Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biopharm Stat ; : 1-19, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38889012

RESUMEN

BACKGROUND: Positive and negative likelihood ratios (PLR and NLR) are important metrics of accuracy for diagnostic devices with a binary output. However, the properties of Bayesian and frequentist interval estimators of PLR/NLR have not been extensively studied and compared. In this study, we explore the potential use of the Bayesian method for interval estimation of PLR/NLR, and, more broadly, for interval estimation of the ratio of two independent proportions. METHODS: We develop a Bayesian-based approach for interval estimation of PLR/NLR for use as a part of a diagnostic device performance evaluation. Our approach is applicable to a broader setting for interval estimation of any ratio of two independent proportions. We compare score and Bayesian interval estimators for the ratio of two proportions in terms of the coverage probability (CP) and expected interval width (EW) via extensive experiments and applications to two case studies. A supplementary experiment was also conducted to assess the performance of the proposed exact Bayesian method under different priors. RESULTS: Our experimental results show that the overall mean CP for Bayesian interval estimation is consistent with that for the score method (0.950 vs. 0.952), and the overall mean EW for Bayesian is shorter than that for score method (15.929 vs. 19.724). Application to two case studies showed that the intervals estimated using the Bayesian and frequentist approaches are very similar. DISCUSSION: Our numerical results indicate that the proposed Bayesian approach has a comparable CP performance with the score method while yielding higher precision (i.e. a shorter EW).

2.
BMC Bioinformatics ; 23(1): 544, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36526957

RESUMEN

BACKGROUND: The Basic Local Alignment Search Tool (BLAST) is a suite of commonly used algorithms for identifying matches between biological sequences. The user supplies a database file and query file of sequences for BLAST to find identical sequences between the two. The typical millions of database and query sequences make BLAST computationally challenging but also well suited for parallelization on high-performance computing clusters. The efficacy of parallelization depends on the data partitioning, where the optimal data partitioning relies on an accurate performance model. In previous studies, a BLAST job was sped up by 27 times by partitioning the database and query among thousands of processor nodes. However, the optimality of the partitioning method was not studied. Unlike BLAST performance models proposed in the literature that usually have problem size and hardware configuration as the only variables, the execution time of a BLAST job is a function of database size, query size, and hardware capability. In this work, the nucleotide BLAST application BLASTN was profiled using three methods: shell-level profiling with the Unix "time" command, code-level profiling with the built-in "profiler" module, and system-level profiling with the Unix "gprof" program. The runtimes were measured for six node types, using six different database files and 15 query files, on a heterogeneous HPC cluster with 500+ nodes. The empirical measurement data were fitted with quadratic functions to develop performance models that were used to guide the data parallelization for BLASTN jobs. RESULTS: Profiling results showed that BLASTN contains more than 34,500 different functions, but a single function, RunMTBySplitDB, takes 99.12% of the total runtime. Among its 53 child functions, five core functions were identified to make up 92.12% of the overall BLASTN runtime. Based on the performance models, static load balancing algorithms can be applied to the BLASTN input data to minimize the runtime of the longest job on an HPC cluster. Four test cases being run on homogeneous and heterogeneous clusters were tested. Experiment results showed that the runtime can be reduced by 81% on a homogeneous cluster and by 20% on a heterogeneous cluster by re-distributing the workload. DISCUSSION: Optimal data partitioning can improve BLASTN's overall runtime 5.4-fold in comparison with dividing the database and query into the same number of fragments. The proposed methodology can be used in the other applications in the BLAST+ suite or any other application as long as source code is available.


Asunto(s)
Metodologías Computacionales , Programas Informáticos , Algoritmos , Biología Computacional/métodos , Alineación de Secuencia
3.
AJR Am J Roentgenol ; 205(2): 348-52, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26204286

RESUMEN

OBJECTIVE: The purpose of this study was to evaluate the accuracy of our autoinitialized cascaded level set 3D segmentation system as compared with the World Health Organization (WHO) criteria and the Response Evaluation Criteria In Solid Tumors (RECIST) for estimation of treatment response of bladder cancer in CT urography. MATERIALS AND METHODS: CT urograms before and after neoadjuvant chemo-therapy treatment were collected from 18 patients with muscle-invasive localized or locally advanced bladder cancers. The disease stage as determined on pathologic samples at cystectomy after chemotherapy was considered as reference standard of treatment response. Two radiologists measured the longest diameter and its perpendicular on the pre- and posttreatment scans. Full 3D contours for all tumors were manually outlined by one radiologist. The autoinitialized cascaded level set method was used to automatically extract 3D tumor boundary. The prediction accuracy of pT0 disease (complete response) at cystectomy was estimated by the manual, autoinitialized cascaded level set, WHO, and RECIST methods on the basis of the AUC. RESULTS: The AUC for prediction of pT0 disease at cystectomy was 0.78 ± 0.11 for autoinitialized cascaded level set compared with 0.82 ± 0.10 for manual segmentation. The difference did not reach statistical significance (p = 0.67). The AUCs using RECIST criteria were 0.62 ± 0.16 and 0.71 ± 0.12 for the two radiologists, both lower than those of the two 3D methods. The AUCs using WHO criteria were 0.56 ± 0.15 and 0.60 ± 0.13 and thus were lower than all other methods. CONCLUSION: The pre- and posttreatment 3D volume change estimates obtained by the radiologist's manual outlines and the autoinitialized cascaded level set segmentation were more accurate for irregularly shaped tumors than were those based on RECIST and WHO criteria.


Asunto(s)
Tomografía Computarizada por Rayos X/métodos , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Urografía/métodos , Adulto , Anciano , Cistectomía , Femenino , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Terapia Neoadyuvante , Invasividad Neoplásica , Estadificación de Neoplasias , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Resultado del Tratamiento , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/cirugía , Organización Mundial de la Salud
4.
J Med Imaging (Bellingham) ; 11(1): 014501, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38283653

RESUMEN

Purpose: Understanding an artificial intelligence (AI) model's ability to generalize to its target population is critical to ensuring the safe and effective usage of AI in medical devices. A traditional generalizability assessment relies on the availability of large, diverse datasets, which are difficult to obtain in many medical imaging applications. We present an approach for enhanced generalizability assessment by examining the decision space beyond the available testing data distribution. Approach: Vicinal distributions of virtual samples are generated by interpolating between triplets of test images. The generated virtual samples leverage the characteristics already in the test set, increasing the sample diversity while remaining close to the AI model's data manifold. We demonstrate the generalizability assessment approach on the non-clinical tasks of classifying patient sex, race, COVID status, and age group from chest x-rays. Results: Decision region composition analysis for generalizability indicated that a disproportionately large portion of the decision space belonged to a single "preferred" class for each task, despite comparable performance on the evaluation dataset. Evaluation using cross-reactivity and population shift strategies indicated a tendency to overpredict samples as belonging to the preferred class (e.g., COVID negative) for patients whose subgroup was not represented in the model development data. Conclusions: An analysis of an AI model's decision space has the potential to provide insight into model generalizability. Our approach uses the analysis of composition of the decision space to obtain an improved assessment of model generalizability in the case of limited test data.

5.
J Med Imaging (Bellingham) ; 11(1): 017502, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38370423

RESUMEN

Purpose: Endometrial cancer (EC) is the most common gynecologic malignancy in the United States, and atypical endometrial hyperplasia (AEH) is considered a high-risk precursor to EC. Hormone therapies and hysterectomy are practical treatment options for AEH and early-stage EC. Some patients prefer hormone therapies for reasons such as fertility preservation or being poor surgical candidates. However, accurate prediction of an individual patient's response to hormonal treatment would allow for personalized and potentially improved recommendations for these conditions. This study aims to explore the feasibility of using deep learning models on whole slide images (WSI) of endometrial tissue samples to predict the patient's response to hormonal treatment. Approach: We curated a clinical WSI dataset of 112 patients from two clinical sites. An expert pathologist annotated these images by outlining AEH/EC regions. We developed an end-to-end machine learning model with mixed supervision. The model is based on image patches extracted from pathologist-annotated AEH/EC regions. Either an unsupervised deep learning architecture (Autoencoder or ResNet50), or non-deep learning (radiomics feature extraction) is used to embed the images into a low-dimensional space, followed by fully connected layers for binary prediction, which was trained with binary responder/non-responder labels established by pathologists. We used stratified sampling to partition the dataset into a development set and a test set for internal validation of the performance of our models. Results: The autoencoder model yielded an AUROC of 0.80 with 95% CI [0.63, 0.95] on the independent test set for the task of predicting a patient with AEH/EC as a responder vs non-responder to hormonal treatment. Conclusions: These findings demonstrate the potential of using mixed supervised machine learning models on WSIs for predicting the response to hormonal treatment in AEH/EC patients.

6.
BJR Artif Intell ; 1(1): ubae006, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38828430

RESUMEN

Innovation in medical imaging artificial intelligence (AI)/machine learning (ML) demands extensive data collection, algorithmic advancements, and rigorous performance assessments encompassing aspects such as generalizability, uncertainty, bias, fairness, trustworthiness, and interpretability. Achieving widespread integration of AI/ML algorithms into diverse clinical tasks will demand a steadfast commitment to overcoming issues in model design, development, and performance assessment. The complexities of AI/ML clinical translation present substantial challenges, requiring engagement with relevant stakeholders, assessment of cost-effectiveness for user and patient benefit, timely dissemination of information relevant to robust functioning throughout the AI/ML lifecycle, consideration of regulatory compliance, and feedback loops for real-world performance evidence. This commentary addresses several hurdles for the development and adoption of AI/ML technologies in medical imaging. Comprehensive attention to these underlying and often subtle factors is critical not only for tackling the challenges but also for exploring novel opportunities for the advancement of AI in radiology.

7.
BJR Artif Intell ; 1(1): ubae003, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38476957

RESUMEN

The adoption of artificial intelligence (AI) tools in medicine poses challenges to existing clinical workflows. This commentary discusses the necessity of context-specific quality assurance (QA), emphasizing the need for robust QA measures with quality control (QC) procedures that encompass (1) acceptance testing (AT) before clinical use, (2) continuous QC monitoring, and (3) adequate user training. The discussion also covers essential components of AT and QA, illustrated with real-world examples. We also highlight what we see as the shared responsibility of manufacturers or vendors, regulators, healthcare systems, medical physicists, and clinicians to enact appropriate testing and oversight to ensure a safe and equitable transformation of medicine through AI.

8.
Clin Pharmacol Ther ; 115(4): 745-757, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-37965805

RESUMEN

In 2020, Novartis Pharmaceuticals Corporation and the U.S. Food and Drug Administration (FDA) started a 4-year scientific collaboration to approach complex new data modalities and advanced analytics. The scientific question was to find novel radio-genomics-based prognostic and predictive factors for HR+/HER- metastatic breast cancer under a Research Collaboration Agreement. This collaboration has been providing valuable insights to help successfully implement future scientific projects, particularly using artificial intelligence and machine learning. This tutorial aims to provide tangible guidelines for a multi-omics project that includes multidisciplinary expert teams, spanning across different institutions. We cover key ideas, such as "maintaining effective communication" and "following good data science practices," followed by the four steps of exploratory projects, namely (1) plan, (2) design, (3) develop, and (4) disseminate. We break each step into smaller concepts with strategies for implementation and provide illustrations from our collaboration to further give the readers actionable guidance.


Asunto(s)
Inteligencia Artificial , Multiómica , Humanos , Aprendizaje Automático , Genómica
9.
Artículo en Inglés | MEDLINE | ID: mdl-38083445

RESUMEN

Labeled ECG data in diseased state are, however, relatively scarce due to various concerns including patient privacy and low prevalence. We propose the first study in its kind that synthesizes atrial fibrillation (AF)-like ECG signals from normal ECG signals using the AFE-GAN, a generative adversarial network. Our AFE-GAN adjusts both beat morphology and rhythm variability when generating the atrial fibrillation-like ECG signals. Two publicly available arrhythmia detectors classified 72.4% and 77.2% of our generated signals as AF in a four-class (normal, AF, other abnormal, noisy) classification. This work shows the feasibility to synthesize abnormal ECG signals from normal ECG signals.Clinical significance - The AF ECG signal generated with our AFE-GAN has the potential to be used as training materials for health practitioners or be used as class-balance supplements for training automatic AF detectors.


Asunto(s)
Fibrilación Atrial , Humanos , Fibrilación Atrial/diagnóstico , Electrocardiografía , Trastorno del Sistema de Conducción Cardíaco
10.
Artículo en Inglés | MEDLINE | ID: mdl-37159719

RESUMEN

Endometrial cancer (EC) is the most common gynecologic malignancy in the US and complex atypical hyperplasia (CAH) is considered a high-risk precursor to EC. Treatment options for CAH and early-stage EC include hormone therapies and hysterectomy with the former preferred by certain patients, e.g., for fertility preservation or poor surgical candidates. Accurate prediction of response to hormonal treatment would allow for personalized and potentially improved recommendations for the treatment of these conditions. In this study, we investigate the feasibility of utilizing weakly supervised deep learning models on whole slide images of endometrial tissue samples for the prediction of patient response to hormonal treatment. We curated a clinical whole-slide-image (WSI) dataset of 112 patients from two clinical sites. We developed an end-to-end machine learning model using WSIs of endometrial specimens for the prediction of hormonal treatment response among women with CAH/EC. The model takes patches extracted from pathologist-annotated CAH/EC regions as input and utilizes an unsupervised deep learning architecture (Autoencoder or ResNet50) to embed the images into a low-dimensional space, followed by fully connected layers for binary prediction. Our autoencoder model yielded an AUC of 0.79 with 95% CI [0.61, 0.98] on a hold-out test set in the task of predicting a patient with CAH/EC as a responder vs non-responder to hormonal treatment. Our results, demonstrate the potential for using weakly supervised machine learning models on WSIs for predicting response to hormonal treatment of CAH/EC patients.

11.
Med Phys ; 50(2): e1-e24, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36565447

RESUMEN

Rapid advances in artificial intelligence (AI) and machine learning, and specifically in deep learning (DL) techniques, have enabled broad application of these methods in health care. The promise of the DL approach has spurred further interest in computer-aided diagnosis (CAD) development and applications using both "traditional" machine learning methods and newer DL-based methods. We use the term CAD-AI to refer to this expanded clinical decision support environment that uses traditional and DL-based AI methods. Numerous studies have been published to date on the development of machine learning tools for computer-aided, or AI-assisted, clinical tasks. However, most of these machine learning models are not ready for clinical deployment. It is of paramount importance to ensure that a clinical decision support tool undergoes proper training and rigorous validation of its generalizability and robustness before adoption for patient care in the clinic. To address these important issues, the American Association of Physicists in Medicine (AAPM) Computer-Aided Image Analysis Subcommittee (CADSC) is charged, in part, to develop recommendations on practices and standards for the development and performance assessment of computer-aided decision support systems. The committee has previously published two opinion papers on the evaluation of CAD systems and issues associated with user training and quality assurance of these systems in the clinic. With machine learning techniques continuing to evolve and CAD applications expanding to new stages of the patient care process, the current task group report considers the broader issues common to the development of most, if not all, CAD-AI applications and their translation from the bench to the clinic. The goal is to bring attention to the proper training and validation of machine learning algorithms that may improve their generalizability and reliability and accelerate the adoption of CAD-AI systems for clinical decision support.


Asunto(s)
Inteligencia Artificial , Diagnóstico por Computador , Humanos , Reproducibilidad de los Resultados , Diagnóstico por Computador/métodos , Diagnóstico por Imagen , Aprendizaje Automático
12.
JAMA Netw Open ; 6(2): e230524, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36821110

RESUMEN

Importance: An accurate and robust artificial intelligence (AI) algorithm for detecting cancer in digital breast tomosynthesis (DBT) could significantly improve detection accuracy and reduce health care costs worldwide. Objectives: To make training and evaluation data for the development of AI algorithms for DBT analysis available, to develop well-defined benchmarks, and to create publicly available code for existing methods. Design, Setting, and Participants: This diagnostic study is based on a multi-institutional international grand challenge in which research teams developed algorithms to detect lesions in DBT. A data set of 22 032 reconstructed DBT volumes was made available to research teams. Phase 1, in which teams were provided 700 scans from the training set, 120 from the validation set, and 180 from the test set, took place from December 2020 to January 2021, and phase 2, in which teams were given the full data set, took place from May to July 2021. Main Outcomes and Measures: The overall performance was evaluated by mean sensitivity for biopsied lesions using only DBT volumes with biopsied lesions; ties were broken by including all DBT volumes. Results: A total of 8 teams participated in the challenge. The team with the highest mean sensitivity for biopsied lesions was the NYU B-Team, with 0.957 (95% CI, 0.924-0.984), and the second-place team, ZeDuS, had a mean sensitivity of 0.926 (95% CI, 0.881-0.964). When the results were aggregated, the mean sensitivity for all submitted algorithms was 0.879; for only those who participated in phase 2, it was 0.926. Conclusions and Relevance: In this diagnostic study, an international competition produced algorithms with high sensitivity for using AI to detect lesions on DBT images. A standardized performance benchmark for the detection task using publicly available clinical imaging data was released, with detailed descriptions and analyses of submitted algorithms accompanied by a public release of their predictions and code for selected methods. These resources will serve as a foundation for future research on computer-assisted diagnosis methods for DBT, significantly lowering the barrier of entry for new researchers.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Mama , Humanos , Femenino , Benchmarking , Mamografía/métodos , Algoritmos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Neoplasias de la Mama/diagnóstico por imagen
13.
Tomography ; 8(2): 644-656, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35314631

RESUMEN

This observer study investigates the effect of computerized artificial intelligence (AI)-based decision support system (CDSS-T) on physicians' diagnostic accuracy in assessing bladder cancer treatment response. The performance of 17 observers was evaluated when assessing bladder cancer treatment response without and with CDSS-T using pre- and post-chemotherapy CTU scans in 123 patients having 157 pre- and post-treatment cancer pairs. The impact of cancer case difficulty, observers' clinical experience, institution affiliation, specialty, and the assessment times on the observers' diagnostic performance with and without using CDSS-T were analyzed. It was found that the average performance of the 17 observers was significantly improved (p = 0.002) when aided by the CDSS-T. The cancer case difficulty, institution affiliation, specialty, and the assessment times influenced the observers' performance without CDSS-T. The AI-based decision support system has the potential to improve the diagnostic accuracy in assessing bladder cancer treatment response and result in more consistent performance among all physicians.


Asunto(s)
Sistemas de Apoyo a Decisiones Clínicas , Neoplasias de la Vejiga Urinaria , Inteligencia Artificial , Humanos , Tomografía Computarizada por Rayos X , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Neoplasias de la Vejiga Urinaria/terapia , Urografía
14.
Tomography ; 7(1): 10-19, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33681460

RESUMEN

(1) Purpose: The objective was to evaluate CT perfusion and radiomic features for prediction of one year disease free survival in laryngeal and hypopharyngeal cancer. (2) Method and Materials: This retrospective study included pre and post therapy CT neck studies in 36 patients with laryngeal/hypopharyngeal cancer. Tumor contouring was performed semi-autonomously by the computer and manually by two radiologists. Twenty-six radiomic features including morphological and gray-level features were extracted by an internally developed and validated computer-aided image analysis system. The five perfusion features analyzed included permeability surface area product (PS), blood flow (flow), blood volume (BV), mean transit time (MTT), and time-to-maximum (Tmax). One year persistent/recurrent disease data were obtained following the final treatment of definitive chemoradiation or after total laryngectomy. We performed a two-loop leave-one-out feature selection and linear discriminant analysis classifier with generation of receiver operating characteristic (ROC) curves and confidence intervals (CI). (3) Results: 10 patients (28%) had recurrence/persistent disease at 1 year. For prediction, the change in blood flow demonstrated a training AUC of 0.68 (CI 0.47-0.85) and testing AUC of 0.66 (CI 0.47-0.85). The best features selected were a combination of perfusion and radiomic features including blood flow and computer-estimated percent volume changes-training AUC of 0.68 (CI 0.5-0.85) and testing AUC of 0.69 (CI 0.5-0.85). The laryngoscopic percent change in volume was a poor predictor with a testing AUC of 0.4 (CI 0.16-0.57). (4) Conclusions: A combination of CT perfusion and radiomic features are potential predictors of one-year disease free survival in laryngeal and hypopharyngeal cancer patients.


Asunto(s)
Neoplasias Hipofaríngeas , Supervivencia sin Enfermedad , Humanos , Neoplasias Hipofaríngeas/diagnóstico por imagen , Neoplasias Hipofaríngeas/cirugía , Recurrencia Local de Neoplasia , Perfusión , Proyectos Piloto , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
15.
J Med Imaging (Bellingham) ; 8(3): 034501, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33987451

RESUMEN

Purpose: The breast pathology quantitative biomarkers (BreastPathQ) challenge was a grand challenge organized jointly by the International Society for Optics and Photonics (SPIE), the American Association of Physicists in Medicine (AAPM), the U.S. National Cancer Institute (NCI), and the U.S. Food and Drug Administration (FDA). The task of the BreastPathQ challenge was computerized estimation of tumor cellularity (TC) in breast cancer histology images following neoadjuvant treatment. Approach: A total of 39 teams developed, validated, and tested their TC estimation algorithms during the challenge. The training, validation, and testing sets consisted of 2394, 185, and 1119 image patches originating from 63, 6, and 27 scanned pathology slides from 33, 4, and 18 patients, respectively. The summary performance metric used for comparing and ranking algorithms was the average prediction probability concordance (PK) using scores from two pathologists as the TC reference standard. Results: Test PK performance ranged from 0.497 to 0.941 across the 100 submitted algorithms. The submitted algorithms generally performed well in estimating TC, with high-performing algorithms obtaining comparable results to the average interrater PK of 0.927 from the two pathologists providing the reference TC scores. Conclusions: The SPIE-AAPM-NCI BreastPathQ challenge was a success, indicating that artificial intelligence/machine learning algorithms may be able to approach human performance for cellularity assessment and may have some utility in clinical practice for improving efficiency and reducing reader variability. The BreastPathQ challenge can be accessed on the Grand Challenge website.

16.
J Med Imaging (Bellingham) ; 7(1): 012703, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31763356

RESUMEN

We evaluated whether using synthetic mammograms for training data augmentation may reduce the effects of overfitting and increase the performance of a deep learning algorithm for breast mass detection. Synthetic mammograms were generated using in silico procedural analytic breast and breast mass modeling algorithms followed by simulated x-ray projections of the breast models into mammographic images. In silico breast phantoms containing masses were modeled across the four BI-RADS breast density categories, and the masses were modeled with different sizes, shapes, and margins. A Monte Carlo-based x-ray transport simulation code, MC-GPU, was used to project the three-dimensional phantoms into realistic synthetic mammograms. 2000 mammograms with 2522 masses were generated to augment a real data set during training. From the Curated Breast Imaging Subset of the Digital Database for Screening Mammography (CBIS-DDSM) data set, we used 1111 mammograms (1198 masses) for training, 120 mammograms (120 masses) for validation, and 361 mammograms (378 masses) for testing. We used faster R-CNN for our deep learning network with pretraining from ImageNet using the Resnet-101 architecture. We compared the detection performance when the network was trained using different percentages of the real CBIS-DDSM training set (100%, 50%, and 25%), and when these subsets of the training set were augmented with 250, 500, 1000, and 2000 synthetic mammograms. Free-response receiver operating characteristic (FROC) analysis was performed to compare performance with and without the synthetic mammograms. We generally observed an improved test FROC curve when training with the synthetic images compared to training without them, and the amount of improvement depended on the number of real and synthetic images used in training. Our study shows that enlarging the training data with synthetic samples can increase the performance of deep learning systems.

17.
Tomography ; 6(2): 194-202, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32548296

RESUMEN

We evaluated the intraobserver variability of physicians aided by a computerized decision-support system for treatment response assessment (CDSS-T) to identify patients who show complete response to neoadjuvant chemotherapy for bladder cancer, and the effects of the intraobserver variability on physicians' assessment accuracy. A CDSS-T tool was developed that uses a combination of deep learning neural network and radiomic features from computed tomography (CT) scans to detect bladder cancers that have fully responded to neoadjuvant treatment. Pre- and postchemotherapy CT scans of 157 bladder cancers from 123 patients were collected. In a multireader, multicase observer study, physician-observers estimated the likelihood of pathologic T0 disease by viewing paired pre/posttreatment CT scans placed side by side on an in-house-developed graphical user interface. Five abdominal radiologists, 4 diagnostic radiology residents, 2 oncologists, and 1 urologist participated as observers. They first provided an estimate without CDSS-T and then with CDSS-T. A subset of cases was evaluated twice to study the intraobserver variability and its effects on observer consistency. The mean areas under the curves for assessment of pathologic T0 disease were 0.85 for CDSS-T alone, 0.76 for physicians without CDSS-T and improved to 0.80 for physicians with CDSS-T (P = .001) in the original evaluation, and 0.78 for physicians without CDSS-T and improved to 0.81 for physicians with CDSS-T (P = .010) in the repeated evaluation. The intraobserver variability was significantly reduced with CDSS-T (P < .0001). The CDSS-T can significantly reduce physicians' variability and improve their accuracy for identifying complete response of muscle-invasive bladder cancer to neoadjuvant chemotherapy.


Asunto(s)
Sistemas de Apoyo a Decisiones Clínicas , Neoplasias de la Vejiga Urinaria , Humanos , Variaciones Dependientes del Observador , Médicos , Tomografía Computarizada por Rayos X , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico
18.
IEEE Trans Med Imaging ; 38(3): 686-696, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-31622238

RESUMEN

In this paper, we developed a deep convolutional neural network (CNN) for the classification of malignant and benign masses in digital breast tomosynthesis (DBT) using a multi-stage transfer learning approach that utilized data from similar auxiliary domains for intermediate-stage fine-tuning. Breast imaging data from DBT, digitized screen-film mammography, and digital mammography totaling 4039 unique regions of interest (1797 malignant and 2242 benign) were collected. Using cross validation, we selected the best transfer network from six transfer networks by varying the level up to which the convolutional layers were frozen. In a single-stage transfer learning approach, knowledge from CNN trained on the ImageNet data was fine-tuned directly with the DBT data. In a multi-stage transfer learning approach, knowledge learned from ImageNet was first fine-tuned with the mammography data and then fine-tuned with the DBT data. Two transfer networks were compared for the second-stage transfer learning by freezing most of the CNN structures versus freezing only the first convolutional layer. We studied the dependence of the classification performance on training sample size for various transfer learning and fine-tuning schemes by varying the training data from 1% to 100% of the available sets. The area under the receiver operating characteristic curve (AUC) was used as a performance measure. The view-based AUC on the test set for single-stage transfer learning was 0.85 ± 0.05 and improved significantly (p <; 0.05$ ) to 0.91 ± 0.03 for multi-stage learning. This paper demonstrated that, when the training sample size from the target domain is limited, an additional stage of transfer learning using data from a similar auxiliary domain is advantageous.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Aprendizaje Automático , Mamografía/métodos , Redes Neurales de la Computación , Área Bajo la Curva , Humanos , Michigan , Tamaño de la Muestra
19.
Med Phys ; 46(1): e1-e36, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30367497

RESUMEN

The goals of this review paper on deep learning (DL) in medical imaging and radiation therapy are to (a) summarize what has been achieved to date; (b) identify common and unique challenges, and strategies that researchers have taken to address these challenges; and (c) identify some of the promising avenues for the future both in terms of applications as well as technical innovations. We introduce the general principles of DL and convolutional neural networks, survey five major areas of application of DL in medical imaging and radiation therapy, identify common themes, discuss methods for dataset expansion, and conclude by summarizing lessons learned, remaining challenges, and future directions.


Asunto(s)
Aprendizaje Profundo , Diagnóstico por Imagen/métodos , Radioterapia/métodos , Artefactos , Humanos , Procesamiento de Imagen Asistido por Computador , Relación Señal-Ruido
20.
Med Phys ; 46(2): 634-648, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30520055

RESUMEN

PURPOSE: We are developing a computerized segmentation tool for the inner and outer bladder wall as a part of an image analysis pipeline for CT urography (CTU). MATERIALS AND METHODS: A data set of 172 CTU cases was collected retrospectively with Institutional Review Board (IRB) approval. The data set was randomly split into two independent sets of training (81 cases) and testing (92 cases) which were manually outlined for both the inner and outer wall. We trained a deep-learning convolutional neural network (DL-CNN) to distinguish the bladder wall from the inside and outside of the bladder using neighborhood information. Approximately, 240 000 regions of interest (ROIs) of 16 × 16 pixels in size were extracted from regions in the training cases identified by the manually outlined inner and outer bladder walls to form a training set for the DL-CNN; half of the ROIs were selected to include the bladder wall and the other half were selected to exclude the bladder wall with some of these ROIs being inside the bladder and the rest outside the bladder entirely. The DL-CNN trained on these ROIs was applied to the cases in the test set slice-by-slice to generate a bladder wall likelihood map where the gray level of a given pixel represents the likelihood that a given pixel would belong to the bladder wall. We then used the DL-CNN likelihood map as an energy term in the energy equation of a cascaded level sets method to segment the inner and outer bladder wall. The DL-CNN segmentation with level sets was compared to the three-dimensional (3D) hand-segmented contours as a reference standard. RESULTS: For the inner wall contour, the training set achieved the average volume intersection, average volume error, average absolute volume error, and average distance of 90.0 ± 8.7%, -4.2 ± 18.4%, 12.9 ± 13.9%, and 3.0 ± 1.6 mm, respectively. The corresponding values for the test set were 86.9 ± 9.6%, -8.3 ± 37.7%, 18.4 ± 33.8%, and 3.4 ± 1.8 mm, respectively. For the outer wall contour, the training set achieved the values of 93.7 ± 3.9%, -7.8 ± 11.4%, 10.3 ± 9.3%, and 3.0 ± 1.2 mm, respectively. The corresponding values for the test set were 87.5 ± 9.9%, -1.2 ± 20.8%, 11.9 ± 17.0%, and 3.5 ± 2.3 mm, respectively. CONCLUSIONS: Our study demonstrates that DL-CNN-assisted level sets can effectively segment bladder walls from the inner bladder and outer structures despite a lack of consistent distinctions along the inner wall. However, even with the addition of level sets, the inner and outer walls may still be over-segmented and the DL-CNN-assisted level sets may incorrectly segment parts of the prostate that overlap with the outer bladder wall. The outer wall segmentation was improved compared to our previous method and the DL-CNN-assisted level sets were also able to segment the inner bladder wall with similar performance. This study shows the DL-CNN-assisted level set segmentation tool can effectively segment the inner and outer wall of the bladder.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Rayos X , Vejiga Urinaria/diagnóstico por imagen , Urografía , Humanos , Dosis de Radiación , Vejiga Urinaria/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA