Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(9): e46, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647069

RESUMEN

SifiNet is a robust and accurate computational pipeline for identifying distinct gene sets, extracting and annotating cellular subpopulations, and elucidating intrinsic relationships among these subpopulations. Uniquely, SifiNet bypasses the cell clustering stage, commonly integrated into other cellular annotation pipelines, thereby circumventing potential inaccuracies in clustering that may compromise subsequent analyses. Consequently, SifiNet has demonstrated superior performance in multiple experimental datasets compared with other state-of-the-art methods. SifiNet can analyze both single-cell RNA and ATAC sequencing data, thereby rendering comprehensive multi-omic cellular profiles. It is conveniently available as an open-source R package.


Asunto(s)
Análisis de la Célula Individual , Programas Informáticos , Análisis de la Célula Individual/métodos , Humanos , Anotación de Secuencia Molecular , Algoritmos , Biología Computacional/métodos , Análisis de Secuencia de ARN/métodos , Perfilación de la Expresión Génica/métodos , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Análisis por Conglomerados
2.
AIDS Behav ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38954172

RESUMEN

Long Acting Injectable (LAI) therapy to treat HIV is an alternative to daily oral medications. The success of early roll-out of LAI to eligible patients requires a better understanding of patients' awareness and interest in this novel therapy. We administered an electronic survey to patients attending an urban HIV clinic in the US South. Eligible participants were 18 + years old with a most recent HIV-1 viral load < 200 copies/ml, without any evidence of genotypic resistance to LAI components or chronic hepatitis B. Survey recipients were asked about current treatment, engagement in care, and knowledge of LAI. Between January-April 2023, 480 patients were screened; 319 were eligible, and 155 (49%) completed the survey. The majority (119, 77%) were aware of, and 87 (56%) were interested in LAI. In regression analysis, only age was associated with interest in LAI (OR 0.95, 95% CI 0.92,0.99). Among proposed benefits of injectables, ease of travel without pills, lack of daily pill-taking, and fewer medication interactions were most appealing. Among proposed concerns with injectables, higher cost and insurance coverage of the new medicine were most worrisome. A large majority of people with HIV (PWH) are aware of the newest treatment available, and just over half of our sample expressed interest in LAI. Older age was associated with lower interest in LAI. LAI is appealing for its convenience, privacy, and avoidance of drug interactions, while the increased costs associated with LAI need to be addressed.

3.
NPJ Vaccines ; 9(1): 38, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378950

RESUMEN

Human cytomegalovirus (HCMV) remains the most common congenital infection and infectious complication in immunocompromised patients. The most successful HCMV vaccine to date, an HCMV glycoprotein B (gB) subunit vaccine adjuvanted with MF59, achieved 50% efficacy against primary HCMV infection. A previous study demonstrated that gB/MF59 vaccinees were less frequently infected with HCMV gB genotype strains most similar to the vaccine strain than strains encoding genetically distinct gB genotypes, suggesting strain-specific immunity accounted for the limited efficacy. To determine whether vaccination with multiple HCMV gB genotypes could increase the breadth of anti-HCMV gB humoral and cellular responses, we immunized 18 female rabbits with monovalent (gB-1), bivalent (gB-1+gB-3), or pentavalent (gB-1+gB-2+gB-3+gB-4+gB-5) gB lipid nanoparticle-encapsulated nucleoside-modified RNA (mRNA-LNP) vaccines. The multivalent vaccine groups did not demonstrate a higher magnitude or breadth of the IgG response to the gB ectodomain or cell-associated gB compared to that of the monovalent vaccine. Also, the multivalent vaccines did not show an increase in the breadth of neutralization activity and antibody-dependent cellular phagocytosis against HCMV strains encoding distinct gB genotypes. Interestingly, peripheral blood mononuclear cell-derived gB-2-specific T-cell responses elicited by multivalent vaccines were of a higher magnitude compared to that of monovalent vaccinated animals against a vaccine-mismatched gB genotype at peak immunogenicity. Yet, no statistical differences were observed in T cell response against gB-3 and gB-5 variable regions among the three vaccine groups. Our data suggests that the inclusion of multivalent gB antigens is not an effective strategy to increase the breadth of anti-HCMV gB antibody and T cell responses. Understanding how to increase the HCMV vaccine protection breadth will be essential to improve the vaccine efficacy.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38753709

RESUMEN

Climate change poses one of the most significant modern threats to overall human health,especially for vulnerable populations including persons living with HIV (PLWH). In this perspective, we specifically explore the concept of immune resilience in human health and how climate change phenomena - including extreme weather events, food insecurity, pollution, and emerging diseases - may exacerbate immune dysfunction and comorbidities faced by PLWH and hinder access to HIV treatment and prevention services. Multidisciplinary, collaborative efforts are urgently needed to quantify these impacts, develop mitigation strategies, and strengthen policies and funding to bolster immune resilience for PLWH in the face of accelerating climate change.

5.
bioRxiv ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38826467

RESUMEN

Viral dynamics of acute HIV infection and HIV rebound following suspension of antiretroviral therapy may be qualitatively similar but must differ given, for one, development of adaptive immune responses. Understanding the differences of acute HIV infection and viral rebound dynamics in pediatric populations may provide insights into the mechanisms of viral control with potential implications for vaccine design and the development of effective targeted therapeutics for infants and children. Mathematical models have been a crucial tool to elucidate the complex processes driving viral infections within the host. Traditionally, acute HIV infection has been modeled with a standard model of viral dynamics initially developed to explore viral decay during treatment, while viral rebound has necessitated extensions of that standard model to incorporate explicit immune responses. Previous efforts to fit these models to viral load data have underscored differences between the two infection stages, such as increased viral clearance rate and increased death rate of infected cells during rebound. However, these findings have been predicated on viral load measurements from disparate adult individuals. In this study, we aim to bridge this gap, in infants, by comparing the dynamics of acute infection and viral rebound within the same individuals by leveraging an infant nonhuman primate Simian/Human Immunodeficiency Virus (SHIV) infection model. Ten infant Rhesus macaques (RMs) orally challenged with SHIV.C.CH505 375H dCT and given ART at 8 weeks post-infection. These infants were then monitored for up to 60 months post-infection with serial viral load and immune measurements. We use the HIV standard viral dynamics model fitted to viral load measurements in a nonlinear mixed effects framework. We find that the primary difference between acute infection and rebound is the increased death rate of infected cells during rebound. We use these findings to generate hypotheses on the effects of adaptive immune responses. We leverage these findings to formulate hypotheses to elucidate the observed results and provide arguments to support the notion that delayed viral rebound is characterized by a stronger CD8+ T cell response.

6.
bioRxiv ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38895223

RESUMEN

The presence of antibodies against HIV in infected children is associated with a greater capacity to control viremia in the absence of therapy. While the benefits of early antiretroviral treatment (ART) in infants are well documented, early ART may interfere with the development of antibody responses. In contrast to adults, early treated children lack detectable HIV-specific antibodies, suggesting a fundamental difference in HIV pathogenesis. Despite this potential adverse effect, early ART may decrease the size of the latent reservoir established early in infection in infants, which can be beneficial in viral control. Understanding the virologic and immunologic aspects of pediatric HIV is crucial to inform innovative targeted strategies for treating children living with HIV. In this study, we investigate how ART initiation time sets the stage for trade-offs in the latent reservoir establishment and the development of humoral immunity and how these, in turn, affect posttreatment dynamics. We also elucidate the biological function of antibodies in pediatric HIV. We employ mathematical modeling coupled with experimental data from an infant nonhuman primate Simian/Human Immunodeficiency Virus (SHIV) infection model. Infant Rhesus macaques (RMs) were orally challenged with SHIV.C.CH505 375H dCT four weeks after birth and started treatment at different times after infection. In addition to viral load measurements, antibody responses and latent reservoir sizes were measured. We estimate model parameters by fitting viral load measurements to the standard HIV viral dynamics model within a nonlinear fixed effects framework. This approach allows us to capture differences between rhesus macaques (RMs) that develop antibody responses or exhibit high latent reservoir sizes compared to those that do not. We find that neutralizing antibody responses are associated with increased viral clearance and decreased viral infectivity but decreased death rate of infected cells. In addition, the presence of detectable latent reservoir is associated with less robust immune responses. These results demonstrate that both immune response and latent reservoir dynamics are needed to understand post-rebound dynamics and point to the necessity of a comprehensive approach in tailoring personalized medical interventions.

7.
Epidemics ; 48: 100780, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38964130

RESUMEN

While the benefits of early antiretroviral therapy (ART) initiation in perinatally infected infants are well documented, early initiation is not always possible in postnatal pediatric HIV infections. The timing of ART initiation is likely to affect the size of the latent viral reservoir established, as well as the development of adaptive immune responses, such as the generation of neutralizing antibody responses against the virus. How these parameters impact the ability of infants to control viremia and the time to viral rebound after ART interruption is unclear and has never been modeled in infants. To investigate this question we used an infant nonhuman primate Simian/Human Immunodeficiency Virus (SHIV) infection model. Infant Rhesus macaques (RMs) were orally challenged with SHIV.C.CH505 375H dCT and either given ART at 4-7 days post-infection (early ART condition), at 2 weeks post-infection (intermediate ART condition), or at 8 weeks post-infection (late ART condition). These infants were then monitored for up to 60 months post-infection with serial viral load and immune measurements. To gain insight into early after analytic treatment interruption (ATI), we constructed mathematical models to investigate the effect of time of ART initiation in delaying viral rebound when treatment is interrupted, focusing on the relative contributions of latent reservoir size and autologous virus neutralizing antibody responses. We developed a stochastic mathematical model to investigate the joint effect of latent reservoir size, the autologous neutralizing antibody potency, and CD4+ T cell levels on the time to viral rebound for RMs rebounding up to 60 days post-ATI. We find that the latent reservoir size is an important determinant in explaining time to viral rebound in infant macaques by affecting the growth rate of the virus. The presence of neutralizing antibodies can also delay rebound, but we find this effect for high potency antibody responses only. Finally, we discuss the therapeutic implications of our findings.

8.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464092

RESUMEN

Human cytomegalovirus (HCMV) encodes four viral Fc-gamma receptors (vFcγRs) that counteract antibody-mediated activation in vitro , but their role in infection and pathogenesis is unknown. To examine the in vivo function of vFcγRs in animal hosts closely related to humans, we identified and characterized vFcγRs encoded by rhesus CMV (RhCMV). We demonstrate that Rh05, Rh152/151 and Rh173 represent the complete set of RhCMV vFcγRs, each displaying functional similarities to their respective HCMV orthologs with respect to antagonizing host FcγR activation in vitro . When RhCMV-naïve rhesus macaques were infected with vFcγR-deleted RhCMV, peak plasma viremia levels and anti-RhCMV antibody responses were comparable to wildtype infections. However, the duration of plasma viremia was significantly shortened in immunocompetent, but not in CD4+ T cell-depleted animals. Since vFcγRs were not required for superinfection, we conclude that vFcγRs delay control by virus-specific adaptive immune responses, particularly antibodies, during primary infection.

9.
Ann Appl Stat ; 17(1): 621-640, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38736649

RESUMEN

In immunology studies, flow cytometry is a commonly used multivariate single-cell assay. One key goal in flow cytometry analysis is to detect the immune cells responsive to certain stimuli. Statistically, this problem can be translated into comparing two protein expression probability density functions (pdfs) before and after the stimulus; the goal is to pinpoint the regions where these two pdfs differ. Further screening of these differential regions can be performed to identify enriched sets of responsive cells. In this paper, we model identifying differential density regions as a multiple testing problem. First, we partition the sample space into small bins. In each bin, we form a hypothesis to test the existence of differential pdfs. Second, we develop a novel multiple testing method, called TEAM (Testing on the Aggregation tree Method), to identify those bins that harbor differential pdfs while controlling the false discovery rate (FDR) under the desired level. TEAM embeds the testing procedure into an aggregation tree to test from fine- to coarse-resolution. The procedure achieves the statistical goal of pinpointing density differences to the smallest possible regions. TEAM is computationally efficient, capable of analyzing large flow cytometry data sets in much shorter time compared with competing methods. We applied TEAM and competing methods on a flow cytometry data set to identify T cells responsive to the cytomegalovirus (CMV)-pp65 antigen stimulation. With additional downstream screening, TEAM successfully identified enriched sets containing monofunctional, bifunctional, and polyfunctional T cells. Competing methods either did not finish in a reasonable time frame or provided less interpretable results. Numerical simulations and theoretical justifications demonstrate that TEAM has asymptotically valid, powerful, and robust performance. Overall, TEAM is a computationally efficient and statistically powerful algorithm that can yield meaningful biological insights in flow cytometry studies.

10.
Front Immunol ; 14: 1260377, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38124734

RESUMEN

Rhesus macaques (RMs) are a common pre-clinical model used to test HIV vaccine efficacy and passive immunization strategies. Yet, it remains unclear to what extent the Fc-Fc receptor (FcR) interactions impacting antiviral activities of antibodies in RMs recapitulate those in humans. Here, we evaluated the FcR-related functionality of natural killer cells (NKs) from peripheral blood of uninfected humans and RMs to identify intra- and inter-species variation. NKs were screened for FcγRIIIa (human) and FcγRIII (RM) genotypes (FcγRIII(a)), receptor signaling, and antibody-dependent cellular cytotoxicity (ADCC), the latter mediated by a cocktail of monoclonal IgG1 antibodies with human or RM Fc. FcγRIII(a) genetic polymorphisms alone did not explain differences in NK effector functionality in either species cohort. Using the same parameters, hierarchical clustering separated each species into two clusters. Importantly, in principal components analyses, ADCC magnitude, NK contribution to ADCC, FcγRIII(a) cell-surface expression, and frequency of phosphorylated CD3ζ NK cells all contributed similarly to the first principal component within each species, demonstrating the importance of measuring multiple facets of NK cell function. Although ADCC potency was similar between species, we detected significant differences in frequencies of NK cells and pCD3ζ+ cells, level of cell-surface FcγRIII(a) expression, and NK-mediated ADCC (P<0.001), indicating that a combination of Fc-FcR parameters contribute to overall inter-species functional differences. These data strongly support the importance of multi-parameter analyses of Fc-FcR NK-mediated functions when evaluating efficacy of passive and active immunizations in pre- and clinical trials and identifying correlates of protection. The results also suggest that pre-screening animals for multiple FcR-mediated NK function would ensure even distribution of animals among treatment groups in future preclinical trials.


Asunto(s)
Anticuerpos Monoclonales , Receptores Fc , Animales , Humanos , Receptores Fc/metabolismo , Macaca mulatta , Células Asesinas Naturales , Análisis Multivariante , Análisis por Conglomerados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA