Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 17(5): 523-30, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26998762

RESUMEN

14-3-3 proteins regulate biological processes by binding to phosphorylated serine or phosphorylated threonine motifs of cellular proteins. Among the 14-3-3 proteins, 14-3-3ɛ serves a crucial function in antiviral immunity by mediating the cytosol-to-mitochondrial membrane translocation of the pathogen sensor RIG-I. Here we found that the NS3 protein of dengue virus (DV) bound to 14-3-3ɛ and prevented translocation of RIG-I to the adaptor MAVS and thereby blocked antiviral signaling. Intriguingly, a highly conserved phosphomimetic RxEP motif in NS3 was essential for the binding of 14-3-3ɛ. A recombinant mutant DV deficient in binding to 14-3-3ɛ showed impairment in antagonism of RIG-I and elicited a markedly augmented innate immune response and enhanced T cell activation. Our work reveals a novel phosphomimetic-based mechanism for viral antagonism of 14-3-3-mediated immunity, which might guide the rational design of therapeutics.


Asunto(s)
Proteínas 14-3-3/inmunología , ARN Helicasas DEAD-box/inmunología , Inmunidad Innata/inmunología , Serina Endopeptidasas/inmunología , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Células HEK293 , Humanos , Immunoblotting , Microscopía Confocal , Fosforilación/inmunología , Interferencia de ARN/inmunología , Receptores Inmunológicos , Homología de Secuencia de Aminoácido , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Transducción de Señal/inmunología
2.
Trends Genet ; 40(1): 69-82, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37891096

RESUMEN

Genetic material is organized in the form of chromosomes, which need to be segregated accurately into two daughter cells in each cell cycle. However, chromosome fusion or the presence of unresolved interchromosomal linkages lead to the formation of chromatin bridges, which can induce DNA lesions and genome instability. Persistent chromatin bridges are trapped in the cleavage furrow and are broken at or after abscission, the final step of cytokinesis. In this review, we focus on recent progress in understanding the mechanism of bridge breakage and resolution. We discuss the molecular machinery and enzymes that have been implicated in the breakage and processing of bridge DNA. In addition, we outline both the immediate outcomes and genomic consequences induced by bridge breakage.


Asunto(s)
Cromatina , Cromosomas , Humanos , Cromatina/genética , ADN/genética , Inestabilidad Genómica/genética
3.
Cell Mol Life Sci ; 81(1): 147, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502309

RESUMEN

GABAergic interneurons are poised with the capacity to shape circuit output via inhibitory gating. How early in the development of medial vestibular nucleus (MVN) are GABAergic neurons recruited for feedforward shaping of outputs to higher centers for spatial navigation? The role of early GABAergic transmission in assembling vestibular circuits for spatial navigation was explored by neonatal perturbation. Immunohistochemistry and confocal imaging were utilized to reveal the expression of parvalbumin (PV)-expressing MVN neurons and their perineuronal nets. Whole-cell patch-clamp recording, coupled with optogenetics, was conducted in vitro to examine the synaptic function of MVN circuitry. Chemogenetic targeting strategy was also employed in vivo to manipulate neuronal activity during navigational tests. We found in rats a neonatal critical period before postnatal day (P) 8 in which competitive antagonization of GABAergic transmission in the MVN retarded maturation of inhibitory neurotransmission, as evidenced by deranged developmental trajectory for excitation/inhibition ratio and an extended period of critical period-like plasticity in GABAergic transmission. Despite increased number of PV-expressing GABAergic interneurons in the MVN, optogenetic-coupled patch-clamp recording indicated null-recruitment of these neurons in tuning outputs along the ascending vestibular pathway. Such perturbation not only offset output dynamics of ascending MVN output neurons, but was further accompanied by impaired vestibular-dependent navigation in adulthood. The same perturbations were however non-consequential when applied after P8. Results highlight neonatal GABAergic transmission as key to establishing feedforward output dynamics to higher brain centers for spatial cognition and navigation.


Asunto(s)
Navegación Espacial , Ratas , Animales , Interneuronas , Transmisión Sináptica , Núcleos Vestibulares/metabolismo , Neuronas GABAérgicas
4.
Proc Natl Acad Sci U S A ; 119(46): e2122121119, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343245

RESUMEN

The in vivo mechanisms underlying dominant syndromes caused by mutations in SRY-Box Transcription Factor 9 (SOX9) and SOX10 (SOXE) transcription factors, when they either are expressed alone or are coexpressed, are ill-defined. We created a mouse model for the campomelic dysplasia SOX9Y440X mutation, which truncates the transactivation domain but leaves DNA binding and dimerization intact. Here, we find that SOX9Y440X causes deafness via distinct mechanisms in the endolymphatic sac (ES)/duct and cochlea. By contrast, conditional heterozygous Sox9-null mice are normal. During the ES development of Sox9Y440X/+ heterozygotes, Sox10 and genes important for ionic homeostasis are down-regulated, and there is developmental persistence of progenitors, resulting in fewer mature cells. Sox10 heterozygous null mutants also display persistence of ES/duct progenitors. By contrast, SOX10 retains its expression in the early Sox9Y440X/+ mutant cochlea. Later, in the postnatal stria vascularis, dominant interference by SOX9Y440X is implicated in impairing the normal cooperation of SOX9 and SOX10 in repressing the expression of the water channel Aquaporin 3, thereby contributing to endolymphatic hydrops. Our study shows that for a functioning endolymphatic system in the inner ear, SOX9 regulates Sox10, and depending on the cell type and target gene, it works either independently of or cooperatively with SOX10. SOX9Y440X can interfere with the activity of both SOXE factors, exerting effects that can be classified as haploinsufficient/hypomorphic or dominant negative depending on the cell/gene context. This model of disruption of transcription factor partnerships may be applicable to congenital deafness, which affects ∼0.3% of newborns, and other syndromic disorders.


Asunto(s)
Sordera , Oído Interno , Factor de Transcripción SOX9 , Factores de Transcripción SOXE , Animales , Ratones , Sordera/metabolismo , Oído Interno/metabolismo , Audición/genética , Homeostasis , Ratones Noqueados , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo
5.
J Neurosci ; 43(13): 2305-2325, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36813575

RESUMEN

Cholecystokinin (CCK) enables excitatory circuit long-term potentiation (LTP). Here, we investigated its involvement in the enhancement of inhibitory synapses. Activation of GABA neurons suppressed neuronal responses in the neocortex to a forthcoming auditory stimulus in mice of both sexes. High-frequency laser stimulation (HFLS) of GABAergic neurons potentiated this suppression. HFLS of CCK interneurons could induce the LTP of their inhibition toward pyramidal neurons. This potentiation was abolished in CCK knock-out mice but intact in mice with both CCK1R and 2R knockout of both sexes. Next, we combined bioinformatics analysis, multiple unbiased cell-based assays, and histology examinations to identify a novel CCK receptor, GPR173. We propose GPR173 as CCK3R, which mediates the relationship between cortical CCK interneuron signaling and inhibitory LTP in the mice of either sex. Thus, GPR173 might represent a promising therapeutic target for brain disorders related to excitation and inhibition imbalance in the cortex.SIGNIFICANCE STATEMENT CCK, the most abundant and widely distributed neuropeptide in the CNS, colocalizes with many neurotransmitters and modulators. GABA is one of the important inhibitory neurotransmitters, and much evidence shows that CCK may be involved in modulating GABA signaling in many brain areas. However, the role of CCK-GABA neurons in the cortical microcircuits is still unclear. We identified a novel CCK receptor, GPR173, localized in the CCK-GABA synapses and mediated the enhancement of the GABA inhibition effect, which might represent a promising therapeutic target for brain disorders related to excitation and inhibition imbalance in the cortex.


Asunto(s)
GABAérgicos , Receptores de Colecistoquinina , Masculino , Femenino , Ratones , Animales , GABAérgicos/farmacología , Células Piramidales/fisiología , Sinapsis/fisiología , Neuronas GABAérgicas/fisiología , Ratones Noqueados , Interneuronas , Colecistoquinina , Ácido gamma-Aminobutírico/fisiología , Potenciación a Largo Plazo/fisiología , Receptores Acoplados a Proteínas G/genética
6.
Chemistry ; : e202401395, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802980

RESUMEN

Phase transitions in molecular solids involve synergistic changes in chemical and electronic structures, leading to diversification in physical and chemical properties. Despite the pivotal role of hydrogen bonds (H-bonds) in many phase-transition materials, it is rare and challenging to chemically regulate the dynamics and to elucidate the structure-property relationship. Here, four high-spin CoII compounds were isolated and systematically investigated by modifying the ligand terminal groups (X=S, Se) and substituents (Y=Cl, Br). S-Cl and Se-Br undergo a reversible structural phase transition near room temperature, triggering the rotation of 15-crown-5 guests and the swing between syn- and anti-conformation of NCX- ligands, accompanied by switchable magnetism. Conversely, S-Br and Se-Cl retain stability in ordered and disordered phases, respectively. H-bonds geometric analysis and ab initio calculations reveal that the electronegativity of X and Y affects the strength of NY-ap-H⋅⋅⋅X interactions. Entropy-driven structural phase transitions occur when the H-bond strength is appropriate; otherwise, the phase stays unchanged if it is too strong or weak. This work highlights a phase transition driven by H-bond strength complementarity - pairing strong acceptor with weak donor and vice versa, which offers a straightforward and effective approach for designing phase-transition molecular solids from a chemical perspective.

7.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34740969

RESUMEN

Myelin, the structure that surrounds and insulates neuronal axons, is an important component of the central nervous system. The visualization of the myelinated fibers in brain tissues can largely facilitate the diagnosis of myelin-related diseases and understand how the brain functions. However, the most widely used fluorescent probes for myelin visualization, such as Vybrant DiD and FluoroMyelin, have strong background staining, low-staining contrast, and low brightness. These drawbacks may originate from their self-quenching properties and greatly limit their applications in three-dimensional (3D) imaging and myelin tracing. Chemical probes for the fluorescence imaging of myelin in 3D, especially in optically cleared tissue, are highly desirable but rarely reported. We herein developed a near-infrared aggregation-induced emission (AIE)-active probe, PM-ML, for high-performance myelin imaging. PM-ML is plasma membrane targeting with good photostability. It could specifically label myelinated fibers in teased sciatic nerves and mouse brain tissues with a high-signal-to-background ratio. PM-ML could be used for 3D visualization of myelin sheaths, myelinated fibers, and fascicles with high-penetration depth. The staining is compatible with different brain tissue-clearing methods, such as ClearT and ClearT2 The utility of PM-ML staining in demyelinating disease studies was demonstrated using the mouse model of multiple sclerosis. Together, this work provides an important tool for high-quality myelin visualization across scales, which may greatly contribute to the study of myelin-related diseases.


Asunto(s)
Encéfalo/diagnóstico por imagen , Colorantes Fluorescentes , Imagenología Tridimensional , Vaina de Mielina , Nervio Ciático/diagnóstico por imagen , Animales , Ratones
8.
PLoS Pathog ; 17(3): e1009446, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33770145

RESUMEN

RIG-I and MDA5 are cytoplasmic RNA sensors that mediate cell intrinsic immunity against viral pathogens. While it has been well-established that RIG-I and MDA5 recognize RNA viruses, their interactive network with DNA viruses, including herpes simplex virus 1 (HSV-1), remains less clear. Using a combination of RNA-deep sequencing and genetic studies, we show that the γ134.5 gene product, a virus-encoded virulence factor, enables HSV growth by neutralization of RIG-I dependent restriction. When expressed in mammalian cells, HSV-1 γ134.5 targets RIG-I, which cripples cytosolic RNA sensing and subsequently suppresses antiviral gene expression. Rather than inhibition of RIG-I K63-linked ubiquitination, the γ134.5 protein precludes the assembly of RIG-I and cellular chaperone 14-3-3ε into an active complex for mitochondrial translocation. The γ134.5-mediated inhibition of RIG-I-14-3-3ε binding abrogates the access of RIG-I to mitochondrial antiviral-signaling protein (MAVS) and activation of interferon regulatory factor 3. As such, unlike wild type virus HSV-1, a recombinant HSV-1 in which γ134.5 is deleted elicits efficient cytokine induction and replicates poorly, while genetic ablation of RIG-I expression, but not of MDA5 expression, rescues viral growth. Collectively, these findings suggest that viral suppression of cytosolic RNA sensing is a key determinant in the evolutionary arms race of a large DNA virus and its host.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Herpes Simple/metabolismo , Herpesvirus Humano 1/patogenicidad , Receptores Inmunológicos/metabolismo , Proteínas Virales/metabolismo , Replicación Viral/fisiología , Animales , Chlorocebus aethiops , Fibroblastos/metabolismo , Células HEK293 , Herpesvirus Humano 1/metabolismo , Humanos , Mitocondrias/metabolismo , Transporte de Proteínas/fisiología , Células Vero
9.
BJOG ; 130(1): 24-31, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36002935

RESUMEN

OBJECTIVE: To compare the incidences of early and late-onset neonatal sepsis, including group B streptococcus (GBS) and Escherichia coli (E. coli) before and after implementation of universal screening and intrapartum antibiotics prophylaxis (IAP). DESIGN: Retrospective cohort study. SETTING: Eight public hospitals and 31 Maternal and Child Health Centres (in Hong Kong. POPULATION: 460 552 women attending routine antenatal service from 2009 to 2020. METHODS: Universal culture-based GBS screening has been offered to eligible women since 2012. Total births, GBS screening tests, maternal GBS colonisation and neonatal sepsis with positive blood or cerebrospinal fluid were retrieved from clinical and laboratory database. MAIN OUTCOME MEASURES: Maternal GBS colonisation rate, early- and late-onset neonatal sepsis (including GBS and E. coli). RESULTS: Of 318 740 women with universal culture-based screening, 63 767 women (20.0%) screened positive. After implementation of GBS screening and IAP, the incidence of early-onset neonatal sepsis decreased (3.25 versus 2.26 per 1000 live births, p < 0.05), including those caused by GBS (1.03 versus 0.26 per 1000 live births, p < 0.05). Segmented regression showed that change in early-onse GBS sepsis incidence after screening was the only significant variable in the outcome trend. There was no significant evidence of increase in incidence of late-onset neonatal sepsis including those caused by GBS. CONCLUSIONS: Universal culture-based GBS screening and IAP were associated with reduction in early-onset neonatal sepsis including GBS disease. Although an increase in incidence of late-onset neonatal sepsis including those caused by GBS cannot be totally ruled out, we did not identify significant evidence that this occurred.


Asunto(s)
Sepsis Neonatal , Complicaciones Infecciosas del Embarazo , Sepsis , Infecciones Estreptocócicas , Recién Nacido , Niño , Femenino , Embarazo , Humanos , Incidencia , Antibacterianos/uso terapéutico , Sepsis Neonatal/diagnóstico , Sepsis Neonatal/epidemiología , Sepsis Neonatal/prevención & control , Infecciones Estreptocócicas/diagnóstico , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/epidemiología , Estudios Retrospectivos , Escherichia coli , Complicaciones Infecciosas del Embarazo/diagnóstico , Complicaciones Infecciosas del Embarazo/tratamiento farmacológico , Complicaciones Infecciosas del Embarazo/epidemiología , Streptococcus agalactiae , Profilaxis Antibiótica , Sepsis/diagnóstico , Sepsis/epidemiología , Sepsis/prevención & control , Transmisión Vertical de Enfermedad Infecciosa/prevención & control
10.
BMC Pregnancy Childbirth ; 23(1): 624, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37648962

RESUMEN

BACKGROUND: Aneuploidy pregnancy is a severe major birth defect and causes about 50% spontaneous miscarriages with unknown etiology. To date, only a few epidemiological studies with small sample sizes have investigated the risk factors for aneuploidy pregnancy. TP53, MDM2, and miR-34b/c genes are implicated in tumorigenesis with aneuploidy, yet the function of their polymorphisms in aneuploidy pregnancy susceptibility needs to be clarified. OBJECTIVE: To elucidate the association of TP53 rs1042522 G > C, MDM2 rs2279744 309 T > G, and miR-34b/c rs4938723 T > C specific polymorphisms with aneuploidy pregnancy. METHODS: In the retrospective case-control study, 330 aneuploidies pregnancy women and 813 normal pregnancy controls were recruited between January 2018 and April 2022 at the First People's Hospital of Yunnan Province, Kunming, China. Three functional polymorphisms, the TP53 rs1042522 G > C (Arg72Pro), MDM2 rs2279744 309 T > G, and miR-34b/c rs4938723 T > C, were genotyped using the snapshot method. RESULTS: The frequency distribution of three genotypic variants was not different between case and control pregnant women and was similar to with Hardy-Weinberg Equilibrium (HWE). However, in the younger subgroup (less than 35 years old), a significant difference was detected in allele and recessive model (p = 0.01). In the advanced age subgroup (more than or equal to 35 years old), G of MDM2 rs2279744 T > G revealed a significantly higher frequency in cases than controls (p = 0.045), and miR-34b/c rs4938723 T > C revealed a significant difference under the dominant model (p = 0.03), but no significant differences were observed in other models and in both younger and older subgroup (p > 0.05, respectively). These results suggest that individual polymorphisms were not associated with aneuploidy pregnancy, combined with age, they may serve as a risk factor for aneuploidy pregnancy. CONCLUSION: Combination of TP53 rs1042522 G > C, MDM2 rs2279744 T > G, and miR-34b/c rs4938723 T > C polymorphisms with maternal age may be related to aneuploidy pregnancy susceptibility. These findings might elaborate on the genetic etiology of aneuploidy pregnancy.


Asunto(s)
Aneuploidia , MicroARNs , Embarazo , Humanos , Femenino , Adulto , Estudios de Casos y Controles , China , Estudios Retrospectivos , MicroARNs/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Proto-Oncogénicas c-mdm2/genética
11.
PLoS Genet ; 16(1): e1008587, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32004315

RESUMEN

Perturbation of synapse development underlies many inherited neurodevelopmental disorders including intellectual disability (ID). Diverse mutations on the human TBC1D24 gene are strongly associated with epilepsy and ID. However, the physiological function of TBC1D24 in the brain is not well understood, and there is a lack of genetic mouse model that mimics TBC1D24 loss-of-function for the study of animal behaviors. Here we report that TBC1D24 is present at the postsynaptic sites of excitatory synapses, where it is required for the maintenance of dendritic spines through inhibition of the small GTPase ARF6. Mice subjected to viral-mediated knockdown of TBC1D24 in the adult hippocampus display dendritic spine loss, deficits in contextual fear memory, as well as abnormal behaviors including hyperactivity and increased anxiety. Interestingly, we show that the protein stability of TBC1D24 is diminished by the disease-associated missense mutation that leads to F251L amino acid substitution. We further generate the F251L knock-in mice, and the homozygous mutants show increased neuronal excitability, spontaneous seizure and pre-mature death. Moreover, the heterozygous F251L knock-in mice survive into adulthood but display dendritic spine defects and impaired memory. Our findings therefore uncover a previously uncharacterized postsynaptic function of TBC1D24, and suggest that impaired dendritic spine maintenance contributes to the pathophysiology of individuals harboring TBC1D24 gene mutations. The F251L knock-in mice represent a useful animal model for investigation of the mechanistic link between TBC1D24 loss-of-function and neurodevelopmental disorders.


Asunto(s)
Epilepsia/genética , Potenciales Postsinápticos Excitadores , Proteínas Activadoras de GTPasa/genética , Discapacidad Intelectual/genética , Animales , Células Cultivadas , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/fisiología , Memoria , Ratones , Ratones Endogámicos C57BL , Mutación Missense , Neuronas/metabolismo , Neuronas/patología , Neuronas/fisiología
12.
J Perinat Med ; 51(8): 1082-1096, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37486214

RESUMEN

OBJECTIVES: To evaluate the association between maternal polymorphisms of NANOS3 rs2016163, HELQ rs4693089, PRIM1 rs2277339, TLK1 rs10183486, ERCC6 rs2228526, EXO1 rs1635501, DMC1 rs5757133, and MSH5 rs2075789 and fetal chromosomal abnormality. METHODS: This retrospective case-control study included 571 women with fetal chromosome abnormalities (330 pregnant women diagnosed with fetal aneuploidy, 241 with fetal de novo structural chromosome pregnancy) and 811 healthy pregnant women between January 2018 and April 2022. All the above polymorphisms were tested using SNaPshot. RESULTS: All the eight polymorphisms were analyzed for genotypes, alleles, under dominant and recessive genetic models. Significant distribution differences of TLK1 rs10183486 in fetal chromosome structural abnormality were found between the case group and control subjects who were <35 years of age [Genotype: p=0.029; Dominant: OR (95 %CI)=0.46 (0.25-0.82), p=0.01 and allele: OR (95 %CI)=0.47 (0.27-0.82), p=0.01 respectively], while no difference was found in the recessive model [OR (95 %CI)=2.49 (0.31-20.40), p=0.39]. In advanced age subgroups for fetal aneuploidy, significant differences were found in genotypes analysis of PRIM1 rs2277339 (p=0.008), allele analysis of TLK1 rs10183486 [OR (95 %CI)=0.62 (0.42-0.91), p=0.02]. For the fetal chromosome structural abnormality population, HELQ rs4693089 revealed a significant distribution difference (p=0.01) but not in the allele, dominant and recessive genetic models analysis (p>0.05 individually). CONCLUSIONS: For older women, maternal PRIM1 rs2277339 and TLK1 rs10183486 polymorphisms may be associated with fetal aneuploidy, while HELQ rs4693089 may be associated with fetal chromosome structural abnormality. Also, carriers of T allele of TLK1 rs10183486 have a lower risk of fetal chromosome structural abnormality in younger women.

13.
Adv Physiol Educ ; 47(3): 594-603, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37382503

RESUMEN

The usefulness of virtual reality (VR) technology in physiology education is largely unexplored. Although VR has the potential to enrich learning experience by enhancing the spatial awareness of students, it is unclear whether VR contributes to active learning of physiology. In the present study, we used a mixed-method research approach to investigate students' perceptions of physiology learning based on VR simulations. Quantitative and qualitative data indicate that the implementation of VR learning environments improves the quality of physiology education by promoting active learning in terms of interactive engagement, interest, problem-solving skills, and feedback. In the Technology-Enabled Active Learning Inventory, which consisted of 20 questions to which students responded along a 7-point Likert scale, the majority of students agreed that VR learning of physiology not only stimulated their curiosity (77%; P < 0.001) but also allowed them to obtain knowledge through diverse formats (76%; P < 0.001), participate in thought-provoking dialogue (72%; P < 0.001), and interact better with peers (72%; P < 0.001). Positive responses in the social, cognitive, behavioral, and evaluative domains of active learning were received from students across different disciplines, including medicine, Chinese medicine, biomedical sciences, and biomedical engineering. Their written feedback showed that VR enhanced their interest in physiology and facilitated the visualization of physiological processes to improve their learning. Overall, this study supports that the integration of VR technology into physiology courses can be an effective teaching strategy.NEW & NOTEWORTHY Virtual reality (VR) improves physiology education by promoting active learning in terms of interactive engagement, interest, problem-solving skills, and feedback. Positive responses toward multiple components of active learning were received from students across different disciplines. The majority of students agreed that VR learning of physiology not only stimulated their curiosity but also allowed them to obtain knowledge through diverse formats, participate in thought-provoking dialogue, and interact better with peers.


Asunto(s)
Aprendizaje Basado en Problemas , Realidad Virtual , Humanos , Aprendizaje Basado en Problemas/métodos , Estudiantes , Tecnología
14.
Phys Rev Lett ; 129(10): 107204, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36112444

RESUMEN

We report direct visualization of spin-flip transition of the surface layer in antiferromagnet MnBi_{4}Te_{7}, a natural superlattice of alternating MnBi_{2}Te_{4} and Bi_{2}Te_{3} layers, using cryogenic magnetic force microscopy (MFM). The observation of magnetic contrast across domain walls and step edges confirms that the antiferromagnetic order persists to the surface layers. The magnetic field dependence of the MFM images reveals that the surface magnetic layer undergoes a first-order spin-flip transition at a magnetic field that is lower than the bulk transition, in excellent agreement with a revised Mills model. Our analysis suggests no reduction of the order parameter in the surface magnetic layer, implying robust ferromagnetism in the single-layer limit. The direct visualization of surface spin-flip transition not only opens up exploration of surface metamagnetic transitions in layered antiferromagnets, but also provides experimental support for realizing quantized transport in ultrathin films of MnBi_{4}Te_{7} and other natural superlattice topological magnets.

15.
BMC Pregnancy Childbirth ; 22(1): 320, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35421926

RESUMEN

BACKGROUND: Most embryos that spontaneously abort during early pregnancy are found to have chromosomal abnormalities. The purpose of this study is to explore the factors involved in chromosome aberrations during embryogenesis. METHODS: A case-case study was performed to compare the risk factors for spontaneous abortion with and without embryo chromosome aberration. A total of 160 cases of spontaneous abortion were enrolled from a tertiary general hospital in Kunming. KaryoLite BACs-on-Beads (KL-BoBs) and fluorescence in situ hybridization (FISH) were employed to determine chromosomal constitution of abortion chorion villus samples. Maternal serum levels of homocysteine (Hcy) were detected by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Information about clinical background and environmental exposure was collected through a self-designed questionnaire. To identify the inherited chromosomal abnormalities, couples with chromosomal abnormalities in abortus were recalled for karyotyping. RESULTS: The overall rate of chromosomal abnormalities was 62.5% (100/160, KL-BoBs combined with FISH) including 51.9% (83/160) aneuploidies, 6.3% (10/160) polyploidies, and 4.4% (7/160) structural abnormalities. Only one case of structural abnormality was found to be inherited from maternal balanced translocation. Compared to abortus with normal karyotype, abortus with abnormal karyotype showed a positive association with parental age and elevated maternal serum homocysteine (Hcy) level, but negative association with previous miscarriage and perceived noise. CONCLUSIONS: Embryonic chromosomal aberrations accounted for the majority of spontaneous abortion cases. A combination of internal and external factors may induce spontaneous abortion through fetal chromosomal aberrations or other pathogenic mechanisms.


Asunto(s)
Aborto Espontáneo , Aborto Espontáneo/genética , Aberraciones Cromosómicas , Femenino , Homocisteína , Humanos , Hibridación Fluorescente in Situ , Cariotipo , Cariotipificación , Embarazo , Espectrometría de Masas en Tándem
16.
Proc Natl Acad Sci U S A ; 116(20): 10122-10129, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31028140

RESUMEN

Blood oxygen level-dependent functional MRI (fMRI) constitutes a powerful neuroimaging technology to map brain-wide functions in response to specific sensory or cognitive tasks. However, fMRI mapping of the vestibular system, which is pivotal for our sense of balance, poses significant challenges. Physical constraints limit a subject's ability to perform motion- and balance-related tasks inside the scanner, and current stimulation techniques within the scanner are nonspecific to delineate complex vestibular nucleus (VN) pathways. Using fMRI, we examined brain-wide neural activity patterns elicited by optogenetically stimulating excitatory neurons of a major vestibular nucleus, the ipsilateral medial VN (MVN). We demonstrated robust optogenetically evoked fMRI activations bilaterally at sensorimotor cortices and their associated thalamic nuclei (auditory, visual, somatosensory, and motor), high-order cortices (cingulate, retrosplenial, temporal association, and parietal), and hippocampal formations (dentate gyrus, entorhinal cortex, and subiculum). We then examined the modulatory effects of the vestibular system on sensory processing using auditory and visual stimulation in combination with optogenetic excitation of the MVN. We found enhanced responses to sound in the auditory cortex, thalamus, and inferior colliculus ipsilateral to the stimulated MVN. In the visual pathway, we observed enhanced responses to visual stimuli in the ipsilateral visual cortex, thalamus, and contralateral superior colliculus. Taken together, our imaging findings reveal multiple brain-wide central vestibular pathways. We demonstrate large-scale modulatory effects of the vestibular system on sensory processing.


Asunto(s)
Mapeo Encefálico , Núcleos Vestibulares/fisiología , Animales , Percepción Auditiva/fisiología , Imagen por Resonancia Magnética , Masculino , Optogenética , Ratas Sprague-Dawley , Percepción Visual/fisiología
17.
Proc Natl Acad Sci U S A ; 116(13): 6397-6406, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850520

RESUMEN

Memory is stored in neural networks via changes in synaptic strength mediated in part by NMDA receptor (NMDAR)-dependent long-term potentiation (LTP). Here we show that a cholecystokinin (CCK)-B receptor (CCKBR) antagonist blocks high-frequency stimulation-induced neocortical LTP, whereas local infusion of CCK induces LTP. CCK-/- mice lacked neocortical LTP and showed deficits in a cue-cue associative learning paradigm; and administration of CCK rescued associative learning deficits. High-frequency stimulation-induced neocortical LTP was completely blocked by either the NMDAR antagonist or the CCKBR antagonist, while application of either NMDA or CCK induced LTP after low-frequency stimulation. In the presence of CCK, LTP was still induced even after blockade of NMDARs. Local application of NMDA induced the release of CCK in the neocortex. These findings suggest that NMDARs control the release of CCK, which enables neocortical LTP and the formation of cue-cue associative memory.


Asunto(s)
Colecistoquinina/metabolismo , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Corteza Auditiva/metabolismo , Conducta Animal , Colecistoquinina/genética , Estimulación Eléctrica , Corteza Entorrinal/metabolismo , Femenino , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , N-Metilaspartato/metabolismo , Neocórtex/metabolismo , Neuronas/metabolismo , Ratas Sprague-Dawley , Receptor de Colecistoquinina B/efectos de los fármacos , Receptor de Colecistoquinina B/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Sinapsis/metabolismo
18.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 51(3): 306-313, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36207832

RESUMEN

OBJECTIVE: To investigate molecular and clinical characteristics of children with permanent congenital hypothyroidism (CH) in Yunnan, China. METHODS: The clinical data of 40 children with CH diagnosed and treated in the First People's Hospital of Yunnan Province during January 2016 and January 2019 were retrospectively analyzed. All children were followed up to 3 years old, and Gesell intelligent score was evaluated at age of 1, 2 and 3 years, respectively. Developmental status and prognosis were evaluated. Next-generation sequencing (NGS) was used to screen all exons and exon-intron boundary sequences of the 27 known CH associated genes, and the relationship between genotypes and clinical phenotypes was analyzed. RESULTS: Among the 40 children, the thyroid related pathogenic gene mutations were detected in 23 cases with a rate of 57.5%, and a total of 32 mutations of 8 genes were detected. Mutations in DUOX2, TPO and TSHR genes were the most common ones with mutation frequencies of 65.9%(29/44), 11.4%(5/44) and 9.1%(4/44), respectively. DUOX2 gene mutations were detected in 17 children with CH, and a total of 17 mutation types were detected. p.K530* was the most common mutation in DUOX2 gene, accounting for 20.7%(6/29). There was no significant difference in physical development and intelligence assessment between children with DUOX2 heterozygous mutation and compound heterozygous mutations. None of patients could terminate medication at 3 years of the follow-up and all of them were provisionally assessed as permanent CH. The physical and mental development assessment of children with other gene mutations were also in the normal range. CONCLUSION: The detection rate of DUOX2, TPO and TSHR pathogenic mutations are high among children with permanent CH in Yunnan area, and no correlation is observed between gene mutation types and prognosis in children with CH.


Asunto(s)
Hipotiroidismo Congénito , China , Hipotiroidismo Congénito/diagnóstico , Hipotiroidismo Congénito/genética , Oxidasas Duales/genética , Humanos , Mutación , Estudios Retrospectivos
19.
J Physiol ; 599(1): 253-267, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33006159

RESUMEN

KEY POINTS: Chemogenetic activation of medial vestibular nucleus-projecting 5-HT neurons resulted in deficits in vestibular-mediated tasks, including negative geotaxis, balance beam and rota-rod tests. The 5-HT1A receptor mediates the vestibular-related behavioural effects of 5-HT in the vestibular nucleus. 5-HT1A receptor activation attenuated evoked excitatory postsynaptic currents and evoked inhibitory postsynaptic currents via a presynaptic mechanism in the vestibular nucleus. ABSTRACT: While the anxiolytic effects of serotonergic neuromodulation are well studied, its role in sensorimotor coordination and postural control is unclear. In this study, we show that an increase of serotonin (5-hydroxytryptamine, 5-HT) at the medial vestibular nucleus (MVN), a brainstem centre for vestibulospinal coordination, by either direct cannula administration or chemogenetic stimulation of MVN-projecting serotonergic neurons, adversely affected performance of rats in vestibular-mediated tasks, including negative geotaxis, balance beam and rota-rod tests. Application of the 5-HT1 and 5-HT7 receptor co-agonist 8-hydroxy-2-(di-n-propylamino) tetralin recapitulated the effect of 5-HT, while co-administration of the specific 5-HT1A receptor antagonist WAY 100135 effectively abolished all 5-HT-induced behavioural deficits. This indicated that 5-HT1A receptors mediated the effects of 5-HT in the rat MVN. Using whole-cell patch-clamp recording, we demonstrated that 5-HT1A receptor activation attenuated both evoked excitatory and evoked inhibitory postsynaptic currents through a presynaptic mechanism in the rat MVN. The results thus highlight the 5-HT1A receptor as the gain controller of vestibular-related brainstem circuits for posture and balance.


Asunto(s)
Receptor de Serotonina 5-HT1A , Núcleos Vestibulares , 8-Hidroxi-2-(di-n-propilamino)tetralin , Animales , Potenciales Postsinápticos Excitadores , Ratas , Transmisión Sináptica
20.
Clin Infect Dis ; 73(2): e503-e512, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32667973

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) is primarily an acute respiratory tract infection. Distinctively, a substantial proportion of COVID-19 patients develop olfactory dysfunction. Especially in young patients, loss of smell can be the first or only symptom. The roles of inflammatory obstruction of the olfactory clefts, inflammatory cytokines affecting olfactory neuronal function, destruction of olfactory neurons or their supporting cells, and direct invasion of olfactory bulbs in causing olfactory dysfunction are uncertain. METHODS: We investigated the location for the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from the olfactory epithelium (OE) to the olfactory bulb in golden Syrian hamsters. RESULTS: After intranasal inoculation with SARS-CoV-2, inflammatory cell infiltration and proinflammatory cytokine/chemokine responses were detected in the nasal turbinate tissues. The responses peaked between 2 and 4 days postinfection, with the highest viral load detected at day 2 postinfection. In addition to the pseudo-columnar ciliated respiratory epithelial cells, SARS-CoV-2 viral antigens were also detected in the mature olfactory sensory neurons labeled by olfactory marker protein, in the less mature olfactory neurons labeled by neuron-specific class III ß-tubulin at the more basal position, and in the sustentacular cells, resulting in apoptosis and severe destruction of the OE. During the entire course of infection, SARS-CoV-2 viral antigens were not detected in the olfactory bulb. CONCLUSIONS: In addition to acute inflammation at the OE, infection of mature and immature olfactory neurons and the supporting sustentacular cells by SARS-CoV-2 may contribute to the unique olfactory dysfunction related to COVID-19, which is not reported with SARS-CoV-2.


Asunto(s)
COVID-19 , Neuronas Receptoras Olfatorias , Animales , Cricetinae , Humanos , Mesocricetus , Mucosa Olfatoria , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA