Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Am J Respir Cell Mol Biol ; 64(4): 465-476, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33493092

RESUMEN

Fibroblast activation includes differentiation to myofibroblasts and is a key feature of organ fibrosis. The Notch pathway has been involved in myofibroblast differentiation in several tissues, including the lung. Here, we identify a subset of collagen-expressing cells in the lung that exhibit Notch3 activity at homeostasis. After injury, this activation increases, being found in αSMA-expressing myofibroblasts in the mouse and human fibrotic lung. Although previous studies suggest a contribution of Notch3 in stromal activation, in vivo evidence of the role of Notch3 in lung fibrosis remains unknown. In this study, we examine the effects of Notch3 deletion in pulmonary fibrosis and demonstrate that Notch3-deficient lungs are protected from lung injury with significantly reduced collagen deposition after bleomycin administration. The induction of profibrotic genes is reduced in bleomycin-treated Notch3-knockout lungs that consistently present fewer αSMA-positive myofibroblasts. As a result, the volume of healthy lung tissue is higher and lung function is improved in the absence of Notch3. Using in vitro cultures of lung primary fibroblasts, we confirmed that Notch3 participates in their survival and differentiation. Thus, Notch3 deficiency mitigates the development of lung fibrosis because of its role in mediating fibroblast activation. Our findings reveal a previously unidentified mechanism underlying lung fibrogenesis and provide a potential novel therapeutic approach to target pulmonary fibrosis.


Asunto(s)
Colágeno/metabolismo , Pulmón/metabolismo , Miofibroblastos/metabolismo , Fibrosis Pulmonar/metabolismo , Receptor Notch3/deficiencia , Actinas/metabolismo , Animales , Bleomicina , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Pulmón/patología , Pulmón/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miofibroblastos/patología , Fenotipo , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/fisiopatología , Receptor Notch3/genética
2.
Hepatology ; 70(1): 108-126, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30706949

RESUMEN

Gene therapy with an adeno-associated vector (AAV) serotype 8 encoding the human ATPase copper-transporting beta polypeptide (ATP7B) complementary DNA (cDNA; AAV8-ATP7B) is able to provide long-term copper metabolism correction in 6-week-old male Wilson disease (WD) mice. However, the size of the genome (5.2 kilobases [kb]) surpasses the optimal packaging capacity of the vector, which resulted in low-yield production; in addition, further analyses in WD female mice and in animals with a more advanced disease revealed reduced therapeutic efficacy, as compared to younger males. To improve efficacy of the treatment, an optimized shorter AAV vector was generated, in which four out of six metal-binding domains (MBDs) were deleted from the ATP7B coding sequence, giving rise to the miniATP7B protein (Δ57-486-ATP7B). In contrast to AAV8-ATP7B, AAV8-miniATP7B could be produced at high titers and was able to restore copper homeostasis in 6- and 12-week-old male and female WD mice. In addition, a recently developed synthetic AAV vector, AAVAnc80, carrying the miniATP7B gene was similarly effective at preventing liver damage, restoring copper homeostasis, and improving survival 1 year after treatment. Transduction of approximately 20% of hepatocytes was sufficient to normalize copper homeostasis, suggesting that corrected hepatocytes are acting as a sink to eliminate excess of copper. Importantly, administration of AAVAnc80-miniATP7B was safe in healthy mice and did not result in copper deficiency. Conclusion: In summary, gene therapy using an optimized therapeutic cassette in different AAV systems provides long-term correction of copper metabolism regardless of sex or stage of disease in a clinically relevant WD mouse model. These results pave the way for the implementation of gene therapy in WD patients.


Asunto(s)
ATPasas Transportadoras de Cobre/genética , Cobre/metabolismo , Terapia Genética/métodos , Degeneración Hepatolenticular/terapia , Animales , ATPasas Transportadoras de Cobre/metabolismo , Dependovirus , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos , Degeneración Hepatolenticular/mortalidad , Homeostasis , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL
3.
iScience ; 25(5): 104225, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35494238

RESUMEN

Understanding the regulation of normal and malignant human hematopoiesis requires comprehensive cell atlas of the hematopoietic stem cell (HSC) regulatory microenvironment. Here, we develop a tailored bioinformatic pipeline to integrate public and proprietary single-cell RNA sequencing (scRNA-seq) datasets. As a result, we robustly identify for the first time 14 intermediate cell states and 11 stages of differentiation in the endothelial and mesenchymal BM compartments, respectively. Our data provide the most comprehensive description to date of the murine HSC-regulatory microenvironment and suggest a higher level of specialization of the cellular circuits than previously anticipated. Furthermore, this deep characterization allows inferring conserved features in human, suggesting that the layers of microenvironmental regulation of hematopoiesis may also be shared between species. Our resource and methodology is a stepping-stone toward a comprehensive cell atlas of the BM microenvironment.

4.
Leukemia ; 36(8): 1969-1979, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35618797

RESUMEN

Eradicating leukemia requires a deep understanding of the interaction between leukemic cells and their protective microenvironment. The CXCL12/CXCR4 axis has been postulated as a critical pathway dictating leukemia stem cell (LSC) chemoresistance in AML due to its role in controlling cellular egress from the marrow. Nevertheless, the cellular source of CXCL12 in the acute myeloid leukemia (AML) microenvironment and the mechanism by which CXCL12 exerts its protective role in vivo remain unresolved. Here, we show that CXCL12 produced by Prx1+ mesenchymal cells but not by mature osteolineage cells provide the necessary cues for the maintenance of LSCs in the marrow of an MLL::AF9-induced AML model. Prx1+ cells promote survival of LSCs by modulating energy metabolism and the REDOX balance in LSCs. Deletion of Cxcl12 leads to the accumulation of reactive oxygen species and DNA damage in LSCs, impairing their ability to perpetuate leukemia in transplantation experiments, a defect that can be attenuated by antioxidant therapy. Importantly, our data suggest that this phenomenon appears to be conserved in human patients. Hence, we have identified Prx1+ mesenchymal cells as an integral part of the complex niche-AML metabolic intertwining, pointing towards CXCL12/CXCR4 as a target to eradicate parenchymal LSCs in AML.


Asunto(s)
Médula Ósea , Leucemia Mieloide Aguda , Médula Ósea/metabolismo , Metabolismo Energético , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células Madre Neoplásicas/metabolismo , Oxidación-Reducción , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA