Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(40): 27438-27447, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37795799

RESUMEN

The accuracy of coupled-cluster methods for the computation of core-valence correction to atomization energy was assessed. Truncation levels up to CCSDTQP were considered together with (aug-)cc-pwCVnZ (n = D, T, Q, 5) basis sets and three different extrapolation techniques (canonical and flexible Helgaker formula and Riemann zeta function extrapolation). With the exception of CCSD, a more accurate correction can be obtained from a larger basis set using a lower-level coupled-cluster method, and not vice versa. For the CCSD(T) level, it also implies faster computations with modern codes. We also discussed the importance of moving to higher-order or all-electron methods for geometry optimizations. The present study provides the general knowledge needed for the most accurate state-of-the-art computations.

2.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555101

RESUMEN

The controllable synthesis of novel hybrid dendrimers composed of flexible and rigid components was accomplished via effective Cu-catalyzed azide-alkyne cycloaddition ("click") reaction between azide-functionalized carbosilane cores of two generations and monoethynyl-substituted hexaphenylbenzene dendron. A comprehensive analysis of the thermal and phase behavior of dendrimers allows us to detect a similar performance of dendrimers of both generations which, in our opinion, can be due to the similar ratio of rigid and flexible blocks in the dendrimers regardless the generation of carbosilane cores. The propensity to crystallization and ordering after the annealing procedure was confirmed by DSC and SWAXS. We found that hybrid dendrimers have a tendency to order depending on their constituents of different structures. This is in contrast to homogeneous dendrimers whose propensity to order is determined by the dendrimer molecule as a whole.


Asunto(s)
Dendrímeros , Dendrímeros/química , Azidas/química , Silanos/química , Alquinos/química
3.
Entropy (Basel) ; 23(12)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34945863

RESUMEN

The molar heat capacity of the first-generation hybrid dendrimer with a "carbosilane core/phenylene shell" structure was measured for the first time in the temperature range T = 6-600 K using a precise adiabatic vacuum calorimeter and DSC. In the above temperature interval, the glass transition of the studied compound was observed, and its thermodynamic characteristics were determined. The standard thermodynamic functions (the enthalpy, the entropy, and the Gibbs energy) of the hybrid dendrimer were calculated over the range from T = 0 to 600 K using the experimentally determined heat capacity. The standard entropy of formation of the investigated dendrimer was evaluated at T = 298.15 K. The obtained thermodynamic properties of the studied hybrid dendrimer were compared and discussed with the literature data for some of the first-generation organosilicon and pyridylphenylene dendrimers.

4.
Dalton Trans ; 50(34): 11852-11860, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34369506

RESUMEN

Although dendrimer supports have been known as key parts of nanocatalysts, the capability of rigid dendrimers for this function has not yet been reported. Here, the study is focused on ferrocenylmethylenetriazolyl-terminated dendrimers (FcMTPD) as supports of remarkably efficient nanogold and nanopalladium catalysts. A biphasic system is elaborated to evaluate the catalytic activity of FcMTPD-supported Au and Pd nanoparticles (NPs) for the reduction of 4-nitrophenol to 4-aminophenol by NaBH4 at 20 °C, and FcMTPD-supported PdNPs are found to be the best nanocatalysts with a rate constant kapp = 7.8 × 10-2 s-1. Excellent catalytic results are also obtained in this reaction for FcMTPD-supported AuNPs with a rate constant kapp = 5.6 × 10-2 s-1. For both Pd NPs and AuNPs, the kinetic results are shown to strongly depend on the method of preparation of these NPs that influences the NP size and thus their catalytic efficiency. The FcMTPD-stabilized PdNPs are easily recovered and reused at least 13 times, and their catalytic performance displays only a slight decrease during the first seven runs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA