Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 94(31): 11081-11088, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35905143

RESUMEN

Crop diseases cause the release of volatiles. Here, the use of an SnO2-based chemoresistive sensor for early diagnosis has been attempted. Ionone is one of the signature volatiles released by the enzymatic and nonenzymatic cleavage of carotene at the latent stage of some biotic stresses. To our knowledge, this is the first attempt at sensing volatiles with multiple oxidation sites, i.e., ionone (4 oxidation sites), from the phytovolatile library, to derive stronger signals at minimum concentrations. Further, the sensitivity was enhanced on an interdigitated electrode by the addition of platinum as the dopant for a favorable space charge layer and for surface island formation for reactive interface sites. The mechanistic influence of oxygen vacancy formation was studied through detailed density functional theory (DFT) calculations and reactive oxygen-assisted enhanced binding through X-ray photoelectron spectroscopy (XPS) analysis.


Asunto(s)
Lenguaje , Norisoprenoides , Electrodos , Granjas , Oxígeno
2.
Nanoscale ; 16(22): 10675-10681, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38768320

RESUMEN

The incorporation of artificial intelligence into agriculture presents challenges, particularly due to hardware limitations, especially in sensors. Currently, pest detection relies heavily on manual scouting by humans. Therefore, the objective of this study is to create a chemoresistive sensor that enables early identification of the characteristic volatile compound, viz., methyl jasmonate, released during pest infestations. Given the lower reactivity of esters, we have fine-tuned a composite consisting of SnO2 nanoparticles and 2D-MXene sheets to enhance adsorption and selective oxidation, resulting in heightened sensitivity. The optimized composite demonstrated a notable response even at concentrations as low as 120 ppb, successfully confirming pest infestations in tomato crops.


Asunto(s)
Acetatos , Ciclopentanos , Oxilipinas , Compuestos de Estaño , Ciclopentanos/química , Oxilipinas/metabolismo , Oxilipinas/química , Compuestos de Estaño/química , Acetatos/química , Animales , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Insectos , Estrés Fisiológico/efectos de los fármacos
3.
ACS Sens ; 9(1): 81-91, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38113168

RESUMEN

In agriculture, pest management is a major challenge. Crop releases volatiles in response to the pest; hence, sensing these volatile signals at a very early stage will ease pest management. Here, binary catalyst-loaded SnO2 nanoparticles of <5 nm were synthesized for the repeated capture and oxidation of the signature volatile and its products to amplify the chemoresistive signal to detect concentrations as low as ≈120 ppb. The sensitivity may be due to the presence of the elements in the Sn-Fe-Pt bond evidenced by extended X-ray absorption fine-structure spectroscopy (EXAFS) that captures and oxidize the volatile without escaping. This strong catalyst may oxidize nontarget volatiles and can cause false signals; hence, a molecular sieve filter has been coupled to ensure high selectivity for the detection ofTuta absolutainfestation in tomato. Finally, with the support of a mobile power bank, the optimized sensor has been assembled into a lightweight handheld device.


Asunto(s)
Nanopartículas , Oxidación-Reducción , Agricultura , Estrés Oxidativo
4.
ACS Omega ; 9(24): 25870-25878, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38911721

RESUMEN

Porous materials are highly explored platforms for fertilizer delivery. Among porous materials, metal-organic frameworks (MOFs) are an important class of coordination polymers in which metal ions and organic electron donors as linkers are assembled to form crystalline structures with stable nanoporosity. Selected amino acids were inherently found to have the capacity to hold the leaf cuticle. Hence, MOF synthesis was attempted in the presence of amino acids, which can act as surface terminators and can assist as hands to hold to the leaf for a controlled nutrient supply. By serendipity, the amino acids were found to act as modulators, resulting in well-stabilized porous MOF structures with iron metal nodes, which are often noted to be unstable. Thus, the composite, i.e., (MOF@aa) MOF modulated with amino acids, has efficient nutrient-feeding ability through the foliar route when compared to the control.

5.
Food Res Int ; 164: 112321, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36737915

RESUMEN

Fruit peels are rich source of bioactive compounds such as polyphenols, flavonoids, and antioxidants but are often discarded as waste due to limited pharmaceutical and nutraceutical applications. This study aimed to valorise pomegranate and citrus fruit peel into green synthesised silver nanoparticles (AgNPs) in order to modify cellulose-based wrapping material for prospective food packaging applications and propose an alternate and sustainable approach to replace polyethene based food packaging material. Four different concentrations of AgNO3 (0.5 mM, 1 mM, 2 mM, and 3 mM) were used for green synthesis of AgNPs from fruit peel bioactive, which were characterised followed by phytochemical analysis. Ultraviolet-Visible spectroscopy showed surface plasmon resonance at 420 nm, XRD analysis showed 2θ peak at 27.8°, 32.16°, 38.5°, 44.31°, 46.09°, 54.76°, 57.47°, 64.61° and 77.50° corresponding to (210), (122), (111), (200), (231), (142), (241), (220) and (311) plane of face centred cubic crystal structure of AgNPs. Fourier-transform infrared spectroscopy analysis of AgNPs green synthesised from pomegranate and kinnow peel extract showed a major peak at 3277, 1640 and 1250-1020 1/cm while a small peak at 2786 1/cm was observed in case of pomegranate peel extract which was negligible in AgNPs synthesized from kinnow peel extract. Particle sizes of AgNPs showed no statistically significant variance with p > 0.10 and thus, 2 mM was chosen for further experimentation and modification of cellulose based packaging material as it showed smallest average particle size. Zeta potential was observed to be nearly neutral with a partial negative strength due to presence of various phenolic compounds such as presence of gallic acid which was confirmed by ultrahigh performance liquid chromatography-photodiode array(UHPLC-PDA) detector. Thermal stability analysis of green synthesised AgNPs qualified the sterilisation conditions up to 100 °C. AgNPs green synthesized from both the peel extracts had higher polyphenolic content, antioxidant and radical scavenging activity as compared to peel extracts without treatment (p < 0.05). The cellulose based food grade packaging material was enrobed by green synthesised AgNPs. The characterisation of modified cellulose wrappers showed no significant difference in thickness of modified cellulose wrappers as compared with untreated cellulose wrapper (p > 0.42) while weight and grammage increased significantly in modified cellulose wrapper (p < 0.05). The colour values on CIE scale (L*, a* and b*) showed statistically significant increase in yellow and green colour (p < 0.05) for modified cellulose wrappers as compared to control wrapper. The oxygen permeability coefficient, water vapour permeability coefficient, water absorption capacity and water behaviour characteristics (water content, swelling degree and solubility) showed significant decrease (p < 0.05) for modified cellulose wrapper as compared to control wrapper. A uniform distribution and density of green synthesised AgNPs across cellulose wrapper matrix was observed through scanning electron microscopy (SEM) images with no significant aggregation, confirming successful enrobing and stable immobilisation of nanoparticles from cellulose matrix. A seven-day storage study of bread wrapped in modified and control cellulose wrappers showed delayed occurrence of microbial, yeast and mould count in bread packaged in modified cellulose wrappers and thus, resulting in shelf life extension of bread. The results are encouraging for the potential applications of modified cellulose wrappers to replace polyethene based food packaging.


Asunto(s)
Frutas , Nanopartículas del Metal , Frutas/química , Plata/análisis , Pan , Nanopartículas del Metal/química , Extractos Vegetales/química , Antioxidantes/análisis , Celulosa/análisis , Esperanza de Vida , Polietilenos/análisis
6.
Artículo en Inglés | MEDLINE | ID: mdl-35667027

RESUMEN

Lycopene, a natural colorant and antioxidant with a huge growing market, is highly susceptible to photo/thermal degradation, which demands real-time sensors. Hence, here a transparent upconversion nanoparticles (UCNPs) strip having 30 mol % Yb, 0.1 mol % Tm, and ß-NaYF4 UCNPs, which shows an intense emission at 475 nm, has been developed. This strip has been found to be sensitive to lycopene with a detection limit as low as 10 nM using a smartphone camera, which is due to static quenching that is confirmed by the lifetime study. In comparison to previous paper strips, here the transparent strip has minimal scattering with maximum sensitivity in spite of not using any metal quenchers. An increase in strip hydrophobicity during the fabrication process complements the strip to selectively permeate and present an extraction-free substitute analysis for chromatography. Hydrophobicity endows the strip with the capability to reuse the strip with ∼100% luminescence recovery.

7.
ACS Appl Mater Interfaces ; 13(41): 48349-48357, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34617719

RESUMEN

The indiscriminate use of pesticides leads to irreparable damage to the ecosystem, which motivates for sustainable alternatives like pheromone-assisted pest management. The tomato pinworm Tuta absoluta is a major threat to tomato cultivation. Moreover, its green management technology uses a pheromone trap that has a short field life. To overcome this problem, a pheromone composite with graphene oxide (GO) and amine-modified graphene oxide (AGO) that can extend the diffusion path has been developed. The composite stimulates an effective electrophysiological response in the antenna, which results in trapping of a significantly higher number of insects as compared to the commercial septa, thus qualifying it for field evaluation. Compared to AGO, the GO composite has pheromones assembled into a multilayer, which increases the pheromone diffusion path. This in turn resulted in the extension of the pheromone life that proportionally increased the pest trapped. This technique will be beneficial to farmers as they have longer field efficacy to keep the pest damage low in an environmentally friendly manner.


Asunto(s)
Acetatos/farmacología , Preparaciones de Acción Retardada/química , Alcoholes Grasos/farmacología , Grafito/química , Control de Insectos/métodos , Nanocompuestos/química , Feromonas/farmacología , Animales , Masculino , Mariposas Nocturnas/efectos de los fármacos
8.
Syst Appl Microbiol ; 43(5): 126127, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32847793

RESUMEN

Three strains of rhizobia isolated from effective root nodules of pea (Pisum sativum L.) collected from the Indian trans-Himalayas were characterized using 16S rRNA, atpD and recA genes. Phylogeny of the 16S rRNA genes revealed that the newly isolated strains were members of the genus Rhizobium with ≥99.9% sequence similarity to the members within the "Rhizobium leguminosarum" group. Phylogenetic analyses based on the concatenated sequences of atpD and recA gene, and 92 core genes extracted from the genome sequences indicated that strains JKLM 12A2T and JKLM 13E are grouped as a separate clade closely related to R. laguerreae FB206T. In contrast, the strain JKLM 19E was placed with "R. hidalgonense" FH14T. Whole-genome average nucleotide identity (ANI) values were 97.6% within strains JKLM 12A2T and JKLM 13E, and less than 94% with closely related species. The digital DNA-DNA hybridization (dDDH) values were 81.45 within the two strains and less than 54.8% to closely related species. The major cellular fatty acids were C18:1w7c in summed feature 8, C14:0 3OH/C16:1 iso I in summed feature 2, and C18:0. The DNA G+C content of JKLM 12A2T and JKLM 13E was 60.8mol%. The data on genomic, chemotaxonomic, and phenotypic characteristics indicates that the strains JKLM 12A2T and JKLM 13E represent a novel species, Rhizobium indicum sp. nov. The type strain is JKLM 12A2T (= MCC 3961T=KACC 21380T=JCM 33658T). However, the strain JKLM 19E represents a member of "R. hidalgonense" and the symbiovar viciae.


Asunto(s)
Pisum sativum/microbiología , Rhizobium/clasificación , Rhizobium/aislamiento & purificación , Nódulos de las Raíces de las Plantas/microbiología , Técnicas de Tipificación Bacteriana , Productos Agrícolas/microbiología , ADN Bacteriano/genética , Ácidos Grasos/análisis , Genes Bacterianos , Genes de ARNr , Genoma Bacteriano , Genómica , India , Filogenia , ARN Ribosómico 16S/genética , Rhizobium/genética , Rhizobium/fisiología , Rhizobium leguminosarum/genética , Análisis de Secuencia de ADN , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA