Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 25(12): 3337-3349, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31501510

RESUMEN

Post-traumatic stress disorder (PTSD) impacts many veterans and active duty soldiers, but diagnosis can be problematic due to biases in self-disclosure of symptoms, stigma within military populations, and limitations identifying those at risk. Prior studies suggest that PTSD may be a systemic illness, affecting not just the brain, but the entire body. Therefore, disease signals likely span multiple biological domains, including genes, proteins, cells, tissues, and organism-level physiological changes. Identification of these signals could aid in diagnostics, treatment decision-making, and risk evaluation. In the search for PTSD diagnostic biomarkers, we ascertained over one million molecular, cellular, physiological, and clinical features from three cohorts of male veterans. In a discovery cohort of 83 warzone-related PTSD cases and 82 warzone-exposed controls, we identified a set of 343 candidate biomarkers. These candidate biomarkers were selected from an integrated approach using (1) data-driven methods, including Support Vector Machine with Recursive Feature Elimination and other standard or published methodologies, and (2) hypothesis-driven approaches, using previous genetic studies for polygenic risk, or other PTSD-related literature. After reassessment of ~30% of these participants, we refined this set of markers from 343 to 28, based on their performance and ability to track changes in phenotype over time. The final diagnostic panel of 28 features was validated in an independent cohort (26 cases, 26 controls) with good performance (AUC = 0.80, 81% accuracy, 85% sensitivity, and 77% specificity). The identification and validation of this diverse diagnostic panel represents a powerful and novel approach to improve accuracy and reduce bias in diagnosing combat-related PTSD.


Asunto(s)
Personal Militar , Trastornos por Estrés Postraumático , Veteranos , Biomarcadores , Encéfalo , Humanos , Masculino , Trastornos por Estrés Postraumático/diagnóstico , Trastornos por Estrés Postraumático/genética
2.
Biomarkers ; 26(8): 703-717, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34555995

RESUMEN

Fracture non-union is a significant orthopaedic problem affecting a substantial number of patients yearly. Treatment of nonunions is devastating to patients and costly to the healthcare system. Unfortunately, the diagnosis of non-union is typically made in a reactionary fashion by an orthopaedic surgeon based on clinical assessment and radiographic features several months into treatment. For this reason, investigators have been trying to develop prediction algorithms; however, these have relied on population-based approaches and lack the predictive capability necessary to make individual treatment decisions. There is also a growing body of literature focussed on identifying blood biomarkers that are associated with non-union. This review describes the research that has been done in this area. Further studies of patient-centered, precision medicine approaches will likely improve fracture non-union diagnostic/prognostic capabilities.


Asunto(s)
Biomarcadores/sangre , Curación de Fractura , Fracturas no Consolidadas/sangre , Fracturas no Consolidadas/cirugía , Fosfatasa Alcalina/sangre , Colágeno Tipo I/sangre , Citocinas/sangre , Fracturas no Consolidadas/diagnóstico , Humanos , Péptidos y Proteínas de Señalización Intercelular/sangre , Osteocalcina/sangre , Fragmentos de Péptidos/sangre , Péptidos/sangre , Valor Predictivo de las Pruebas , Procolágeno/sangre , Pronóstico , Medición de Riesgo/métodos , Medición de Riesgo/estadística & datos numéricos , Factores de Riesgo , Factores de Tiempo
3.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33807089

RESUMEN

Clinical, epidemiological, and experimental evidence demonstrate non-cancer, cardiovascular, and endocrine effects of ionizing radiation exposure including growth hormone deficiency, obesity, metabolic syndrome, diabetes, and hyperinsulinemia. Insulin-like growth factor-1 (IGF-1) signaling perturbations are implicated in development of cardiovascular disease and metabolic syndrome. The minipig is an emerging model for studying radiation effects given its high analogy to human anatomy and physiology. Here we use a minipig model to study late health effects of radiation by exposing male Göttingen minipigs to 1.9-2.0 Gy X-rays (lower limb tibias spared). Animals were monitored for 120 days following irradiation and blood counts, body weight, heart rate, clinical chemistry parameters, and circulating biomarkers were assessed longitudinally. Collagen deposition, histolopathology, IGF-1 signaling, and mRNA sequencing were evaluated in tissues. Our findings indicate a single exposure induced histopathological changes, attenuated circulating IGF-1, and disrupted cardiac IGF-1 signaling. Electrolytes, lipid profiles, liver and kidney markers, and heart rate and rhythm were also affected. In the heart, collagen deposition was significantly increased and transforming growth factor beta-1 (TGF-beta-1) was induced following irradiation; collagen deposition and fibrosis were also observed in the kidney of irradiated animals. Our findings show Göttingen minipigs are a suitable large animal model to study long-term effects of radiation exposure and radiation-induced inhibition of IGF-1 signaling may play a role in development of late organ injuries.


Asunto(s)
Biomarcadores , Factor I del Crecimiento Similar a la Insulina/metabolismo , Miocardio/metabolismo , Traumatismos por Radiación/metabolismo , Transducción de Señal/efectos de la radiación , Animales , Células Sanguíneas/metabolismo , Células Sanguíneas/efectos de la radiación , Peso Corporal/efectos de la radiación , Colágeno/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta en la Radiación , Fibrosis/etiología , Regulación de la Expresión Génica/efectos de la radiación , Frecuencia Cardíaca/efectos de la radiación , Hematopoyesis/efectos de la radiación , Metabolismo de los Lípidos/efectos de la radiación , Especificidad de Órganos/efectos de la radiación , Traumatismos por Radiación/genética , Porcinos
4.
J Neurosci Res ; 96(7): 1311-1323, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29633335

RESUMEN

The bidirectional role of gut-brain axis that integrates the gut and central nervous system activities has recently been investigated. We studied "cage-within-cage resident-intruder" all-male model, where subject male mice (C57BL/6J) are exposed to aggressor mice (SJL albino), and gut microbiota-derived metabolites were identified in plasma after 10 days of exposure. We assessed 16S ribosomal RNA gene from fecal samples collected daily from these mice during the 10-day study. Alpha diversity using Chao indices indicated no change in diversity in aggressor-exposed samples. The abundance profile showed the top phyla were Firmicutes and Bacteroidetes, Tenericutes, Verrucomicrobia, Actinobacteria and Proteobacteria, respectively. The phyla Firmicutes and Bacteroidetes are vulnerable to PTSD-eliciting stress and the Firmicutes/Bacteroidetes ratio increases with stress. Principal coordinate analysis showed the control and aggressor-exposed samples cluster separately where samples from early time points (day 1-3) clustered together and were distinct from late time points (day 4-9). The genus-based analysis revealed all control time points clustered together and aggressor-exposed samples had multiple clusters. The decrease in proportion of Firmicutes after aggressor exposure persisted throughout the study. The proportion of Verrucomicrobia immediately decreased and was significantly shifted at most of the later time points. The genus Oscillospira, Lactobacillus, Akkermansia and Anaeroplasma are the top four genera that differed between control and stressor-exposed mice. The data showed immediate effect on microbiome composition during a 10 day time period of stress exposure. Studying the longitudinal effects of a stressor is an important step toward an improved mechanistic understanding of the microbiome dynamics.


Asunto(s)
Heces/microbiología , Microbioma Gastrointestinal , Trastornos por Estrés Postraumático/microbiología , Animales , Bacteroidetes/aislamiento & purificación , Firmicutes/aislamiento & purificación , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Proteobacteria/aislamiento & purificación
5.
Metabolomics ; 15(1): 2, 2018 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-30830480

RESUMEN

INTRODUCTION: Pneumonic plague is caused by the aerosolized form of Yersinia pestis and is a highly virulent infection with complex clinical consequences, and without treatment, the fatality rate approaches 100%. The exact mechanisms of disease progression are unclear, with limited work done using metabolite profiling to study disease progression. OBJECTIVE: The aim of this pilot study was to profile the plasma metabolomics in an animal model of Y. pestis infection. METHODS: In this study, African Green monkeys were challenged with the highly virulent, aerosolized Y. pestis strain CO92, and untargeted metabolomics profiling of plasma was performed using liquid and gas chromatography with mass spectrometry. RESULTS: At early time points post-exposure, we found significant increases in polyunsaturated, long chain fatty acid metabolites with p values ranging from as low as 0.000001 (ratio = 1.94) for the metabolite eicosapentaenoate to 0.04 (ratio = 1.36) for the metabolite adrenate when compared to time-matched controls. Multiple acyl carnitines metabolites were increased at earlier time points and could be a result of fatty acid oxidation defects with p values ranging from as low as 0.00001 (ratio = 2.95) for the metabolite octanoylcarnitine to 0.04 (ratio = 1.33) for metabolite deoxycarnitine when compared to time-matched controls. Dicarboxylic acids are important metabolic products of fatty acids oxidation, and when compared to time matched controls, were higher at earlier time points where metabolite tetradecanedioate has a ratio of 4.09 with significant p value of 0.000002 and adipate with a ratio of 1.12 and p value of 0.004. The metabolites from lysolipids (with significant p values ranging from 0.00006 for 1-oleoylglycerophosphoethanolamine to 0.04 for 1-stearoylglycerophosphoethanolamine and a ratio of 0.47 and 0.78, respectively) and bile acid metabolism (with significant p values ranging from 0.02 for cholate to 0.04 for deoxycholate and a ratio of 0.39 and 0.66, respectively) pathways were significantly lower compared to their time-matched controls during the entire course of infection. Metabolite levels from amino acid pathways were disrupted, and a few from the leucine, isoleucine and valine pathway were significantly higher (p values ranging from 0.002 to 0.04 and ratios ranging from 1.3 to 1.5, respectively), whereas metabolites from the urea cycle, arginine and proline pathways were significantly lower (p values ranging from 0.00008 to 0.02 and ratios ranging from 0.5 to 0.7, respectively) during the course of infection. CONCLUSIONS: The involvement of several lipid pathways post-infection suggested activation of pathways linked to inflammation and oxidative stress. Metabolite data further showed increased energy demand, and multiple metabolites indicated potential hepatic dysfunction. Integration of blood metabolomics and transcriptomics data identified linoleate as a core metabolite with cross-talk with multiple genes from various time points. Collectively, the data from this study provided new insights into the mechanisms of Y. pestis pathogenesis that may aid in development of therapeutics.


Asunto(s)
Metabolómica/métodos , Yersinia pestis/metabolismo , Animales , Betaína/análogos & derivados , Betaína/metabolismo , Carnitina/metabolismo , Chlorocebus aethiops , Modelos Animales de Enfermedad , Cromatografía de Gases y Espectrometría de Masas
6.
Am J Physiol Gastrointest Liver Physiol ; 312(6): G559-G571, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28336545

RESUMEN

The magnitude, temporal dynamics, and physiological effects of intestinal microbiome responses to physiological stress are poorly characterized. This study used a systems biology approach and a multiple-stressor military training environment to determine the effects of physiological stress on intestinal microbiota composition and metabolic activity, as well as intestinal permeability (IP). Soldiers (n = 73) were provided three rations per day with or without protein- or carbohydrate-based supplements during a 4-day cross-country ski-march (STRESS). IP was measured before and during STRESS. Blood and stool samples were collected before and after STRESS to measure inflammation, stool microbiota, and stool and plasma global metabolite profiles. IP increased 62 ± 57% (mean ± SD, P < 0.001) during STRESS independent of diet group and was associated with increased inflammation. Intestinal microbiota responses were characterized by increased α-diversity and changes in the relative abundance of >50% of identified genera, including increased abundance of less dominant taxa at the expense of more dominant taxa such as Bacteroides Changes in intestinal microbiota composition were linked to 23% of metabolites that were significantly altered in stool after STRESS. Together, pre-STRESS Actinobacteria relative abundance and changes in serum IL-6 and stool cysteine concentrations accounted for 84% of the variability in the change in IP. Findings demonstrate that a multiple-stressor military training environment induced increases in IP that were associated with alterations in markers of inflammation and with intestinal microbiota composition and metabolism. Associations between IP, the pre-STRESS microbiota, and microbiota metabolites suggest that targeting the intestinal microbiota could provide novel strategies for preserving IP during physiological stress.NEW & NOTEWORTHY Military training, a unique model for studying temporal dynamics of intestinal barrier and intestinal microbiota responses to stress, resulted in increased intestinal permeability concomitant with changes in intestinal microbiota composition and metabolism. Prestress intestinal microbiota composition and changes in fecal concentrations of metabolites linked to the microbiota were associated with increased intestinal permeability. Findings suggest that targeting the intestinal microbiota could provide novel strategies for mitigating increases in intestinal permeability during stress.


Asunto(s)
Bacterias/metabolismo , Microbioma Gastrointestinal , Absorción Intestinal , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Estrés Fisiológico , Adolescente , Factores de Edad , Carbohidratos de la Dieta/administración & dosificación , Carbohidratos de la Dieta/metabolismo , Proteínas en la Dieta/administración & dosificación , Proteínas en la Dieta/metabolismo , Metabolismo Energético , Heces/microbiología , Femenino , Interacciones Huésped-Patógeno , Humanos , Mediadores de Inflamación/sangre , Masculino , Metabolómica/métodos , Medicina Militar , Noruega , Estado Nutricional , Permeabilidad , Resistencia Física , Biología de Sistemas , Factores de Tiempo , Adulto Joven
7.
Proc Natl Acad Sci U S A ; 111(8): 3188-93, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24516145

RESUMEN

Posttraumatic stress disorder (PTSD) is a common condition induced by life-threatening stress, such as that experienced by soldiers under battlefield conditions. Other than the commonly recognized behavioral and psychological dysfunction, epidemiological studies have also revealed that PTSD patients have a higher risk of other diseases, such as cardiovascular disorders. Using a PTSD mouse model, we investigated the longitudinal transcriptomic changes in heart tissues after the exposure to stress through intimidation. Our results revealed acute heart injury associated with the traumatic experience, reflecting the underlying biological injury processes of the immune response, extracellular matrix remodeling, epithelial-to-mesenchymal cell transitions, and cell proliferation. Whether this type of injury has any long-term effects on heart function is yet to be determined. The differing responses to stress leading to acute heart injury in different inbred strains of mice also suggest that this response has a genetic as well as an environmental component. Accordingly, the results from this study suggest a molecular basis for the observed higher risk of cardiovascular disorders in PTSD patients, which raises the likelihood of cardiac dysfunction induced by long-term stress exposures.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Miocarditis/etiología , Miocarditis/metabolismo , Trastornos por Estrés Postraumático/fisiopatología , Estrés Psicológico/complicaciones , Transcriptoma/fisiología , Animales , Línea Celular , Proliferación Celular , Transición Epitelial-Mesenquimal/fisiología , Matriz Extracelular/fisiología , Perfilación de la Expresión Génica , Humanos , Estudios Longitudinales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Análisis por Micromatrices , Trastornos por Estrés Postraumático/etiología , Estrés Psicológico/inmunología , Biología de Sistemas
8.
BMC Microbiol ; 15: 12, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25649790

RESUMEN

BACKGROUND: Participation of renal cells in the pathogenesis of staphylococcal enterotoxin B (SEB) is critical for late cleansing and sequestration of the antigens facilitated by CD1d mediated antigen sensing and recognition. This is a noted deviation from the typical antigen recognition process that recruits the major histocompatibility complex class II (MHC II) molecules. The immunological importance of CD1d is underscored by its influences on the performances of natural killer T-cells and thereby mediates the innate and adaptive immune systems. RESULTS: Using diffraction-based dotReady™ immunoassays, the present study showed that SEB directly and specifically conjugated to CD1d. The specificity of the conjugation between SEB and CD1d expressed on human renal proximal tubule epithelial cells (RPTEC) was further established by selective inhibition of CD1d prior to its exposure to SEB. We found that SEB induced the expression of CD1d on the cell surface prompting a rapid conjugation between them. The mRNA transcripts encoding CD1d remained elevated potentially after completing the antigen cleansing process. CONCLUSION: Molecular targets associated with the delayed pathogenic response have essential therapeutic values. Particularly in the event of bioterrorism, the caregivers are typically able to intervene much later than the toxic exposures. Given circumstances mandate a paradigm shift from the conventional therapeutic strategy that counts on targeting the host markers responding to the early assault of pathogens. We demonstrated the role of CD1d in the late stage of pathogen recognition and cleansing, and thereby underscored its clinical potential in treating bioweaponizable antigens, such as Staphylococcal enterotoxin B (SEB).


Asunto(s)
Antígenos CD1d/metabolismo , Enterotoxinas/metabolismo , Células Epiteliales/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Células Cultivadas , Humanos
9.
BMC Genomics ; 15: 659, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25102863

RESUMEN

BACKGROUND: Microgravity facilitates the opportunistic infections by augmenting the pathogenic virulence and suppressing the host resistance. Hence the extraterrestrial infections may activate potentially novel bionetworks different from the terrestrial equivalent, which could only be probed by investigating the host-pathogen relationship with a minimum of terrestrial bias. RESULTS: We customized a cell culture module to expose human endothelial cells to lipopolysaccharide (LPS). The assay was carried out onboard the STS-135 spaceflight, and a concurrent ground study constituted the baseline. Transcriptomic investigation revealed a possible immune blunting in microgravity suppressing in particular Lbp, MyD88 and MD-2, which encode proteins responsible for early LPS uptake. Certain cytokines, such as IL-6 and IL-8, surged in response to LPS insult in microgravity, as suggested by the proteomics study. Contrasting proteomic expressions of B2M, TIMP-1 and VEGRs suggested impaired pro-survival adaptation and healing mechanisms. Differential expression of miR-200a and miR-146b suggested the susceptibility of hosts in spaceflight to oxidative stress and further underscored the influence of microgravity on the immunity. CONCLUSIONS: A molecular interpretation explaining the etiology of the microgravitational impact on the host-pathogen relationship elucidated comprehensive immune blunting of the host cells responding to LPS challenges. Longer LPS exposure prompted a delayed host response, potentially ineffectual in preventing pathogens from opportunistic invasion. Significant consequences include the subsequent failure in recruiting the growth factors and a debilitated apoptosis. Follow up studies with larger sample size are warranted.


Asunto(s)
Células Endoteliales/metabolismo , Genómica/métodos , Lipopolisacáridos/farmacología , Ingravidez , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular , Análisis por Conglomerados , Citocinas/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/inmunología , Redes Reguladoras de Genes/efectos de los fármacos , Genoma Humano , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Oligonucleótidos/metabolismo , Análisis de Componente Principal , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Vuelo Espacial , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
10.
Front Microbiol ; 15: 1337368, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505556

RESUMEN

Meta-organisms encompassing the host and resident microbiota play a significant role in combatting diseases and responding to stress. Hence, there is growing traction to build a knowledge base about this ecosystem, particularly to characterize the bidirectional relationship between the host and microbiota. In this context, metabolomics has emerged as the major converging node of this entire ecosystem. Systematic comprehension of this resourceful omics component can elucidate the organism-specific response trajectory and the communication grid across the ecosystem embodying meta-organisms. Translating this knowledge into designing nutraceuticals and next-generation therapy are ongoing. Its major hindrance is a significant knowledge gap about the underlying mechanisms maintaining a delicate balance within this ecosystem. To bridge this knowledge gap, a holistic picture of the available information has been presented with a primary focus on the microbiota-metabolite relationship dynamics. The central theme of this article is the gut-brain axis and the participating microbial metabolites that impact cerebral functions.

11.
J Indian Prosthodont Soc ; 13(3): 352-7, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24431759

RESUMEN

Acquired palatal defects results from cancer resection, whereas cleft palate is the main cause of congenital defects. Both these condition leads to impaired speech intelligibility, seepage of nasal secretions into the oral cavity and vice versa while difficulty in swallowing and hyper nasality is also eminent. In this case report three different technique for treating velopharyngeal disorders have been described.

12.
Comput Struct Biotechnol J ; 21: 4729-4742, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822559

RESUMEN

A clinical incident is typically manifested by several molecular events; therefore, it seems logical that a successful diagnosis, prognosis, or stratification of a clinical landmark require multiple biomarkers. In this report, we presented a machine learning pipeline, namely "Biomarker discovery process at binomial decision point" (2BDP) that took an integrative approach in systematically curating independent variables (e.g., multiple molecular markers) to explain an output variable (e.g., clinical landmark) of binary in nature. In a logical sequence, 2BDP includes feature selection, unsupervised model development and cross validation. In the present work, the efficiency of 2BDP was demonstrated by finding three biomarker panels that independently explained three stages of Alzheimer's disease (AD) marked as Braak stages I, II and III, respectively. We designed three assortments from the entire cohort based on these Braak stages; subsequently, each assortment was split into two populations at Braak score I, II or III. 2BDP systematically integrated random forest and logistic regression fitting model to find biomarker panels with minimum features that explained these three assortments, e.g., significantly differentiated two populations segregated by Braak stage I, II or III, respectively. Thereafter, the efficacies of these panels were measured by the area under the curve (AUC) values of the receiver operating characteristic (ROC) plot. The AUC-ROC was calculated by two cross-validation methods. Final set of gene markers was a mix of novel and a priori established AD signatures. These markers were weighted by unique coefficients and linearly connected in a group of 2-10 to explain Braak stage I, II or III by AUC ≥ 0.8. Small sample size and a lack of distinctly recruited Training and Test sets were the limitations of the present undertaking; yet 2BDP demonstrated its capability to curate a panel of optimum numbers of biomarkers to describe the outcome variable with high efficacy.

13.
Innov Clin Neurosci ; 20(10-12): 12-17, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38193100

RESUMEN

Point-of-care genetic testing for single nucleotide polymorphisms (SNPs) to improve psychiatric treatment in outpatient settings remains a challenge. The presence or absence of certain genomic alleles determines the activity of the encoded enzymes, which ultimately defines the individual's drug metabolism rate. Classification of poor metabolizers (PMs) and rapid/ultrarapid metabolizers (RMs/UMs) would facilitate personalization and precision of treatment. However, current pharmacogenomic (PGx) testing of multiple genes is comprehensive and requires quantitative analyses for interpretations. We recommend qualitative, fast-track, point-of-care screenings, which are one- or-two gene-based analyses, as a quick initial screening tool to potentially eliminate the need for an expensive quantitative send-out test, which is a costly and lengthy process. We speculate that these tests will be relevant in two major scenarios: 1) clinical psychiatry for treating disease states such as major depressive disorder (MDD) and posttraumatic stress disorder (PTSD), where trial and error is still the mainstay of drug selection and symptom management, a process that is associated with significant delay in optimizing individualized treatment and dose, and thus response; and 2) pain management, where quickly determining an effective level of analgesia while avoiding a toxic level can cause a drastic improvement in mental health.

14.
J Nutr Biochem ; 116: 109309, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36871836

RESUMEN

Fish oil or its major constituents, namely omega-3 poly-unsaturated fatty acid (n3-PUFA), are popular supplements to improve neurogenesis, neuroprotection, and overall brain functions. Our objective was to probe the implications of fat enriched diet with variable PUFAs supplements in ameliorating social stress (SS). We fed mice on either of the three diet types, namely the n-3 PUFA-enriched diet (ERD, n3:n6= 7:1), a balanced diet (BLD, n3:n6= 1:1) or a standard lab diet (STD, n3:n6= 1:6). With respect to the gross fat contents, the customized special diets, namely ERD and BLD were extreme diet, not reflecting the typical human dietary composition. Aggressor-exposed SS (Agg-E SS) model triggered behavioral deficiencies that lingered for 6 weeks (6w) post-stress in mice on STD. ERD and BLD elevated bodyweights but potentially helped in building the behavioral resilience to SS. STD adversely affected the gene networks of brain transcriptomics associated with the cell mortality, energy homeostasis and neurodevelopment disorder. Diverging from the ERD's influences on these networks, BLD showed potential long-term benefits in combatting Agg-E SS. The gene networks linked to cell mortality and energy homeostasis, and their subfamilies, such as cerebral disorder and obesity remained at the baseline level of Agg-E SS mice on BLD 6w post-stress. Moreover, neurodevelopment disorder network and its subfamilies like behavioral deficits remained inhibited in the cohort fed on BLD 6w post Agg-E SS.


Asunto(s)
Ácidos Grasos Omega-3 , Estrés Psicológico , Animales , Ratones , Dieta , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Insaturados , Aceites de Pescado/farmacología , Estrés Psicológico/dietoterapia , Estrés Psicológico/prevención & control
15.
J Lab Physicians ; 15(3): 399-408, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37564231

RESUMEN

Aim Different deposition patterns and grading systems used to define and identify DAI remain discordant and to date these are a challenge in clinical practice. Our main objective was to study the post-mortem axonal changes and develop a grading system to identify DAI on the basis of histopathological and immunoreactive ß-amyloid precursor protein (ß-APP) observations in severe TBI cases. Methods Prospective study with 35 decedents with sTBI (GCS score ≤ 8) was conducted and samples were collected from three different sites-corpus callosum, thalamus and brain stem. Serial sections from each site were stained with hematoxylin and eosin (H&E), and immunohistochemistry (IHC) of ß-APP. Results We developed a grading system based on histopathological characteristics to assess the overall damage of axonal injury. We found maximum histopathological changes in cases with prolonged stay. Corpus callosum showed maximum changes in both gradings. Curiously, we also detected axonal swellings with H&E staining. Usually neglected, the thalamus also showed significant histopathological and immunoreactive changes for sTBI. Conclusion Our study based on histopathological and ß-APP scoring system to define and identify DAI thus facilitates accurate diagnosis of DAI post mortem, which has forensic implications, and may further contribute toward survival and improvement of quality of life of sTBI patients.

16.
Sci Rep ; 13(1): 18496, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898651

RESUMEN

Early diagnosis of lethal radiation is imperative since its intervention time windows are considerably short. Hence, ideal diagnostic candidates of radiation should be easily accessible, enable to inform about the stress history and objectively triage subjects in a time-efficient manner. Therefore, the small molecules such as metabolites and microRNAs (miRNAs) from plasma are legitimate biomarker candidate for lethal radiation. Our objectives were to comprehend the radiation-driven molecular pathogenesis and thereby determine biomarkers of translational potential. We investigated an established minipig model of LD70/45 total body irradiation (TBI). In this pilot study, plasma was collected pre-TBI and at multiple time points post-TBI. The majority of differentially expressed miRNAs and metabolites were perturbed immediately after TBI that potentially underlined the severity of its acute impact. The integrative network analysis of miRNA and metabolites showed a cohesive response; the early and consistent perturbations of networks were linked to cancer and the shift in musculoskeletal atrophy synchronized with the comorbidity-networks associated with inflammation and bioenergy synthesis. Subsequent comparative pipeline delivered 92 miRNAs, which demonstrated sequential homology between human and minipig, and potentially similar responses to lethal radiation across these two species. This panel promised to retrospectively inform the time since the radiation occurred; thereby could facilitate knowledge-driven interventions.


Asunto(s)
MicroARN Circulante , MicroARNs , Humanos , Animales , Porcinos , Porcinos Enanos/genética , Proyectos Piloto , Estudios Retrospectivos , MicroARNs/metabolismo , Biomarcadores
17.
Sci Rep ; 13(1): 213, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36604516

RESUMEN

Sleep restriction alters gut microbiota composition and intestinal barrier function in rodents, but whether similar effects occur in humans is unclear. This study aimed to determine the effects of severe, short-term sleep restriction on gut microbiota composition and intestinal permeability in healthy adults. Fecal microbiota composition, measured by 16S rRNA sequencing, and intestinal permeability were measured in 19 healthy men (mean ± SD; BMI 24.4 ± 2.3 kg/m2, 20 ± 2 years) undergoing three consecutive nights of adequate sleep (AS; 7-9 h sleep/night) and restricted sleep (SR; 2 h sleep/night) in random order with controlled diet and physical activity. α-diversity measured by amplicon sequencing variant (ASV) richness was 21% lower during SR compared to AS (P = 0.03), but α-diversity measured by Shannon and Simpson indexes did not differ between conditions. Relative abundance of a single ASV within the family Ruminococcaceae was the only differentially abundant taxon (q = 0.20). No between-condition differences in intestinal permeability or ß-diversity were observed. Findings indicated that severe, short-term sleep restriction reduced richness of the gut microbiota but otherwise minimally impacted community composition and did not affect intestinal permeability in healthy young men.


Asunto(s)
Microbioma Gastrointestinal , Adulto , Masculino , Humanos , ARN Ribosómico 16S/genética , Intestinos , Sueño , Heces , Permeabilidad
18.
Mil Med ; 187(9-10): e1086-e1090, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34453167

RESUMEN

INTRODUCTION: The glia-operated glymphatic system, analogous to but separate from the lymphatics in the periphery, is unique to brain and retina, where it is very closely aligned with the arteriolar system. This intimate relationship leads to a "blood vessel like" distribution pattern of glymphatic vessels in the brain. The spatial relationship of glymphatics, including their essential component aquaporin-4 with vascular pericytes of brain arterioles is critical to functionality and is termed "polarization". MATERIALS AND METHODS: We review the available literature on the factors affecting the resting state of glymphatics under normal conditions, including the important role of sleep in supporting normal glymphatic function (including waste removal) as well as the critical role of "polarization" under normal conditions. We then examine the effects of traumatic brain injury (TBI) or seizures on the glymphatic system and its state of "polarization". RESULTS: Injury, such as TBI, can disrupt polarization resulting in "depolarization" leading to brain edema. CONCLUSION: Damage to the glymphatic system might explain the brain edema so often seen following TBI or other insult. Moreover, similar damage should be expected in response to seizures, which can often be associated with chemical exposures as well as with TBI. Military operations, whether night operations or continuous operations, quite often impose limitations on sleep. As glymphatic function is sleep-dependent, sleep deprivation alone could compromise glymphatic function, as well, and might in addition, explain some of the well-known performance deficits associated with sleep deprivation. Possible effects of submarine and diving operations, chemical agents (including seizures), as well as high altitude exposure and other threats should be considered. In addition to the brain, the retina is also served and protected by the glymphatic system. Accordingly, the effect of military-related risks (e.g., exposure to laser or other threats) to retinal glymphatic function should also be considered. An intact glymphatic system is absolutely essential to support normal central nervous system functionality, including cognition. This effects a broad range of military threats on brain and retinal glymphatics should be explored. Possible preventive and therapeutic measures should be proposed and evaluated, as well.


Asunto(s)
Edema Encefálico , Lesiones Traumáticas del Encéfalo , Personal Militar , Encéfalo , Lesiones Traumáticas del Encéfalo/complicaciones , Sistema Nervioso Central , Humanos , Convulsiones , Privación de Sueño
19.
Front Cell Infect Microbiol ; 12: 810815, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300376

RESUMEN

The association between the shift in fecal resident microbiome and social conflicts with long-term consequences on psychological plasticity, such as the development of post-traumatic stress disorder (PTSD), is yet to be comprehended. We developed an aggressor-exposed (Agg-E) social stress (SS) mouse model to mimic warzone-like conflicts, where random life-threatening interactions took place between naïve intruder mice and aggressive resident mice. Gradually these Agg-E mice developed distinct characteristics simulating PTSD-like aspects, whereas the control mice not exposed to Agg-E SS demonstrated distinct phenotypes. To further investigate the role of Agg-E SS on the resident microbiome, 16S rRNA gene sequencing was assayed using fecal samples collected at pre-, during, and post-SS time points. A time agonist shift in the fecal microbial composition of Agg-E mice in contrast to its controls suggested a persistent impact of Agg-E SS on resident microbiota. At the taxonomic level, Agg-E SS caused a significant shift in the time-resolved ratios of Firmicutes and Bacteroidetes abundance. Furthermore, Agg-E SS caused diverging shifts in the relative abundances of Verrucomicrobia and Actinobacteria. An in silico estimation of genomic potential identified a potentially perturbed cluster of bioenergetic networks, which became increasingly enriched with time since the termination of Agg-E SS. Supported by a growing number of studies, our results indicated the roles of the microbiome in a wide range of phenotypes that could mimic the comorbidities of PTSD, which would be directly influenced by energy deficiency. Together, the present work suggested the fecal microbiome as a potential tool to manage long-term effects of social conflicts, including the management of PTSD.


Asunto(s)
Microbiota , Trastornos por Estrés Postraumático , Animales , Modelos Animales de Enfermedad , Heces/microbiología , Masculino , Ratones , ARN Ribosómico 16S/genética , Trastornos por Estrés Postraumático/genética , Trastornos por Estrés Postraumático/psicología
20.
Biomedicines ; 10(6)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35740423

RESUMEN

Staphylococcus aureus, a gram-positive bacterium, causes toxic shock through the production of superantigenic toxins (sAgs) known as Staphylococcal enterotoxins (SE), serotypes A-J (SEA, SEB, etc.), and toxic shock syndrome toxin-1 (TSST-1). The chronology of host transcriptomic events that characterizes the response to the pathogenesis of superantigenic toxicity remains uncertain. The focus of this study was to elucidate time-resolved host responses to three toxins of the superantigenic family, namely SEA, SEB, and TSST-1. Due to the evolving critical role of melanocytes in the host's immune response against environmental harmful elements, we investigated herein the transcriptomic responses of melanocytes after treatment with 200 ng/mL of SEA, SEB, or TSST-1 for 0.5, 2, 6, 12, 24, or 48 h. Functional analysis indicated that each of these three toxins induced a specific transcriptional pattern. In particular, the time-resolved transcriptional modulations due to SEB exposure were very distinct from those induced by SEA and TSST-1. The three superantigens share some similarities in the mechanisms underlying apoptosis, innate immunity, and other biological processes. Superantigen-specific signatures were determined for the functional dynamics related to necrosis, cytokine production, and acute-phase response. These differentially regulated networks can be targeted for therapeutic intervention and marked as the distinguishing factors for the three sAgs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA