Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 39: 395-416, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902315

RESUMEN

Recent evidence supports the notion that mitochondrial metabolism is necessary for T cell activation, proliferation, and function. Mitochondrial metabolism supports T cell anabolism by providing key metabolites for macromolecule synthesis and generating metabolites for T cell function. In this review, we focus on how mitochondrial metabolism controls conventional and regulatory T cell fates and function.


Asunto(s)
Inmunidad Celular , Mitocondrias , Animales , Humanos
2.
Nat Immunol ; 23(5): 692-704, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35484407

RESUMEN

The NLRP3 inflammasome is linked to sterile and pathogen-dependent inflammation, and its dysregulation underlies many chronic diseases. Mitochondria have been implicated as regulators of the NLRP3 inflammasome through several mechanisms including generation of mitochondrial reactive oxygen species (ROS). Here, we report that mitochondrial electron transport chain (ETC) complex I, II, III and V inhibitors all prevent NLRP3 inflammasome activation. Ectopic expression of Saccharomyces cerevisiae NADH dehydrogenase (NDI1) or Ciona intestinalis alternative oxidase, which can complement the functional loss of mitochondrial complex I or III, respectively, without generation of ROS, rescued NLRP3 inflammasome activation in the absence of endogenous mitochondrial complex I or complex III function. Metabolomics revealed phosphocreatine (PCr), which can sustain ATP levels, as a common metabolite that is diminished by mitochondrial ETC inhibitors. PCr depletion decreased ATP levels and NLRP3 inflammasome activation. Thus, the mitochondrial ETC sustains NLRP3 inflammasome activation through PCr-dependent generation of ATP, but via a ROS-independent mechanism.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Adenosina Trifosfato/metabolismo , Transporte de Electrón , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Nat Rev Mol Cell Biol ; 23(7): 499-515, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35190722

RESUMEN

'Reactive oxygen species' (ROS) is a generic term that defines a wide variety of oxidant molecules with vastly different properties and biological functions that range from signalling to causing cell damage. Consequently, the description of oxidants needs to be chemically precise to translate research on their biological effects into therapeutic benefit in redox medicine. This Expert Recommendation article pinpoints key issues associated with identifying the physiological roles of oxidants, focusing on H2O2 and O2.-. The generic term ROS should not be used to describe specific molecular agents. We also advocate for greater precision in measurement of H2O2, O2.- and other oxidants, along with more specific identification of their signalling targets. Future work should also consider inter-organellar communication and the interactions of redox-sensitive signalling targets within organs and whole organisms, including the contribution of environmental exposures. To achieve these goals, development of tools that enable site-specific and real-time detection and quantification of individual oxidants in cells and model organisms are needed. We also stress that physiological O2 levels should be maintained in cell culture to better mimic in vivo redox reactions associated with specific cell types. Use of precise definitions and analytical tools will help harmonize research among the many scientific disciplines working on the common goal of understanding redox biology.


Asunto(s)
Peróxido de Hidrógeno , Oxidantes , Antioxidantes/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
4.
Cell ; 178(1): 10-11, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31251910

RESUMEN

Viral infection causes the host to activate an antiviral response that, in part, is dependent on mitochondrial antiviral signaling protein (MAVS) to stimulate type I interferons. Zhang et al. (2019) demonstrate that glucose-generated lactate interacts with MAVS to suppress type I interferons. This study links glucose metabolism to antiviral responses.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Antivirales , Línea Celular , Glucosa , Ácido Láctico
5.
Immunity ; 56(3): 516-530.e9, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36738738

RESUMEN

In vitro studies have associated oxidative phosphorylation (OXPHOS) with anti-inflammatory macrophages, whereas pro-inflammatory macrophages rely on glycolysis. However, the metabolic needs of macrophages in tissues (TMFs) to fulfill their homeostatic activities are incompletely understood. Here, we identified OXPHOS as the highest discriminating process among TMFs from different organs in homeostasis by analysis of RNA-seq data in both humans and mice. Impairing OXPHOS in TMFs via Tfam deletion differentially affected TMF populations. Tfam deletion resulted in reduction of alveolar macrophages (AMs) due to impaired lipid-handling capacity, leading to increased cholesterol content and cellular stress, causing cell-cycle arrest in vivo. In obesity, Tfam depletion selectively ablated pro-inflammatory lipid-handling white adipose tissue macrophages (WAT-MFs), thus preventing insulin resistance and hepatosteatosis. Hence, OXPHOS, rather than glycolysis, distinguishes TMF populations and is critical for the maintenance of TMFs with a high lipid-handling activity, including pro-inflammatory WAT-MFs. This could provide a selective therapeutic targeting tool.


Asunto(s)
Inflamación , Fosforilación Oxidativa , Humanos , Ratones , Animales , Inflamación/metabolismo , Macrófagos/metabolismo , Homeostasis , Lípidos , Tejido Adiposo/metabolismo
6.
Nat Rev Mol Cell Biol ; 21(5): 268-283, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32144406

RESUMEN

Molecular oxygen (O2) sustains intracellular bioenergetics and is consumed by numerous biochemical reactions, making it essential for most species on Earth. Accordingly, decreased oxygen concentration (hypoxia) is a major stressor that generally subverts life of aerobic species and is a prominent feature of pathological states encountered in bacterial infection, inflammation, wounds, cardiovascular defects and cancer. Therefore, key adaptive mechanisms to cope with hypoxia have evolved in mammals. Systemically, these adaptations include increased ventilation, cardiac output, blood vessel growth and circulating red blood cell numbers. On a cellular level, ATP-consuming reactions are suppressed, and metabolism is altered until oxygen homeostasis is restored. A critical question is how mammalian cells sense oxygen levels to coordinate diverse biological outputs during hypoxia. The best-studied mechanism of response to hypoxia involves hypoxia inducible factors (HIFs), which are stabilized by low oxygen availability and control the expression of a multitude of genes, including those involved in cell survival, angiogenesis, glycolysis and invasion/metastasis. Importantly, changes in oxygen can also be sensed via other stress pathways as well as changes in metabolite levels and the generation of reactive oxygen species by mitochondria. Collectively, this leads to cellular adaptations of protein synthesis, energy metabolism, mitochondrial respiration, lipid and carbon metabolism as well as nutrient acquisition. These mechanisms are integral inputs into fine-tuning the responses to hypoxic stress.


Asunto(s)
Hipoxia de la Célula/genética , Metabolismo Energético/genética , Estrés Oxidativo/genética , Oxígeno/metabolismo , Adenosina Trifosfato/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética
7.
Mol Cell ; 83(6): 1012-1012.e1, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36931250

RESUMEN

Mitochondria have emerged as signaling organelles with roles beyond their well-established function in generating ATP and metabolites for macromolecule synthesis. Healthy mitochondria integrate various physiologic inputs and communicate signals that control cell function or fate as well as adaptation to stress. Dysregulation of these mitochondrial signaling networks are linked to pathology. Here we outline a few modes of signaling between the mitochondrion and the cytoplasm. To view this SnapShot, open or download the PDF.


Asunto(s)
Mitocondrias , Transducción de Señal , Mitocondrias/metabolismo , Citoplasma/metabolismo , Orgánulos/metabolismo , Aclimatación
8.
Immunity ; 54(1): 1-3, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33440134

RESUMEN

Antibiotics improve clinical outcomes independent of their antibacterial effects. In this issue of Immunity, Almeida et al. and Colaço et al. demonstrate that antibiotic impairment of mitochondrial ribosomes modulates both T-cell-dependent inflammation and host tolerance to infection.


Asunto(s)
Autoinmunidad , Linfocitos T , Bacterias
9.
Mol Cell ; 82(7): 1261-1277.e9, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35305311

RESUMEN

The product of hexokinase (HK) enzymes, glucose-6-phosphate, can be metabolized through glycolysis or directed to alternative metabolic routes, such as the pentose phosphate pathway (PPP) to generate anabolic intermediates. HK1 contains an N-terminal mitochondrial binding domain (MBD), but its physiologic significance remains unclear. To elucidate the effect of HK1 mitochondrial dissociation on cellular metabolism, we generated mice lacking the HK1 MBD (ΔE1HK1). These mice produced a hyper-inflammatory response when challenged with lipopolysaccharide. Additionally, there was decreased glucose flux below the level of GAPDH and increased upstream flux through the PPP. The glycolytic block below GAPDH is mediated by the binding of cytosolic HK1 with S100A8/A9, resulting in GAPDH nitrosylation through iNOS. Additionally, human and mouse macrophages from conditions of low-grade inflammation, such as aging and diabetes, displayed increased cytosolic HK1 and reduced GAPDH activity. Our data indicate that HK1 mitochondrial binding alters glucose metabolism through regulation of GAPDH.


Asunto(s)
Glucosa , Hexoquinasa/metabolismo , Animales , Glucosa/metabolismo , Glucólisis , Hexoquinasa/genética , Ratones , Mitocondrias/metabolismo , Vía de Pentosa Fosfato
10.
Genes Dev ; 36(3-4): 149-166, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35115380

RESUMEN

The process of tissue regeneration occurs in a developmentally timed manner, yet the role of circadian timing is not understood. Here, we identify a role for the adult muscle stem cell (MuSC)-autonomous clock in the control of muscle regeneration following acute ischemic injury. We observed greater muscle repair capacity following injury during the active/wake period as compared with the inactive/rest period in mice, and loss of Bmal1 within MuSCs leads to impaired muscle regeneration. We demonstrate that Bmal1 loss in MuSCs leads to reduced activated MuSC number at day 3 postinjury, indicating a failure to properly expand the myogenic precursor pool. In cultured primary myoblasts, we observed that loss of Bmal1 impairs cell proliferation in hypoxia (a condition that occurs in the first 1-3 d following tissue injury in vivo), as well as subsequent myofiber differentiation. Loss of Bmal1 in both cultured myoblasts and in vivo activated MuSCs leads to reduced glycolysis and premature activation of prodifferentiation gene transcription and epigenetic remodeling. Finally, hypoxic cell proliferation and myofiber formation in Bmal1-deficient myoblasts are restored by increasing cytosolic NAD+ Together, we identify the MuSC clock as a pivotal regulator of oxygen-dependent myoblast cell fate and muscle repair through the control of the NAD+-driven response to injury.


Asunto(s)
Factores de Transcripción ARNTL , NAD , Células Satélite del Músculo Esquelético , Factores de Transcripción ARNTL/genética , Animales , Diferenciación Celular/genética , Hipoxia , Ratones , Desarrollo de Músculos/genética , Músculo Esquelético , Mioblastos
11.
Nature ; 620(7975): 890-897, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37558881

RESUMEN

Alveolar epithelial type 1 (AT1) cells are necessary to transfer oxygen and carbon dioxide between the blood and air. Alveolar epithelial type 2 (AT2) cells serve as a partially committed stem cell population, producing AT1 cells during postnatal alveolar development and repair after influenza A and SARS-CoV-2 pneumonia1-6. Little is known about the metabolic regulation of the fate of lung epithelial cells. Here we report that deleting the mitochondrial electron transport chain complex I subunit Ndufs2 in lung epithelial cells during mouse gestation led to death during postnatal alveolar development. Affected mice displayed hypertrophic cells with AT2 and AT1 cell features, known as transitional cells. Mammalian mitochondrial complex I, comprising 45 subunits, regenerates NAD+ and pumps protons. Conditional expression of yeast NADH dehydrogenase (NDI1) protein that regenerates NAD+ without proton pumping7,8 was sufficient to correct abnormal alveolar development and avert lethality. Single-cell RNA sequencing revealed enrichment of integrated stress response (ISR) genes in transitional cells. Administering an ISR inhibitor9,10 or NAD+ precursor reduced ISR gene signatures in epithelial cells and partially rescued lethality in the absence of mitochondrial complex I function. Notably, lung epithelial-specific loss of mitochondrial electron transport chain complex II subunit Sdhd, which maintains NAD+ regeneration, did not trigger high ISR activation or lethality. These findings highlight an unanticipated requirement for mitochondrial complex I-dependent NAD+ regeneration in directing cell fate during postnatal alveolar development by preventing pathological ISR induction.


Asunto(s)
Células Epiteliales Alveolares , Diferenciación Celular , Linaje de la Célula , Pulmón , Mitocondrias , Estrés Fisiológico , Animales , Ratones , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Pulmón/citología , Pulmón/metabolismo , Pulmón/patología , Mitocondrias/enzimología , Mitocondrias/metabolismo , NAD/metabolismo , NADH Deshidrogenasa/metabolismo , Protones , RNA-Seq , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análisis de Expresión Génica de una Sola Célula
12.
Mol Cell ; 80(3): 381-383, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33157013

RESUMEN

Recent work by Licznerski et al. suggests that mutant FMRP linked to Fragile-X syndrome elevates the inner mitochondrial membrane proton leak, leading to increased metabolism and changes in protein synthesis that trigger impaired synaptic maturation and autistic behaviors.


Asunto(s)
Síndrome del Cromosoma X Frágil , Adenosina Trifosfato , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Humanos , Mitocondrias/genética , Navíos
13.
Nat Immunol ; 16(5): 458-66, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25799126

RESUMEN

Mitophagy is essential for cellular homeostasis, but how mitophagy is regulated is largely unknown. Here we found that the kinase Jnk2 was required for stress-induced mitophagy. Jnk2 promoted ubiquitination and proteasomal degradation of the small mitochondrial form of the tumor suppressor ARF (smARF). Loss of Jnk2 led to the accumulation of smARF, which induced excessive autophagy that resulted in lysosomal degradation of the mitophagy adaptor p62 at steady state. Depletion of p62 prevented Jnk2-deficient cells from mounting mitophagy upon stress. Jnk2-deficient mice displayed defective mitophagy, which resulted in tissue damage under hypoxic stress, as well as hyperactivation of inflammasomes and increased mortality in sepsis. Our findings define a unique mechanism of maintaining immunological homeostasis that protects the host from tissue damage and mortality.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Hipoxia/inmunología , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Sepsis/inmunología , Animales , Células Cultivadas , Daño del ADN/fisiología , Femenino , Inflamasomas/metabolismo , Lipopolisacáridos/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 9 Activada por Mitógenos/genética , Mitofagia/genética , Proteolisis , Proteínas Proto-Oncogénicas c-myc/metabolismo , Sepsis/inducido químicamente , Ubiquitinación
14.
Immunity ; 48(3): 479-481, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29562198

RESUMEN

Memory CD8+ T cells mediate protective secondary immune responses. In this issue, Bantug et al. (2018) demonstrate that mTORC2-AKT-GSK3ß signaling at mitochondria-ER contact sites enables the TCA cycle flux that is necessary for memory CD8+ T cells to produce IFN-γ.


Asunto(s)
Linfocitos T CD8-positivos , Interferón gamma , Memoria Inmunológica , Mitocondrias , Transducción de Señal
15.
Proc Natl Acad Sci U S A ; 121(15): e2321502121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38564636

RESUMEN

The release of paused RNA polymerase II (RNAPII) from promoter-proximal regions is tightly controlled to ensure proper regulation of gene expression. The elongation factor PTEF-b is known to release paused RNAPII via phosphorylation of the RNAPII C-terminal domain by its cyclin-dependent kinase component, CDK9. However, the signal and stress-specific roles of the various RNAPII-associated macromolecular complexes containing PTEF-b/CDK9 are not yet clear. Here, we identify and characterize the CDK9 complex required for transcriptional response to hypoxia. Contrary to previous reports, our data indicate that a CDK9 complex containing BRD4 but not AFF1/4 is essential for this hypoxic stress response. We demonstrate that BRD4 bromodomains (BET) are dispensable for the release of paused RNAPII at hypoxia-activated genes and that BET inhibition by JQ1 is insufficient to impair hypoxic gene response. Mechanistically, we demonstrate that the C-terminal region of BRD4 is required for Polymerase-Associated Factor-1 Complex (PAF1C) recruitment to establish an elongation-competent RNAPII complex at hypoxia-responsive genes. PAF1C disruption using a small-molecule inhibitor (iPAF1C) impairs hypoxia-induced, BRD4-mediated RNAPII release. Together, our results provide insight into potentially targetable mechanisms that control the hypoxia-responsive transcriptional elongation.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regulación de la Expresión Génica , Quinasas Ciclina-Dependientes/metabolismo , Quinasa 9 Dependiente de la Ciclina/genética , Quinasa 9 Dependiente de la Ciclina/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Fosforilación , Hipoxia , Transcripción Genética , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
17.
Blood ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598835

RESUMEN

Chromosomal translocation (4;14), an adverse prognostic factor in multiple myeloma (MM), drives overexpression of the histone methyltransferase NSD2. A genome-wide CRISPR screen in MM cells identified adenylate kinase 2 (AK2), an enzyme critical for high energy phosphate transfer from the mitochondria, as an NSD2-driven vulnerability. AK2 suppression in t(4;14) MM cells decreased NADP(H) critical for conversion of ribonucleotides to deoxyribonucleosides, leading to replication stress, DNA damage and apoptosis. Driving a large genome-wide increase in chromatin methylation, NSD2 overexpression depletes S-adenosylmethionine (SAM), compromising synthesis of creatine from its precursor guanidinoacetate. Creatine supplementation restored NADP(H) levels, reduced DNA damage and rescued AK2-deficient t(4;14) MM cells. As the creatine phosphate shuttle constitutes an alternative means for mitochondrial high energy phosphate transport, these results indicate that NSD2-driven creatine depletion underlies the hypersensitivity of t(4;14) MM cells to AK2 loss. Furthermore, AK2 depletion in t(4;14) cells impaired protein folding in the endoplasmic reticulum consistent with impaired utilization of mitochondrial ATP. Accordingly, AK2 suppression increased sensitivity of MM cells to proteasome inhibition. These findings delineate a novel mechanism in which aberrant transfer of carbon to the epigenome creates a metabolic vulnerability, with direct therapeutic implications for t(4;14) MM.

18.
Nature ; 585(7824): 288-292, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32641834

RESUMEN

The mitochondrial electron transport chain (ETC) is necessary for tumour growth1-6 and its inhibition has demonstrated anti-tumour efficacy in combination with targeted therapies7-9. Furthermore, human brain and lung tumours display robust glucose oxidation by mitochondria10,11. However, it is unclear why a functional ETC is necessary for tumour growth in vivo. ETC function is coupled to the generation of ATP-that is, oxidative phosphorylation and the production of metabolites by the tricarboxylic acid (TCA) cycle. Mitochondrial complexes I and II donate electrons to ubiquinone, resulting in the generation of ubiquinol and the regeneration of the NAD+ and FAD cofactors, and complex III oxidizes ubiquinol back to ubiquinone, which also serves as an electron acceptor for dihydroorotate dehydrogenase (DHODH)-an enzyme necessary for de novo pyrimidine synthesis. Here we show impaired tumour growth in cancer cells that lack mitochondrial complex III. This phenotype was rescued by ectopic expression of Ciona intestinalis alternative oxidase (AOX)12, which also oxidizes ubiquinol to ubiquinone. Loss of mitochondrial complex I, II or DHODH diminished the tumour growth of AOX-expressing cancer cells deficient in mitochondrial complex III, which highlights the necessity of ubiquinone as an electron acceptor for tumour growth. Cancer cells that lack mitochondrial complex III but can regenerate NAD+ by expression of the NADH oxidase from Lactobacillus brevis (LbNOX)13 targeted to the mitochondria or cytosol were still unable to grow tumours. This suggests that regeneration of NAD+ is not sufficient to drive tumour growth in vivo. Collectively, our findings indicate that tumour growth requires the ETC to oxidize ubiquinol, which is essential to drive the oxidative TCA cycle and DHODH activity.


Asunto(s)
Mitocondrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Ubiquinona/análogos & derivados , Animales , Línea Celular Tumoral , Proliferación Celular , Ciona intestinalis/enzimología , Ciclo del Ácido Cítrico , Citosol/metabolismo , Dihidroorotato Deshidrogenasa , Transporte de Electrón , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/deficiencia , Complejo III de Transporte de Electrones/metabolismo , Humanos , Levilactobacillus brevis/enzimología , Masculino , Ratones , Mitocondrias/enzimología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , NAD/metabolismo , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Neoplasias/enzimología , Fosforilación Oxidativa , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquinona/metabolismo
19.
Mol Cell ; 70(3): 383-384, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727615

RESUMEN

Maintaining redox balance in cancer cells is essential for tumor development and progression. In this issue of Molecular Cell, Tsang et al. (2018) identify an evolutionarily conserved mTORC1-dependent mechanism by which cancer cells control redox homeostasis in ischemic tumor microenvironment.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina , Nutrientes , Oxidación-Reducción , Fosforilación , Transducción de Señal , Superóxido Dismutasa-1 , Serina-Treonina Quinasas TOR
20.
PLoS Genet ; 19(7): e1010793, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37399212

RESUMEN

Mutations in subunits of the mitochondrial NADH dehydrogenase cause mitochondrial complex I deficiency, a group of severe neurological diseases that can result in death in infancy. The pathogenesis of complex I deficiency remain poorly understood, and as a result there are currently no available treatments. To better understand the underlying mechanisms, we modelled complex I deficiency in Drosophila using knockdown of the mitochondrial complex I subunit ND-75 (NDUFS1) specifically in neurons. Neuronal complex I deficiency causes locomotor defects, seizures and reduced lifespan. At the cellular level, complex I deficiency does not affect ATP levels but leads to mitochondrial morphology defects, reduced endoplasmic reticulum-mitochondria contacts and activation of the endoplasmic reticulum unfolded protein response (UPR) in neurons. Multi-omic analysis shows that complex I deficiency dramatically perturbs mitochondrial metabolism in the brain. We find that expression of the yeast non-proton translocating NADH dehydrogenase NDI1, which reinstates mitochondrial NADH oxidation but not ATP production, restores levels of several key metabolites in the brain in complex I deficiency. Remarkably, NDI1 expression also reinstates endoplasmic reticulum-mitochondria contacts, prevents UPR activation and rescues the behavioural and lifespan phenotypes caused by complex I deficiency. Together, these data show that metabolic disruption due to loss of neuronal NADH dehydrogenase activity cause UPR activation and drive pathogenesis in complex I deficiency.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , NADH Deshidrogenasa/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Neuronas/metabolismo , Drosophila/metabolismo , Respuesta de Proteína Desplegada/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA