Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 35: 403-439, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28226229

RESUMEN

This is an exciting time for immunology because the future promises to be replete with exciting new discoveries that can be translated to improve health and treat disease in novel ways. Immunologists are attempting to answer increasingly complex questions concerning phenomena that range from the genetic, molecular, and cellular scales to that of organs, whole animals or humans, and populations of humans and pathogens. An important goal is to understand how the many different components involved interact with each other within and across these scales for immune responses to emerge, and how aberrant regulation of these processes causes disease. To aid this quest, large amounts of data can be collected using high-throughput instrumentation. The nonlinear, cooperative, and stochastic character of the interactions between components of the immune system as well as the overwhelming amounts of data can make it difficult to intuit patterns in the data or a mechanistic understanding of the phenomena being studied. Computational models are increasingly important in confronting and overcoming these challenges. I first describe an iterative paradigm of research that integrates laboratory experiments, clinical data, computational inference, and mechanistic computational models. I then illustrate this paradigm with a few examples from the recent literature that make vivid the power of bringing together diverse types of computational models with experimental and clinical studies to fruitfully interrogate the immune system.


Asunto(s)
Biología Computacional , Simulación por Computador , Modelos Inmunológicos , Linfocitos T/inmunología , Vacunas/inmunología , Animales , Investigación Biomédica , Ensayos Analíticos de Alto Rendimiento , Humanos , Monitorización Inmunológica/métodos , Receptores de Antígenos de Linfocitos T/genética , Transducción de Señal
2.
Cell ; 184(1): 207-225.e24, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33333019

RESUMEN

Regulation of biological processes typically incorporates mechanisms that initiate and terminate the process and, where understood, these mechanisms often involve feedback control. Regulation of transcription is a fundamental cellular process where the mechanisms involved in initiation have been studied extensively, but those involved in arresting the process are poorly understood. Modeling of the potential roles of RNA in transcriptional control suggested a non-equilibrium feedback control mechanism where low levels of RNA promote condensates formed by electrostatic interactions whereas relatively high levels promote dissolution of these condensates. Evidence from in vitro and in vivo experiments support a model where RNAs produced during early steps in transcription initiation stimulate condensate formation, whereas the burst of RNAs produced during elongation stimulate condensate dissolution. We propose that transcriptional regulation incorporates a feedback mechanism whereby transcribed RNAs initially stimulate but then ultimately arrest the process.


Asunto(s)
Retroalimentación Fisiológica , ARN/genética , Transcripción Genética , Animales , Complejo Mediador/metabolismo , Ratones , Modelos Biológicos , Células Madre Embrionarias de Ratones/metabolismo , ARN/biosíntesis , Electricidad Estática
3.
Cell ; 169(1): 13-23, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28340338

RESUMEN

Phase-separated multi-molecular assemblies provide a general regulatory mechanism to compartmentalize biochemical reactions within cells. We propose that a phase separation model explains established and recently described features of transcriptional control. These features include the formation of super-enhancers, the sensitivity of super-enhancers to perturbation, the transcriptional bursting patterns of enhancers, and the ability of an enhancer to produce simultaneous activation at multiple genes. This model provides a conceptual framework to further explore principles of gene control in mammals.


Asunto(s)
Regulación de la Expresión Génica , Modelos Biológicos , Transcripción Genética , Animales , Elementos de Facilitación Genéticos , Células Eucariotas/metabolismo , Humanos , Factores de Transcripción/metabolismo , Activación Transcripcional
4.
Cell ; 160(4): 785-797, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25662010

RESUMEN

Generation of potent antibodies by a mutation-selection process called affinity maturation is a key component of effective immune responses. Antibodies that protect against highly mutable pathogens must neutralize diverse strains. Developing effective immunization strategies to drive their evolution requires understanding how affinity maturation happens in an environment where variants of the same antigen are present. We present an in silico model of affinity maturation driven by antigen variants which reveals that induction of cross-reactive antibodies often occurs with low probability because conflicting selection forces, imposed by different antigen variants, can frustrate affinity maturation. We describe how variables such as temporal pattern of antigen administration influence the outcome of this frustrated evolutionary process. Our calculations predict, and experiments in mice with variant gp120 constructs of the HIV envelope protein confirm, that sequential immunization with antigen variants is preferred over a cocktail for induction of cross-reactive antibodies focused on the shared CD4 binding site epitope.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Reacciones Cruzadas , Proteína gp120 de Envoltorio del VIH/inmunología , Animales , Variación Antigénica , Linfocitos B/inmunología , Simulación por Computador , Proteína gp120 de Envoltorio del VIH/genética , VIH-1/inmunología , Ratones
5.
Cell ; 159(2): 333-45, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25284152

RESUMEN

In the thymus, high-affinity, self-reactive thymocytes are eliminated from the pool of developing T cells, generating central tolerance. Here, we investigate how developing T cells measure self-antigen affinity. We show that very few CD4 or CD8 coreceptor molecules are coupled with the signal-initiating kinase, Lck. To initiate signaling, an antigen-engaged T cell receptor (TCR) scans multiple coreceptor molecules to find one that is coupled to Lck; this is the first and rate-limiting step in a kinetic proofreading chain of events that eventually leads to TCR triggering and negative selection. MHCII-restricted TCRs require a shorter antigen dwell time (0.2 s) to initiate negative selection compared to MHCI-restricted TCRs (0.9 s) because more CD4 coreceptors are Lck-loaded compared to CD8. We generated a model (Lck come&stay/signal duration) that accurately predicts the observed differences in antigen dwell-time thresholds used by MHCI- and MHCII-restricted thymocytes to initiate negative selection and generate self-tolerance.


Asunto(s)
Autoantígenos/inmunología , Tolerancia Inmunológica , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Cinética , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Cadenas de Markov , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T/metabolismo , Timocitos/citología , Timocitos/inmunología
6.
Nat Immunol ; 17(8): 946-55, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27348411

RESUMEN

Studies of individual T cell antigen receptors (TCRs) have shed some light on structural features that underlie self-reactivity. However, the general rules that can be used to predict whether TCRs are self-reactive have not been fully elucidated. Here we found that the interfacial hydrophobicity of amino acids at positions 6 and 7 of the complementarity-determining region CDR3ß robustly promoted the development of self-reactive TCRs. This property was found irrespective of the member of the ß-chain variable region (Vß) family present in the TCR or the length of the CDR3ß. An index based on these findings distinguished Vß2(+), Vß6(+) and Vß8.2(+) regulatory T cells from conventional T cells and also distinguished CD4(+) T cells selected by the major histocompatibility complex (MHC) class II molecule I-A(g7) (associated with the development of type 1 diabetes in NOD mice) from those selected by a non-autoimmunity-promoting MHC class II molecule I-A(b). Our results provide a means for distinguishing normal T cell repertoires versus autoimmunity-prone T cell repertoires.


Asunto(s)
Autoinmunidad , Regiones Determinantes de Complementariedad/genética , Diabetes Mellitus Tipo 1/inmunología , Subgrupos de Linfocitos T/fisiología , Linfocitos T Reguladores/fisiología , Animales , Autoantígenos/inmunología , Autoantígenos/metabolismo , Diferenciación Celular , Tolerancia Central , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados
7.
Mol Cell ; 75(3): 549-561.e7, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398323

RESUMEN

Enhancers are DNA elements that are bound by transcription factors (TFs), which recruit coactivators and the transcriptional machinery to genes. Phase-separated condensates of TFs and coactivators have been implicated in assembling the transcription machinery at particular enhancers, yet the role of DNA sequence in this process has not been explored. We show that DNA sequences encoding TF binding site number, density, and affinity above sharply defined thresholds drive condensation of TFs and coactivators. A combination of specific structured (TF-DNA) and weak multivalent (TF-coactivator) interactions allows for condensates to form at particular genomic loci determined by the DNA sequence and the complement of expressed TFs. DNA features found to drive condensation promote enhancer activity and transcription in cells. Our study provides a framework to understand how the genome can scaffold transcriptional condensates at specific loci and how the universal phenomenon of phase separation might regulate this process.


Asunto(s)
Cromatina/genética , Elementos de Facilitación Genéticos , Factores de Transcripción/genética , Transcripción Genética , Animales , Secuencia de Bases/genética , Sitios de Unión/genética , ADN/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Genómica , Ratones , Células Madre Embrionarias de Ratones
8.
Proc Natl Acad Sci U S A ; 121(11): e2318599121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38446856

RESUMEN

T cells help orchestrate immune responses to pathogens, and their aberrant regulation can trigger autoimmunity. Recent studies highlight that a threshold number of T cells (a quorum) must be activated in a tissue to mount a functional immune response. These collective effects allow the T cell repertoire to respond to pathogens while suppressing autoimmunity due to circulating autoreactive T cells. Our computational studies show that increasing numbers of pathogenic peptides targeted by T cells during persistent or severe viral infections increase the probability of activating T cells that are weakly reactive to self-antigens (molecular mimicry). These T cells are easily re-activated by the self-antigens and contribute to exceeding the quorum threshold required to mount autoimmune responses. Rare peptides that activate many T cells are sampled more readily during severe/persistent infections than in acute infections, which amplifies these effects. Experiments in mice to test predictions from these mechanistic insights are suggested.


Asunto(s)
Enfermedades Autoinmunes , Infección Persistente , Animales , Ratones , Tolerancia Periférica , Linfocitos T , Autoantígenos , Péptidos
9.
Nat Immunol ; 15(9): 798-807, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25137454

RESUMEN

The initiation of T cell antigen receptor signaling is a key step that can result in T cell activation and the orchestration of an adaptive immune response. Early events in T cell receptor signaling can distinguish between agonist and endogenous ligands with exquisite selectivity, and show extraordinary sensitivity to minute numbers of agonists in a sea of endogenous ligands. We review our current knowledge of models and crucial molecules that aim to provide a mechanistic explanation for these observations. Building on current understanding and a discussion of unresolved issues, we propose a molecular model for initiation of T cell receptor signaling that may serve as a useful guide for future studies.


Asunto(s)
Inmunidad Adaptativa/inmunología , Activación de Linfocitos/inmunología , Complejo Mayor de Histocompatibilidad/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal/inmunología , Linfocitos T/inmunología , Humanos
10.
Proc Natl Acad Sci U S A ; 120(20): e2221726120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155885

RESUMEN

From proteins to chromosomes, polymers fold into specific conformations that control their biological function. Polymer folding has long been studied with equilibrium thermodynamics, yet intracellular organization and regulation involve energy-consuming, active processes. Signatures of activity have been measured in the context of chromatin motion, which shows spatial correlations and enhanced subdiffusion only in the presence of adenosine triphosphate. Moreover, chromatin motion varies with genomic coordinate, pointing toward a heterogeneous pattern of active processes along the sequence. How do such patterns of activity affect the conformation of a polymer such as chromatin? We address this question by combining analytical theory and simulations to study a polymer subjected to sequence-dependent correlated active forces. Our analysis shows that a local increase in activity (larger active forces) can cause the polymer backbone to bend and expand, while less active segments straighten out and condense. Our simulations further predict that modest activity differences can drive compartmentalization of the polymer consistent with the patterns observed in chromosome conformation capture experiments. Moreover, segments of the polymer that show correlated active (sub)diffusion attract each other through effective long-ranged harmonic interactions, whereas anticorrelations lead to effective repulsions. Thus, our theory offers nonequilibrium mechanisms for forming genomic compartments, which cannot be distinguished from affinity-based folding using structural data alone. As a first step toward exploring whether active mechanisms contribute to shaping genome conformations, we discuss a data-driven approach.


Asunto(s)
Cromatina , Polímeros , Polímeros/química , Cromatina/genética , Cromosomas/metabolismo , Genoma , Genómica
11.
Proc Natl Acad Sci U S A ; 119(37): e2205598119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36006981

RESUMEN

The humoral immune response, a key arm of adaptive immunity, consists of B cells and their products. Upon infection or vaccination, B cells undergo a Darwinian evolutionary process in germinal centers (GCs), resulting in the production of antibodies and memory B cells. We developed a computational model to study how humoral memory is recalled upon reinfection or booster vaccination. We find that upon reexposure to the same antigen, affinity-dependent selective expansion of available memory B cells outside GCs (extragerminal center compartments [EGCs]) results in a rapid response made up of the best available antibodies. Memory B cells that enter secondary GCs can undergo mutation and selection to generate even more potent responses over time, enabling greater protection upon subsequent exposure to the same antigen. GCs also generate a diverse pool of B cells, some with low antigen affinity. These results are consistent with our analyses of data from humans vaccinated with two doses of a COVID-19 vaccine. Our results further show that the diversity of memory B cells generated in GCs is critically important upon exposure to a variant antigen. Clones drawn from this diverse pool that cross-react with the variant are rapidly expanded in EGCs to provide the best protection possible while new secondary GCs generate a tailored response for the new variant. Based on a simple evolutionary model, we suggest that the complementary roles of EGC and GC processes we describe may have evolved in response to complex organisms being exposed to evolving pathogen families for millennia.


Asunto(s)
Antígenos , Linfocitos B , Inmunidad Humoral , Memoria Inmunológica , Antígenos/inmunología , Linfocitos B/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Simulación por Computador , Centro Germinal/inmunología , Humanos , Modelos Biológicos
12.
RNA ; 28(1): 52-57, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34772787

RESUMEN

Macroscopic membraneless organelles containing RNA such as the nucleoli, germ granules, and the Cajal body have been known for decades. These biomolecular condensates are liquid-like bodies that can be formed by a phase transition. Recent evidence has revealed the presence of similar microscopic condensates associated with the transcription of genes. This brief article summarizes thoughts about the importance of condensates in the regulation of transcription and how RNA molecules, as components of such condensates, control the synthesis of RNA. Models and experimental data suggest that RNAs from enhancers facilitate the formation of a condensate that stabilizes the binding of transcription factors and accounts for a burst of transcription at the promoter. Termination of this burst is pictured as a nonequilibrium feedback loop where additional RNA destabilizes the condensate.


Asunto(s)
Condensados Biomoleculares/química , ADN/química , Proteínas de Unión al ARN/química , ARN/química , Factores de Transcripción/química , Transcripción Genética , Sitios de Unión , Condensados Biomoleculares/metabolismo , Compartimento Celular , Nucléolo Celular/química , Nucléolo Celular/metabolismo , Cuerpos Enrollados/química , Cuerpos Enrollados/metabolismo , ADN/metabolismo , Células Eucariotas/química , Células Eucariotas/metabolismo , Retroalimentación Fisiológica , Gránulos de Ribonucleoproteína de Células Germinales/química , Gránulos de Ribonucleoproteína de Células Germinales/metabolismo , Humanos , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo
13.
Immunity ; 43(3): 591-604, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26362266

RESUMEN

CD8(+) T cells contribute to the control of HIV, but it is not clear whether initial immune responses modulate the viral set point. We screened high-risk uninfected women twice a week for plasma HIV RNA and identified 12 hyperacute infections. Onset of viremia elicited a massive HIV-specific CD8(+) T cell response, with limited bystander activation of non-HIV memory CD8(+) T cells. HIV-specific CD8(+) T cells secreted little interferon-γ, underwent rapid apoptosis, and failed to upregulate the interleukin-7 receptor, known to be important for T cell survival. The rapidity to peak CD8(+) T cell activation and the absolute magnitude of activation induced by the exponential rise in viremia were inversely correlated with set point viremia. These data indicate that rapid, high magnitude HIV-induced CD8(+) T cell responses are crucial for subsequent immune control of acute infection, which has important implications for HIV vaccine design.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Infecciones por VIH/inmunología , Activación de Linfocitos/inmunología , Carga Viral/inmunología , Adolescente , Apoptosis/inmunología , Recuento de Linfocito CD4 , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Femenino , Citometría de Flujo , Infecciones por VIH/sangre , Infecciones por VIH/diagnóstico , Infecciones por VIH/virología , VIH-1/genética , VIH-1/inmunología , VIH-1/fisiología , Humanos , Cinética , Proteínas Proto-Oncogénicas c-bcl-2/inmunología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Viral/genética , ARN Viral/inmunología , Factores de Tiempo , Viremia/diagnóstico , Viremia/inmunología , Adulto Joven , Receptor fas/inmunología , Receptor fas/metabolismo
14.
Cell ; 136(2): 337-51, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19167334

RESUMEN

Activation of Ras proteins underlies functional decisions in diverse cell types. Two molecules, RasGRP and SOS, catalyze Ras activation in lymphocytes. Binding of active Ras to SOS' allosteric pocket markedly increases SOS' activity establishing a positive feedback loop for SOS-mediated Ras activation. Integrating in silico and in vitro studies, we demonstrate that digital signaling in lymphocytes (cells are "on" or "off") is predicated upon feedback regulation of SOS. SOS' feedback loop leads to hysteresis in the dose-response curve, which can enable a capacity to sustain Ras activation as stimuli are withdrawn and exhibit "memory" of past encounters with antigen. Ras activation via RasGRP alone is analog (graded increase in amplitude with stimulus). We describe how complementary analog (RasGRP) and digital (SOS) pathways act on Ras to efficiently convert analog input to digital output. Numerous predictions regarding the impact of our findings on lymphocyte function and development are noted.


Asunto(s)
Linfocitos B/metabolismo , Transducción de Señal , Linfocitos T/metabolismo , Proteínas ras/metabolismo , Animales , Linfocitos B/citología , Línea Celular , Pollos , Simulación por Computador , Humanos , Células Jurkat , Activación de Linfocitos , Linfocitos T/citología
15.
Am J Ind Med ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847306

RESUMEN

BACKGROUND: The construction industry in India heavily relies on unorganized workers, who often lack adequate access to safety measures, placing them at significant risk of accidents and injuries. The objective was to determine risk perceptions of construction workers, and explore their safety practices, facilitators, and barriers. METHODS: A mixed-methods approach with a convergent parallel design (QUAN + qual) was undertaken. Quantitative strand included face-to-face interviews with 203 randomly selected building construction workers from 10 construction sites in five selected municipal wards in Kolkata. Questions pertained to socio-demographics, occupational characteristics, risk perception, and safety practices. The qualitative arm involved key informant interviews to unravel the facilitators and barriers affecting safety practices and nonparticipant observation. RESULTS: The perceived risk for respiratory problems due to dust, pain from carrying loads, slips, trips or falls, and heat-related illnesses was in the medium- to high category for 64.0%, 58.6%, 39.9%, and 36.5% of the study participants, respectively. However, the safety practices for these respective domains were in the good practice category for 6.9%, 4.9%, 54.2%, and 34.5% of the workers. From the qualitative arm, it was evident that availability of PPE, a conducive environment, and availability of worker-friendly technology could be important predictors of safety practices. Barriers such as time constraints and feasibility due to discomfort and expenditure were also identified. CONCLUSION: Despite high-risk perception, safety practices were not consistently good among construction workers. Further research is crucial to enhance the health and safety of unorganized workers in India.

16.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33637649

RESUMEN

A vaccine which is effective against the HIV virus is considered to be the best solution to the ongoing global HIV/AIDS epidemic. In the past thirty years, numerous attempts to develop an effective vaccine have been made with little or no success, due, in large part, to the high mutability of the virus. More recent studies showed that a vaccine able to elicit broadly neutralizing antibodies (bnAbs), that is, antibodies that can neutralize a high fraction of global virus variants, has promise to protect against HIV. Such a vaccine has been proposed to involve at least three separate stages: First, activate the appropriate precursor B cells; second, shepherd affinity maturation along pathways toward bnAbs; and, third, polish the Ab response to bind with high affinity to diverse HIV envelopes (Env). This final stage may require immunization with a mixture of Envs. In this paper, we set up a framework based on theory and modeling to design optimal panels of antigens to use in such a mixture. The designed antigens are characterized experimentally and are shown to be stable and to be recognized by known HIV antibodies.


Asunto(s)
Vacunas contra el SIDA/biosíntesis , Antígenos Virales/química , Anticuerpos ampliamente neutralizantes/biosíntesis , Epítopos/química , Anticuerpos Anti-VIH/biosíntesis , Infecciones por VIH/prevención & control , VIH-1/inmunología , Vacunas contra el SIDA/química , Vacunas contra el SIDA/genética , Secuencia de Aminoácidos , Antígenos Virales/genética , Antígenos Virales/inmunología , Sitios de Unión , Anticuerpos ampliamente neutralizantes/química , Linfocitos T CD4-Positivos/química , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Cristalografía por Rayos X , Epítopos/genética , Epítopos/inmunología , Anticuerpos Anti-VIH/química , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/metabolismo , Proteínas gp160 de Envoltorio del VIH/química , Proteínas gp160 de Envoltorio del VIH/genética , Proteínas gp160 de Envoltorio del VIH/metabolismo , Proteína gp41 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/genética , Proteína gp41 de Envoltorio del VIH/metabolismo , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/química , VIH-1/genética , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Ingeniería de Proteínas/métodos , Dominios y Motivos de Interacción de Proteínas
17.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33514660

RESUMEN

An effective vaccine that can protect against HIV infection does not exist. A major reason why a vaccine is not available is the high mutability of the virus, which enables it to evolve mutations that can evade human immune responses. This challenge is exacerbated by the ability of the virus to evolve compensatory mutations that can partially restore the fitness cost of immune-evading mutations. Based on the fitness landscapes of HIV proteins that account for the effects of coupled mutations, we designed a single long peptide immunogen comprising parts of the HIV proteome wherein mutations are likely to be deleterious regardless of the sequence of the rest of the viral protein. This immunogen was then stably expressed in adenovirus vectors that are currently in clinical development. Macaques immunized with these vaccine constructs exhibited T-cell responses that were comparable in magnitude to animals immunized with adenovirus vectors with whole HIV protein inserts. Moreover, the T-cell responses in immunized macaques strongly targeted regions contained in our immunogen. These results suggest that further studies aimed toward using our vaccine construct for HIV prophylaxis and cure are warranted.


Asunto(s)
Vacunas contra el SIDA/inmunología , Adenoviridae/metabolismo , Vectores Genéticos/metabolismo , VIH-1/inmunología , Proteoma/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos Virales/inmunología , Femenino , Infecciones por VIH/inmunología , Inmunización , Macaca mulatta , Masculino , Linfocitos T Citotóxicos/inmunología , Proteínas Virales/química , Proteínas Virales/metabolismo
18.
Indian J Public Health ; 68(2): 239-242, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38953812

RESUMEN

INTRODUCTION: India has run a nationwide vaccination campaign against COVID-19, which has recently introduced a precaution (third) dose for health workers. This study assessed the perception and attitude of health workers toward the Indian vaccination campaign against COVID-19, with an emphasis on this major change. MATERIALS AND METHODS: A printed questionnaire was distributed among health-care workers at the Medical College of West Bengal. The completed forms were analyzed. RESULTS: Most of the participants were doctors (83.7%). Although all had received two doses of vaccine before, 44.4% were unwilling to be vaccinated with the third dose in the present scenario. The majority (63.8%) of the patients were concerned about side effects. The emergence of new COVID strains (65.6%) was viewed as a threat to the effectiveness of the vaccines. Participants with higher age, comorbidities, and those with the perception that the third dose was being introduced appropriately and would be effective against newer strains of the vaccine tended to be more willing to get vaccinated with the precaution dose compared to their counterparts. CONCLUSION: A dilemma regarding the acceptance of precaution doses was noted among health workers. This warrants the availability of more comprehensive information to increase acceptance of these vaccines.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Personal de Salud , Humanos , India , Vacunas contra la COVID-19/administración & dosificación , Masculino , COVID-19/prevención & control , Femenino , Adulto , Personal de Salud/psicología , SARS-CoV-2 , Actitud del Personal de Salud , Persona de Mediana Edad , Encuestas y Cuestionarios , Vacunación/psicología , Adulto Joven , Vacilación a la Vacunación/psicología
19.
Biophys J ; 122(13): 2757-2772, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37277993

RESUMEN

Long noncoding RNAs (lncRNAs) perform several important functions in cells including cis-regulation of transcription. Barring a few specific cases, the mechanisms underlying transcriptional regulation by lncRNAs remain poorly understood. Transcriptional proteins can form condensates via phase separation at protein-binding loci (BL) on the genome (e.g., enhancers and promoters). lncRNA-coding genes are present at loci in close genomic proximity of these BL and these RNAs can interact with transcriptional proteins via attractive heterotypic interactions mediated by their net charge. Motivated by these observations, we propose that lncRNAs can dynamically regulate transcription in cis via charge-based heterotypic interactions with transcriptional proteins in condensates. To study the consequences of this mechanism, we developed and studied a dynamical phase-field model. We find that proximal lncRNAs can promote condensate formation at the BL. Vicinally localized lncRNA can migrate to the BL to attract more protein because of favorable interaction free energies. However, increasing the distance beyond a threshold leads to a sharp decrease in protein recruitment to the BL. This finding could potentially explain why genomic distances between lncRNA-coding genes and protein-coding genes are conserved across metazoans. Finally, our model predicts that lncRNA transcription can fine-tune transcription from neighboring condensate-controlled genes, repressing transcription from highly expressed genes and enhancing transcription of genes expressed at a low level. This nonequilibrium effect can reconcile conflicting reports that lncRNAs can enhance or repress transcription from proximal genes.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , Regulación de la Expresión Génica , Proteínas/genética , Cuerpos Nucleares , Expresión Génica
20.
PLoS Comput Biol ; 18(9): e1010563, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36156540

RESUMEN

The rise of SARS-CoV-2 variants and the history of outbreaks caused by zoonotic coronaviruses point to the need for next-generation vaccines that confer protection against variant strains. Here, we combined analyses of diverse sequences and structures of coronavirus spikes with data from deep mutational scanning to design SARS-CoV-2 variant antigens containing the most significant mutations that may emerge. We trained a neural network to predict RBD expression and ACE2 binding from sequence, which allowed us to determine that these antigens are stable and bind to ACE2. Thus, they represent viable variants. We then used a computational model of affinity maturation (AM) to study the antibody response to immunization with different combinations of the designed antigens. The results suggest that immunization with a cocktail of the antigens is likely to promote evolution of higher titers of antibodies that target SARS-CoV-2 variants than immunization or infection with the wildtype virus alone. Finally, our analysis of 12 coronaviruses from different genera identified the S2' cleavage site and fusion peptide as potential pan-coronavirus vaccine targets.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA