Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomacromolecules ; 25(3): 1509-1526, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38376392

RESUMEN

The multifaceted process of nerve regeneration following damage remains a significant clinical issue, due to the lack of a favorable regenerative microenvironment and insufficient endogenous biochemical signaling. However, the current nerve grafts have limitations in functionality, as they require a greater capacity to effectively regulate the intricate microenvironment associated with nerve regeneration. In this regard, we proposed the construction of a functional artificial scaffold based on a "two-pronged" approach. The whole system was developed by encapsulating Tazarotene within nanomicelles formed through self-assembly of reactive oxygen species (ROS)-responsive amphiphilic triblock copolymer, all of which were further loaded into a thermosensitive injectable hydrogel. Notably, the hydrogel exhibits obvious temperature sensitivity at a concentration of 6 wt %, and the nanoparticles possess concentration-dependent H2O2-response capability with a controlled release profile in 48 h. The combined strategy promoted the repair of injured peripheral nerves, attributed to the dual role of the materials, which mainly involved providing structural support, modulating the immune microenvironment, and enhancing angiogenesis. Overall, this study opens up intriguing prospects in tissue engineering.


Asunto(s)
Sistemas de Liberación de Medicamentos , Peróxido de Hidrógeno , Peróxido de Hidrógeno/farmacología , Ingeniería de Tejidos , Hidrogeles/farmacología , Hidrogeles/química , Nervios Periféricos/fisiología , Regeneración Nerviosa
2.
Colloids Surf B Biointerfaces ; 210: 112220, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34840029

RESUMEN

Facilitating angiogenesis, reducing the formation of glial scar tissue, and the occurrence of a strong inflammatory response are of great importance for the repair of central nerve damage. In our previous study, a temperature-sensitive hydrogel grafted with bioactive isoleucine-lysine-valine-alanine-valine (IKVAV) peptide was prepared and it showed regular three-dimensional porous structure, rapid (de)swelling performance and good biological activity. Therefore, in this study, we used this hydrogel scaffold to treat for SCI to study the effect of it to facilitate angiogenesis, inhibit the differentiation and adhesion of keratinocytes, and further reduce the formation of glial scar tissue. The results reveal that the peptide hydrogel scaffold achieved excellent performance and can also promote the expression of angiogenic factors and reduce the secretion of pro-inflammatory factors to a certain extent. Particularly, it can also inhibit the formation of glial scar tissue and repair damaged tissue. The proposed strategy for developing this hydrogel scaffold provides a new insight into designing biomaterials for a broad range of applications in the tissue engineering of the central nervous system (CNS).


Asunto(s)
Hidrogeles , Traumatismos de la Médula Espinal , Resinas Acrílicas , Animales , Péptidos , Ratas , Médula Espinal , Traumatismos de la Médula Espinal/tratamiento farmacológico , Andamios del Tejido
3.
J Biomed Nanotechnol ; 17(8): 1668-1678, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34544543

RESUMEN

As infection induced by the implant will lead to operation failure, the implant material must be endowed with certain antibacterial properties. Hydroxyapatite (HA) mesoporous microspheres have been widely used in bone repair due to their advantages, including simple synthesis, good osteogenic properties and drug loading capacity. In this study, vancomycin hydrochloride-loaded mesoporous hydroxyapatite microspheres with micro/nanosurface structures were synthesized to increase osteogenic differentiation and antibacterial ability. Phytic acid (IP6) was used as a template to prepare mesoporous hydroxyapatite microspheres composed of fibres, flakes and smooth surfaces by the hydrothermal homogeneous precipitation method, and the corresponding specific surface areas were 65.20 m²/g, 75.13 m²/g and 71.27 m²/g, respectively. Vancomycin hydrochloride (Van) was used as the drug model to study the drug loading and release characteristics of the microspheres, as well as the in vitro antibacterial properties after treatment. In addition, during cocultivation with MC3T3-E1 preosteoblasts, HA microspheres assembled via flakes exhibited better cell compatibility, which promoted cell proliferation, alkaline phosphatase (ALP) activity, and the formation of calcium nodules and increased the expression of osteogenic differentiation-related proteins such as Runx-2, osteopontin (OPN) and collagen I (COL I). These results indicated that the HA microspheres prepared in this experiment have broad application prospects in drug delivery systems and bone repair.


Asunto(s)
Durapatita , Osteogénesis , Antibacterianos/farmacología , Diferenciación Celular , Durapatita/farmacología , Microesferas , Vancomicina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA