutive diagnoses of skeletal dysplasia made over an 8-year period at a tertiary hospital in Kerala, India. The most common diagnostic groups were dysostosis multiplex group (n = 73) followed by FGFR3 (n = 49) and osteogenesis imperfecta and decreased bone density group (n = 41). Molecular confirmation was obtained in 109 cases. Clinical and radiographic evaluation was obtained in close diagnostic collaboration with expert groups abroad through Internet communication for difficult cases. This has allowed for targeted biochemical and molecular studies leading to the correct identification of rare or novel conditions, which has not only helped affected families by allowing for improved genetic counseling and prenatal diagnosis but also resulted in several scientific contributions. We conclude that (1) the spectrum of genetic bone disease in Kerala, India, is similar to that of other parts of the world, but recessive entities may be more frequent because of widespread consanguinity; (2) prenatal detection of skeletal dysplasias remains relatively rare because of limited access to expert prenatal ultrasound facilities; (3) because of the low accessibility to molecular tests, precise clinical-radiographic phenotyping remains the mainstay of diagnosis and counseling and of gatekeeping to efficient laboratory testing; (4) good phenotyping allows, a significant contribution to the recognition and characterization of novel entities. We suggest that the tight collaboration between a local reference center with dedicated personnel and expert diagnostic networks may be a proficient model to bring current diagnostics to developing countries.


Asunto(s)
Enfermedades del Desarrollo Óseo/diagnóstico , Enfermedades del Desarrollo Óseo/terapia , Países en Desarrollo , Enfermedades Raras/diagnóstico , Enfermedades Raras/terapia , Derivación y Consulta , Centros de Atención Terciaria , Femenino , Humanos , India , Masculino , Factores de Tiempo
11.
Am J Med Genet A ; 161A(1): 120-30, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23208842

RESUMEN

Previous studies have limited the use of specific X-chromosome array designed platforms to the evaluation of patients with intellectual disability. In this retrospective analysis, we reviewed the clinical utility of an X-chromosome array in a variety of scenarios. We divided patients according to the indication for the test into four defined categories: (1) autism spectrum disorders and/or developmental delay and/or intellectual disability (ASDs/DD/ID) with known family history of neurocognitive disorders; (2) ASDs/DD/ID without known family history of neurocognitive disorders; (3) breakpoint definition of an abnormality detected by a different cytogenetic test; and (4) evaluation of suspected or known X-linked conditions. A total of 59 studies were ordered with 27 copy number variants detected in 25 patients (25/59 = 42%). The findings were deemed pathogenic/likely pathogenic (16/59 = 27%), benign (4/59 = 7%) or uncertain (7/59 = 12%). We place particular emphasis on the utility of this test for the diagnostic evaluation of families affected with X-linked conditions and how it compares to whole genome arrays in this setting. In conclusion, the X-chromosome array frequently detects genomic alterations of the X chromosome and it has advantages when evaluating some specific X-linked conditions. However, careful interpretation and correlation with clinical findings is needed to determine the significance of such changes. When the X-chromosome array was used to confirm a suspected X-linked condition, it had a yield of 63% (12/19) and was useful in the evaluation and risk assessment of patients and families.


Asunto(s)
Cromosomas Humanos X/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Adolescente , Adulto , Trastorno Autístico/genética , Niño , Preescolar , Variaciones en el Número de Copia de ADN , Discapacidades del Desarrollo/genética , Femenino , Genes Ligados a X , Humanos , Lactante , Discapacidad Intelectual/genética , Masculino , Reproducibilidad de los Resultados , Estudios Retrospectivos , Adulto Joven
12.
Dermatol Clin ; 40(4): 449-459, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36243432

RESUMEN

The identification of the genetic cause of vascular malformations is improving understanding of pathogenesis of these lesions and also informing potential opportunities for treatment. Somatic activating mutations affecting RAS/MAPK and PIK3/AKT/mTor pathways are implicated in all types of vascular malformations. Pathogenic variants associated with vascular lesions may be germline or somatic. Next-generation sequencing technologies allow identification of lower level mosaic mutations than was achievable with standard Sanger sequencing. Best practice strategies to identify underlying genetic mutations in vascular malformations are influenced by the tissues involved and the type of vascular lesion.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Malformaciones Vasculares , Humanos , Mutación , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Malformaciones Vasculares/genética
13.
Clin Dysmorphol ; 30(4): 167-172, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34456244

RESUMEN

OBJECTIVES: Pathogenic missense variants in the potassium channel tetramerization domain-containing 1 (KCTD1) gene are associated with autosomal dominant Scalp-Ear-Nipple syndrome (SENS), a type of ectodermal dysplasia characterized by aplasia cutis congenita of the scalp, hairless posterior scalp nodules, absent or rudimentary nipples, breast aplasia and external ear anomalies. We report a child with clinical features of an ectodermal dysplasia, including sparse hair, dysmorphic facial features, absent nipples, 2-3 toe syndactyly, mild atopic dermatitis and small cupped ears with overfolded helices. We also review the published cases of SENS with molecularly confirmed KCTD1 variants. METHODS AND RESULTS: Using whole-exome sequencing, we identified a novel, de novo in-frame insertion in the broad-complex, tramtrack and bric-a-brac (BTB) domain of the KCTD1 gene. By comparing to the previously reported patients, we found that our patient's clinical features and molecular variant are consistent with a diagnosis of SENS. CONCLUSIONS: This is only the 13th KCTD1 variant described and the first report of an in-frame insertion causing clinical features, expanding the mutational spectrum of KCTD1 and SENS.


Asunto(s)
Displasia Ectodérmica , Pezones , Canales de Potasio , Anomalías Múltiples , Niño , Proteínas Co-Represoras/metabolismo , Oído Externo/anomalías , Oído Externo/metabolismo , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Humanos , Hipospadias , Masculino , Hipotonía Muscular , Pezones/anomalías , Canales de Potasio/genética , Cuero Cabelludo/anomalías , Cuero Cabelludo/metabolismo
14.
Cells ; 9(6)2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32517081

RESUMEN

The glycoprotein disorders are a group of lysosomal storage diseases (α-mannosidosis, aspartylglucosaminuria, ß-mannosidosis, fucosidosis, galactosialidosis, sialidosis, mucolipidosis II, mucolipidosis III, and Schindler Disease) characterized by specific lysosomal enzyme defects and resultant buildup of undegraded glycoprotein substrates. This buildup causes a multitude of abnormalities in patients including skeletal dysplasia, inflammation, ocular abnormalities, liver and spleen enlargement, myoclonus, ataxia, psychomotor delay, and mild to severe neurodegeneration. Pharmacological treatment options exist through enzyme replacement therapy (ERT) for a few, but therapies for this group of disorders is largely lacking. Hematopoietic cell transplant (HCT) has been explored as a potential therapeutic option for many of these disorders, as HCT introduces functional enzyme-producing cells into the bone marrow and blood along with the engraftment of healthy donor cells in the central nervous system (presumably as brain macrophages or a type of microglial cell). The outcome of HCT varies widely by disease type. We report our institutional experience with HCT as well as a review of the literature to better understand HCT and outcomes for the glycoprotein disorders.


Asunto(s)
Glicoproteínas/metabolismo , Trasplante de Células Madre Hematopoyéticas , Enfermedades por Almacenamiento Lisosomal/terapia , Animales , Terapia de Reemplazo Enzimático , Humanos
15.
JIMD Rep ; 50(1): 44-49, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31741826

RESUMEN

Alpha-mannosidosis is a rare inherited metabolic disorder (OMIM #248500) caused by mutations in the enzyme α-mannosidase encoded by the gene MAN2B1. Patients have distinct physical and developmental features, but only limited information regarding standardized cognitive functioning of patients has been published. Here we contribute intellectual ability scores (IQ) on 12 patients with alpha-mannosidosis (ages 8-59 years, 10 males, 2 females). In addition, a pooled analysis was performed with data collected from this investigation and 31 cases obtained from the literature, allowing a comprehensive analysis of intellectual functioning in this rare disease. The initial and pooled analyses show that patients with alpha-mannosidosis have variable degrees of intellectual disability but show decline in IQ with age, particularly during the first decade of life. Patients treated with hematopoietic stem cell transplantation tend to show stabilized cognitive abilities.

16.
Clin Dysmorphol ; 28(1): 7-16, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30507725

RESUMEN

Mucolipidosis-IIIγ (ML-IIIγ) is a recessively inherited slowly progressive skeletal dysplasia caused by mutations in GNPTG. We report the genetic and clinical findings in the largest cohort with ML-IIIγ so far: 18 affected individuals from 12 families including 12 patients from India, five from Turkey, and one from the USA. With consanguinity confirmed in eight of 12 families, molecular characterization showed that all affected patients had homozygous pathogenic GNPTG genotypes, underscoring the rarity of the disorder. Unlike ML-IIIαß, which present with a broader spectrum of severity, the ML-III γ phenotype is milder, with onset in early school age, but nonetheless thus far considered phenotypically not differentiable from ML-IIIαß. Evaluation of this cohort has yielded phenotypic findings including hypertrophy of the forearms and restricted supination as clues for ML-IIIγ, facilitating an earlier correct choice of genotype screening. Early identification of this disorder may help in offering a timely intervention for the relief of carpal tunnel syndrome, monitoring and surgery for cardiac valve involvement, and evaluation of the need for joint replacement. As this condition may be confused with rheumatoid arthritis, confirmation of diagnosis will prevent inappropriate use of immunosuppressants and disease-modifying agents.


Asunto(s)
Mucolipidosis/patología , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Masculino , Mucolipidosis/diagnóstico , Mucolipidosis/diagnóstico por imagen , Mucolipidosis/genética , Fenotipo , Adulto Joven
17.
Clin Epigenetics ; 11(1): 64, 2019 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-31029150

RESUMEN

BACKGROUND: ADNP syndrome is a rare Mendelian disorder characterized by global developmental delay, intellectual disability, and autism. It is caused by truncating mutations in ADNP, which is involved in chromatin regulation. We hypothesized that the disruption of chromatin regulation might result in specific DNA methylation patterns that could be used in the molecular diagnosis of ADNP syndrome. RESULTS: We identified two distinct and partially opposing genomic DNA methylation episignatures in the peripheral blood samples from 22 patients with ADNP syndrome. The "epi-ADNP-1" episignature included ~ 6000 mostly hypomethylated CpGs, and the "epi-ADNP-2" episignature included ~ 1000 predominantly hypermethylated CpGs. The two signatures correlated with the locations of the ADNP mutations. Epi-ADNP-1 mutations occupy the N- and C-terminus, and epi-ADNP-2 mutations are centered on the nuclear localization signal. The episignatures were enriched for genes involved in neuronal system development and function. A classifier trained on these profiles yielded full sensitivity and specificity in detecting patients with either of the two episignatures. Applying this model to seven patients with uncertain clinical diagnosis enabled reclassification of genetic variants of uncertain significance and assigned new diagnosis when the primary clinical suspicion was not correct. When applied to a large cohort of unresolved patients with developmental delay (N = 1150), the model predicted three additional previously undiagnosed patients to have ADNP syndrome. DNA sequencing of these subjects, wherever available, identified pathogenic mutations within the gene domains predicted by the model. CONCLUSIONS: We describe the first Mendelian condition with two distinct episignatures caused by mutations in a single gene. These highly sensitive and specific DNA methylation episignatures enable diagnosis, screening, and genetic variant classifications in ADNP syndrome.


Asunto(s)
Metilación de ADN , Proteínas de Homeodominio/genética , Mutación , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Trastorno del Espectro Autista/genética , Niño , Preescolar , Biología Computacional/métodos , Islas de CpG , Diagnóstico Precoz , Epigénesis Genética , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Modelos Genéticos
18.
Eur J Hum Genet ; 22(5): 594-601, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24045841

RESUMEN

Mucolipidosis (ML) II and ML IIIα/ß are allelic autosomal recessive metabolic disorders due to mutations in GNPTAB. The gene encodes the enzyme UDP-GlcNAc-1-phosphotransferase (GNPT), which is critical to proper trafficking of lysosomal acid hydrolases. The ML phenotypic spectrum is dichotomous. Criteria set for defining ML II and ML IIIα/ß are inclusive for all but the few patients with phenotypes that span the archetypes. Clinical and biochemical findings of the 'intermediate' ML in eight patients with the c.10A>C missense mutation in GNPTAB are presented to define this intermediate ML and provide a broader insight into ML pathogenesis. Extensive clinical information, including radiographic examinations at various ages, was obtained from a detailed study of all patients. GNPTAB was sequenced in probands and parents. GNPT activity was measured and cathepsin D sorting assays were performed in fibroblasts. Intermediate ML patients who share the c.10A>C/p.K4Q mutation in GNPTAB demonstrate a distinct, consistent phenotype similar to ML II in physical and radiographic features and to ML IIIα/ß in psychomotor development and life expectancy. GNPT activity is reduced to 7-12% but the majority of newly synthesized cathepsin D remains intracellular. The GNPTAB c.10A>C/p.K4Q missense allele results in an intermediate ML II/III with distinct clinical and biochemical characteristics. This delineation strengthens the utility of the discontinuous genotype-phenotype correlation in ML II and ML IIIα/ß and prompts additional studies on the tissue-specific pathogenesis in GNPT-deficient ML.


Asunto(s)
Mucolipidosis/genética , Mutación , Dominios y Motivos de Interacción de Proteínas/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Alelos , Catepsina D/metabolismo , Análisis Mutacional de ADN , Activación Enzimática , Exones , Facies , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Mucolipidosis/diagnóstico , Mucolipidosis/mortalidad , Fenotipo , Hermanos , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA