Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 727
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(18): 4626-4639.e13, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34411517

RESUMEN

Speech perception is thought to rely on a cortical feedforward serial transformation of acoustic into linguistic representations. Using intracranial recordings across the entire human auditory cortex, electrocortical stimulation, and surgical ablation, we show that cortical processing across areas is not consistent with a serial hierarchical organization. Instead, response latency and receptive field analyses demonstrate parallel and distinct information processing in the primary and nonprimary auditory cortices. This functional dissociation was also observed where stimulation of the primary auditory cortex evokes auditory hallucination but does not distort or interfere with speech perception. Opposite effects were observed during stimulation of nonprimary cortex in superior temporal gyrus. Ablation of the primary auditory cortex does not affect speech perception. These results establish a distributed functional organization of parallel information processing throughout the human auditory cortex and demonstrate an essential independent role for nonprimary auditory cortex in speech processing.


Asunto(s)
Corteza Auditiva/fisiología , Habla/fisiología , Audiometría de Tonos Puros , Electrodos , Procesamiento Automatizado de Datos , Humanos , Fonética , Percepción de la Altura Tonal , Tiempo de Reacción/fisiología , Lóbulo Temporal/fisiología
2.
Cell ; 174(1): 21-31.e9, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29958109

RESUMEN

In speech, the highly flexible modulation of vocal pitch creates intonation patterns that speakers use to convey linguistic meaning. This human ability is unique among primates. Here, we used high-density cortical recordings directly from the human brain to determine the encoding of vocal pitch during natural speech. We found neural populations in bilateral dorsal laryngeal motor cortex (dLMC) that selectively encoded produced pitch but not non-laryngeal articulatory movements. This neural population controlled short pitch accents to express prosodic emphasis on a word in a sentence. Other larynx cortical representations controlling voicing and longer pitch phrase contours were found at separate sites. dLMC sites also encoded vocal pitch during a non-speech singing task. Finally, direct focal stimulation of dLMC evoked laryngeal movements and involuntary vocalization, confirming its causal role in feedforward control. Together, these results reveal the neural basis for the voluntary control of vocal pitch in human speech. VIDEO ABSTRACT.


Asunto(s)
Laringe/fisiología , Corteza Motora/fisiología , Habla , Adolescente , Adulto , Mapeo Encefálico , Electrocorticografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Adulto Joven
3.
Cell ; 175(6): 1688-1700.e14, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30415834

RESUMEN

Human brain networks that encode variation in mood on naturalistic timescales remain largely unexplored. Here we combine multi-site, semi-chronic, intracranial electroencephalography recordings from the human limbic system with machine learning methods to discover a brain subnetwork that correlates with variation in individual subjects' self-reported mood over days. First we defined the subnetworks that influence intrinsic brain dynamics by identifying regions that showed coordinated changes in spectral coherence. The most common subnetwork, found in 13 of 21 subjects, was characterized by ß-frequency coherence (13-30 Hz) between the amygdala and hippocampus. Increased variability of this subnetwork correlated with worsening mood across these 13 subjects. Moreover, these subjects had significantly higher trait anxiety than the 8 of 21 for whom this amygdala-hippocampus subnetwork was absent. These results demonstrate an approach for extracting network-behavior relationships from complex datasets, and they reveal a conserved subnetwork associated with a psychological trait that significantly influences intrinsic brain dynamics and encodes fluctuations in mood.


Asunto(s)
Afecto , Amígdala del Cerebelo/fisiopatología , Ansiedad/fisiopatología , Hipocampo/fisiopatología , Red Nerviosa/fisiopatología , Adulto , Electroencefalografía , Femenino , Humanos , Aprendizaje Automático , Masculino , Procesamiento de Señales Asistido por Computador
4.
Cell ; 174(3): 505-520, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30053424

RESUMEN

Although gene discovery in neuropsychiatric disorders, including autism spectrum disorder, intellectual disability, epilepsy, schizophrenia, and Tourette disorder, has accelerated, resulting in a large number of molecular clues, it has proven difficult to generate specific hypotheses without the corresponding datasets at the protein complex and functional pathway level. Here, we describe one path forward-an initiative aimed at mapping the physical and genetic interaction networks of these conditions and then using these maps to connect the genomic data to neurobiology and, ultimately, the clinic. These efforts will include a team of geneticists, structural biologists, neurobiologists, systems biologists, and clinicians, leveraging a wide array of experimental approaches and creating a collaborative infrastructure necessary for long-term investigation. This initiative will ultimately intersect with parallel studies that focus on other diseases, as there is a significant overlap with genes implicated in cancer, infectious disease, and congenital heart defects.


Asunto(s)
Mapeo Cromosómico/métodos , Trastornos del Neurodesarrollo/genética , Biología de Sistemas/métodos , Redes Reguladoras de Genes/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Humanos , Neurobiología/métodos , Neuropsiquiatría
5.
Nature ; 630(8017): 587-595, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38898291

RESUMEN

Advances in large-scale single-unit human neurophysiology, single-cell RNA sequencing, spatial transcriptomics and long-term ex vivo tissue culture of surgically resected human brain tissue have provided an unprecedented opportunity to study human neuroscience. In this Perspective, we describe the development of these paradigms, including Neuropixels and recent brain-cell atlas efforts, and discuss how their convergence will further investigations into the cellular underpinnings of network-level activity in the human brain. Specifically, we introduce a workflow in which functionally mapped samples of human brain tissue resected during awake brain surgery can be cultured ex vivo for multi-modal cellular and functional profiling. We then explore how advances in human neuroscience will affect clinical practice, and conclude by discussing societal and ethical implications to consider. Potential findings from the field of human neuroscience will be vast, ranging from insights into human neurodiversity and evolution to providing cell-type-specific access to study and manipulate diseased circuits in pathology. This Perspective aims to provide a unifying framework for the field of human neuroscience as we welcome an exciting era for understanding the functional cytoarchitecture of the human brain.


Asunto(s)
Encéfalo , Neurofisiología , Neurociencias , Análisis de la Célula Individual , Humanos , Encéfalo/citología , Encéfalo/fisiología , Neuropatología/métodos , Neuropatología/tendencias , Neurofisiología/métodos , Neurofisiología/tendencias , Neurociencias/métodos , Neurociencias/tendencias , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/tendencias , Análisis de Expresión Génica de una Sola Célula , Transcriptoma , Flujo de Trabajo , Animales
6.
Nature ; 626(7999): 593-602, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38093008

RESUMEN

Understanding the neural basis of speech perception requires that we study the human brain both at the scale of the fundamental computational unit of neurons and in their organization across the depth of cortex. Here we used high-density Neuropixels arrays1-3 to record from 685 neurons across cortical layers at nine sites in a high-level auditory region that is critical for speech, the superior temporal gyrus4,5, while participants listened to spoken sentences. Single neurons encoded a wide range of speech sound cues, including features of consonants and vowels, relative vocal pitch, onsets, amplitude envelope and sequence statistics. Neurons at each cross-laminar recording exhibited dominant tuning to a primary speech feature while also containing a substantial proportion of neurons that encoded other features contributing to heterogeneous selectivity. Spatially, neurons at similar cortical depths tended to encode similar speech features. Activity across all cortical layers was predictive of high-frequency field potentials (electrocorticography), providing a neuronal origin for macroelectrode recordings from the cortical surface. Together, these results establish single-neuron tuning across the cortical laminae as an important dimension of speech encoding in human superior temporal gyrus.


Asunto(s)
Corteza Auditiva , Neuronas , Percepción del Habla , Lóbulo Temporal , Humanos , Estimulación Acústica , Corteza Auditiva/citología , Corteza Auditiva/fisiología , Neuronas/fisiología , Fonética , Habla , Percepción del Habla/fisiología , Lóbulo Temporal/citología , Lóbulo Temporal/fisiología , Señales (Psicología) , Electrodos
7.
Nat Rev Neurosci ; 25(7): 473-492, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38745103

RESUMEN

Loss of speech after paralysis is devastating, but circumventing motor-pathway injury by directly decoding speech from intact cortical activity has the potential to restore natural communication and self-expression. Recent discoveries have defined how key features of speech production are facilitated by the coordinated activity of vocal-tract articulatory and motor-planning cortical representations. In this Review, we highlight such progress and how it has led to successful speech decoding, first in individuals implanted with intracranial electrodes for clinical epilepsy monitoring and subsequently in individuals with paralysis as part of early feasibility clinical trials to restore speech. We discuss high-spatiotemporal-resolution neural interfaces and the adaptation of state-of-the-art speech computational algorithms that have driven rapid and substantial progress in decoding neural activity into text, audible speech, and facial movements. Although restoring natural speech is a long-term goal, speech neuroprostheses already have performance levels that surpass communication rates offered by current assistive-communication technology. Given this accelerated rate of progress in the field, we propose key evaluation metrics for speed and accuracy, among others, to help standardize across studies. We finish by highlighting several directions to more fully explore the multidimensional feature space of speech and language, which will continue to accelerate progress towards a clinically viable speech neuroprosthesis.


Asunto(s)
Interfaces Cerebro-Computador , Habla , Humanos , Habla/fisiología , Prótesis Neurales , Animales
8.
Nature ; 620(7976): 1037-1046, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37612505

RESUMEN

Speech neuroprostheses have the potential to restore communication to people living with paralysis, but naturalistic speed and expressivity are elusive1. Here we use high-density surface recordings of the speech cortex in a clinical-trial participant with severe limb and vocal paralysis to achieve high-performance real-time decoding across three complementary speech-related output modalities: text, speech audio and facial-avatar animation. We trained and evaluated deep-learning models using neural data collected as the participant attempted to silently speak sentences. For text, we demonstrate accurate and rapid large-vocabulary decoding with a median rate of 78 words per minute and median word error rate of 25%. For speech audio, we demonstrate intelligible and rapid speech synthesis and personalization to the participant's pre-injury voice. For facial-avatar animation, we demonstrate the control of virtual orofacial movements for speech and non-speech communicative gestures. The decoders reached high performance with less than two weeks of training. Our findings introduce a multimodal speech-neuroprosthetic approach that has substantial promise to restore full, embodied communication to people living with severe paralysis.


Asunto(s)
Cara , Prótesis Neurales , Parálisis , Habla , Humanos , Corteza Cerebral/fisiología , Corteza Cerebral/fisiopatología , Ensayos Clínicos como Asunto , Comunicación , Aprendizaje Profundo , Gestos , Movimiento , Prótesis Neurales/normas , Parálisis/fisiopatología , Parálisis/rehabilitación , Vocabulario , Voz
9.
Nature ; 617(7961): 599-607, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37138086

RESUMEN

Gliomas synaptically integrate into neural circuits1,2. Previous research has demonstrated bidirectional interactions between neurons and glioma cells, with neuronal activity driving glioma growth1-4 and gliomas increasing neuronal excitability2,5-8. Here we sought to determine how glioma-induced neuronal changes influence neural circuits underlying cognition and whether these interactions influence patient survival. Using intracranial brain recordings during lexical retrieval language tasks in awake humans together with site-specific tumour tissue biopsies and cell biology experiments, we find that gliomas remodel functional neural circuitry such that task-relevant neural responses activate tumour-infiltrated cortex well beyond the cortical regions that are normally recruited in the healthy brain. Site-directed biopsies from regions within the tumour that exhibit high functional connectivity between the tumour and the rest of the brain are enriched for a glioblastoma subpopulation that exhibits a distinct synaptogenic and neuronotrophic phenotype. Tumour cells from functionally connected regions secrete the synaptogenic factor thrombospondin-1, which contributes to the differential neuron-glioma interactions observed in functionally connected tumour regions compared with tumour regions with less functional connectivity. Pharmacological inhibition of thrombospondin-1 using the FDA-approved drug gabapentin decreases glioblastoma proliferation. The degree of functional connectivity between glioblastoma and the normal brain negatively affects both patient survival and performance in language tasks. These data demonstrate that high-grade gliomas functionally remodel neural circuits in the human brain, which both promotes tumour progression and impairs cognition.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Vías Nerviosas , Humanos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Trombospondina 1/antagonistas & inhibidores , Gabapentina/farmacología , Gabapentina/uso terapéutico , Progresión de la Enfermedad , Cognición , Tasa de Supervivencia , Vigilia , Biopsia , Proliferación Celular/efectos de los fármacos
10.
Nature ; 600(7889): 478-483, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34880497

RESUMEN

Policy-makers are increasingly turning to behavioural science for insights about how to improve citizens' decisions and outcomes1. Typically, different scientists test different intervention ideas in different samples using different outcomes over different time intervals2. The lack of comparability of such individual investigations limits their potential to inform policy. Here, to address this limitation and accelerate the pace of discovery, we introduce the megastudy-a massive field experiment in which the effects of many different interventions are compared in the same population on the same objectively measured outcome for the same duration. In a megastudy targeting physical exercise among 61,293 members of an American fitness chain, 30 scientists from 15 different US universities worked in small independent teams to design a total of 54 different four-week digital programmes (or interventions) encouraging exercise. We show that 45% of these interventions significantly increased weekly gym visits by 9% to 27%; the top-performing intervention offered microrewards for returning to the gym after a missed workout. Only 8% of interventions induced behaviour change that was significant and measurable after the four-week intervention. Conditioning on the 45% of interventions that increased exercise during the intervention, we detected carry-over effects that were proportionally similar to those measured in previous research3-6. Forecasts by impartial judges failed to predict which interventions would be most effective, underscoring the value of testing many ideas at once and, therefore, the potential for megastudies to improve the evidentiary value of behavioural science.


Asunto(s)
Ciencias de la Conducta/métodos , Ensayos Clínicos como Asunto/métodos , Ejercicio Físico/psicología , Promoción de la Salud/métodos , Proyectos de Investigación , Adulto , Femenino , Humanos , Masculino , Motivación , Análisis de Regresión , Recompensa , Factores de Tiempo , Estados Unidos , Universidades
11.
Nature ; 568(7753): 493-498, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31019317

RESUMEN

Technology that translates neural activity into speech would be transformative for people who are unable to communicate as a result of neurological impairments. Decoding speech from neural activity is challenging because speaking requires very precise and rapid multi-dimensional control of vocal tract articulators. Here we designed a neural decoder that explicitly leverages kinematic and sound representations encoded in human cortical activity to synthesize audible speech. Recurrent neural networks first decoded directly recorded cortical activity into representations of articulatory movement, and then transformed these representations into speech acoustics. In closed vocabulary tests, listeners could readily identify and transcribe speech synthesized from cortical activity. Intermediate articulatory dynamics enhanced performance even with limited data. Decoded articulatory representations were highly conserved across speakers, enabling a component of the decoder to be transferrable across participants. Furthermore, the decoder could synthesize speech when a participant silently mimed sentences. These findings advance the clinical viability of using speech neuroprosthetic technology to restore spoken communication.


Asunto(s)
Corteza Cerebral/fisiología , Movimiento/fisiología , Redes Neurales de la Computación , Acústica del Lenguaje , Habla/fisiología , Adulto , Fenómenos Biomecánicos/fisiología , Femenino , Humanos , Masculino , Pruebas de Articulación del Habla , Inteligibilidad del Habla
13.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35105809

RESUMEN

Encouraging vaccination is a pressing policy problem. To assess whether text-based reminders can encourage pharmacy vaccination and what kinds of messages work best, we conducted a megastudy. We randomly assigned 689,693 Walmart pharmacy patients to receive one of 22 different text reminders using a variety of different behavioral science principles to nudge flu vaccination or to a business-as-usual control condition that received no messages. We found that the reminder texts that we tested increased pharmacy vaccination rates by an average of 2.0 percentage points, or 6.8%, over a 3-mo follow-up period. The most-effective messages reminded patients that a flu shot was waiting for them and delivered reminders on multiple days. The top-performing intervention included two texts delivered 3 d apart and communicated to patients that a vaccine was "waiting for you." Neither experts nor lay people anticipated that this would be the best-performing treatment, underscoring the value of simultaneously testing many different nudges in a highly powered megastudy.


Asunto(s)
Programas de Inmunización , Vacunas contra la Influenza/administración & dosificación , Farmacias , Vacunación/métodos , Anciano , COVID-19 , Femenino , Humanos , Gripe Humana/prevención & control , Masculino , Persona de Mediana Edad , Farmacias/estadística & datos numéricos , Sistemas Recordatorios , Envío de Mensajes de Texto , Vacunación/estadística & datos numéricos
14.
J Neurosci ; 43(21): 3909-3921, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37185238

RESUMEN

The amplitude envelope of speech is crucial for accurate comprehension. Considered a key stage in speech processing, the phase of neural activity in the theta-delta bands (1-10 Hz) tracks the phase of the speech amplitude envelope during listening. However, the mechanisms underlying this envelope representation have been heavily debated. A dominant model posits that envelope tracking reflects entrainment of endogenous low-frequency oscillations to the speech envelope. Alternatively, envelope tracking reflects a series of evoked responses to acoustic landmarks within the envelope. It has proven challenging to distinguish these two mechanisms. To address this, we recorded MEG while participants (n = 12, 6 female) listened to natural speech, and compared the neural phase patterns to the predictions of two computational models: an oscillatory entrainment model and a model of evoked responses to peaks in the rate of envelope change. Critically, we also presented speech at slowed rates, where the spectro-temporal predictions of the two models diverge. Our analyses revealed transient theta phase-locking in regular speech, as predicted by both models. However, for slow speech, we found transient theta and delta phase-locking, a pattern that was fully compatible with the evoked response model but could not be explained by the oscillatory entrainment model. Furthermore, encoding of acoustic edge magnitudes was invariant to contextual speech rate, demonstrating speech rate normalization of acoustic edge representations. Together, our results suggest that neural phase-locking to the speech envelope is more likely to reflect discrete representation of transient information rather than oscillatory entrainment.SIGNIFICANCE STATEMENT This study probes a highly debated topic in speech perception: the neural mechanisms underlying the cortical representation of the temporal envelope of speech. It is well established that the slow intensity profile of the speech signal, its envelope, elicits a robust brain response that "tracks" these envelope fluctuations. The oscillatory entrainment model posits that envelope tracking reflects phase alignment of endogenous neural oscillations. Here the authors provide evidence for a distinct mechanism. They show that neural speech envelope tracking arises from transient evoked neural responses to rapid increases in the speech envelope. Explicit computational modeling provides direct and compelling evidence that evoked responses are the primary mechanism underlying cortical speech envelope representations, with no evidence for oscillatory entrainment.


Asunto(s)
Corteza Auditiva , Percepción del Habla , Humanos , Femenino , Habla/fisiología , Estimulación Acústica/métodos , Corteza Auditiva/fisiología , Percepción del Habla/fisiología , Percepción Auditiva
15.
N Engl J Med ; 385(3): 217-227, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34260835

RESUMEN

BACKGROUND: Technology to restore the ability to communicate in paralyzed persons who cannot speak has the potential to improve autonomy and quality of life. An approach that decodes words and sentences directly from the cerebral cortical activity of such patients may represent an advancement over existing methods for assisted communication. METHODS: We implanted a subdural, high-density, multielectrode array over the area of the sensorimotor cortex that controls speech in a person with anarthria (the loss of the ability to articulate speech) and spastic quadriparesis caused by a brain-stem stroke. Over the course of 48 sessions, we recorded 22 hours of cortical activity while the participant attempted to say individual words from a vocabulary set of 50 words. We used deep-learning algorithms to create computational models for the detection and classification of words from patterns in the recorded cortical activity. We applied these computational models, as well as a natural-language model that yielded next-word probabilities given the preceding words in a sequence, to decode full sentences as the participant attempted to say them. RESULTS: We decoded sentences from the participant's cortical activity in real time at a median rate of 15.2 words per minute, with a median word error rate of 25.6%. In post hoc analyses, we detected 98% of the attempts by the participant to produce individual words, and we classified words with 47.1% accuracy using cortical signals that were stable throughout the 81-week study period. CONCLUSIONS: In a person with anarthria and spastic quadriparesis caused by a brain-stem stroke, words and sentences were decoded directly from cortical activity during attempted speech with the use of deep-learning models and a natural-language model. (Funded by Facebook and others; ClinicalTrials.gov number, NCT03698149.).


Asunto(s)
Infartos del Tronco Encefálico/complicaciones , Interfaces Cerebro-Computador , Aprendizaje Profundo , Disartria/rehabilitación , Prótesis Neurales , Habla , Adulto , Disartria/etiología , Electrocorticografía , Electrodos Implantados , Humanos , Masculino , Procesamiento de Lenguaje Natural , Cuadriplejía/etiología , Corteza Sensoriomotora/fisiología
16.
Mod Pathol ; 37(6): 100488, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588881

RESUMEN

Biomarker-driven therapeutic clinical trials require the implementation of standardized, evidence-based practices for sample collection. In diffuse glioma, phosphatidylinositol 3 (PI3)-kinase/AKT/mTOR (PI3/AKT/mTOR) signaling is an attractive therapeutic target for which window-of-opportunity clinical trials could facilitate the identification of promising new agents. Yet, the relevant preanalytic variables and optimal tumor sampling methods necessary to measure pathway activity are unknown. To address this, we used a murine model for isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) and human tumor tissue, including IDH-wildtype GBM and IDH-mutant diffuse glioma. First, we determined the impact of delayed time-to-formalin fixation, or cold ischemia time (CIT), on the quantitative assessment of cellular expression of 6 phosphoproteins that are readouts of PI3K/AK/mTOR activity (phosphorylated-proline-rich Akt substrate of 40 kDa (p-PRAS40, T246), -mechanistic target of rapamycin (p-mTOR; S2448); -AKT (p-AKT, S473); -ribosomal protein S6 (p-RPS6, S240/244 and S235/236), and -eukaryotic initiation factor 4E-binding protein 1 (p-4EBP1, T37/46). With CITs ≥ 2 hours, typical of routine clinical handling, all had reduced or altered expression with p-RPS6 (S240/244) exhibiting relatively greater stability. A similar pattern was observed using patient tumor samples from the operating room with p-4EBP1 more sensitive to delayed fixation than p-RPS6 (S240/244). Many clinical trials utilize unstained slides for biomarker evaluation. Thus, we evaluated the impact of slide storage conditions on the detection of p-RPS6 (S240/244), p-4EBP1, and p-AKT. After 5 months, storage at -80°C was required to preserve the expression of p-4EBP1 and p-AKT, whereas p-RPS6 (240/244) expression was not stable regardless of storage temperature. Biomarker heterogeneity impacts optimal tumor sampling. Quantification of p-RPS6 (240/244) expression in multiple regionally distinct human tumor samples from 8 patients revealed significant intratumoral heterogeneity. Thus, the accurate assessment of PI3K/AKT/mTOR signaling in diffuse glioma must overcome intratumoral heterogeneity and multiple preanalytic factors, including time-to-formalin fixation, slide storage conditions, and phosphoprotein of interest.


Asunto(s)
Neoplasias Encefálicas , Glioma , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Glioma/patología , Glioma/metabolismo , Glioma/genética , Ratones , Biomarcadores de Tumor/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Modelos Animales de Enfermedad , Manejo de Especímenes/métodos
17.
J Int Neuropsychol Soc ; : 1-9, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38616725

RESUMEN

OBJECTIVE: Brain areas implicated in semantic memory can be damaged in patients with epilepsy (PWE). However, it is challenging to delineate semantic processing deficits from acoustic, linguistic, and other verbal aspects in current neuropsychological assessments. We developed a new Visual-based Semantic Association Task (ViSAT) to evaluate nonverbal semantic processing in PWE. METHOD: The ViSAT was adapted from similar predecessors (Pyramids & Palm Trees test, PPT; Camels & Cactus Test, CCT) comprised of 100 unique trials using real-life color pictures that avoid demographic, cultural, and other potential confounds. We obtained performance data from 23 PWE participants and 24 control participants (Control), along with crowdsourced normative data from 54 Amazon Mechanical Turk (Mturk) workers. RESULTS: ViSAT reached a consensus >90% in 91.3% of trials compared to 83.6% in PPT and 82.9% in CCT. A deep learning model demonstrated that visual features of the stimulus images (color, shape; i.e., non-semantic) did not influence top answer choices (p = 0.577). The PWE group had lower accuracy than the Control group (p = 0.019). PWE had longer response times than the Control group in general and this was augmented for the semantic processing (trial answer) stage (both p < 0.001). CONCLUSIONS: This study demonstrated performance impairments in PWE that may reflect dysfunction of nonverbal semantic memory circuits, such as seizure onset zones overlapping with key semantic regions (e.g., anterior temporal lobe). The ViSAT paradigm avoids confounds, is repeatable/longitudinal, captures behavioral data, and is open-source, thus we propose it as a strong alternative for clinical and research assessment of nonverbal semantic memory.

18.
Nature ; 555(7696): 377-381, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29513649

RESUMEN

New neurons continue to be generated in the subgranular zone of the dentate gyrus of the adult mammalian hippocampus. This process has been linked to learning and memory, stress and exercise, and is thought to be altered in neurological disease. In humans, some studies have suggested that hundreds of new neurons are added to the adult dentate gyrus every day, whereas other studies find many fewer putative new neurons. Despite these discrepancies, it is generally believed that the adult human hippocampus continues to generate new neurons. Here we show that a defined population of progenitor cells does not coalesce in the subgranular zone during human fetal or postnatal development. We also find that the number of proliferating progenitors and young neurons in the dentate gyrus declines sharply during the first year of life and only a few isolated young neurons are observed by 7 and 13 years of age. In adult patients with epilepsy and healthy adults (18-77 years; n = 17 post-mortem samples from controls; n = 12 surgical resection samples from patients with epilepsy), young neurons were not detected in the dentate gyrus. In the monkey (Macaca mulatta) hippocampus, proliferation of neurons in the subgranular zone was found in early postnatal life, but this diminished during juvenile development as neurogenesis decreased. We conclude that recruitment of young neurons to the primate hippocampus decreases rapidly during the first years of life, and that neurogenesis in the dentate gyrus does not continue, or is extremely rare, in adult humans. The early decline in hippocampal neurogenesis raises questions about how the function of the dentate gyrus differs between humans and other species in which adult hippocampal neurogenesis is preserved.


Asunto(s)
Hipocampo/citología , Neurogénesis , Neuronas/citología , Adolescente , Adulto , Anciano , Animales , Animales Recién Nacidos , Recuento de Células , Proliferación Celular , Niño , Preescolar , Giro Dentado/citología , Giro Dentado/embriología , Epilepsia/patología , Femenino , Desarrollo Fetal , Voluntarios Sanos , Hipocampo/anatomía & histología , Hipocampo/embriología , Humanos , Lactante , Macaca mulatta , Masculino , Persona de Mediana Edad , Células-Madre Neurales/citología , Adulto Joven
19.
Cereb Cortex ; 33(10): 6291-6298, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36562997

RESUMEN

Broadly congruent mirror neurons, responding to any grasp movement, and strictly congruent mirror neurons, responding only to specific grasp movements, have been reported in single-cell studies with primates. Delineating grasp properties in humans is essential to understand the human mirror neuron system with implications for behavior and social cognition. We analyzed electrocorticography data from a natural reach-and-grasp movement observation and delayed imitation task with 3 different natural grasp types of everyday objects. We focused on the classification of grasp types from high-frequency broadband mirror activation patterns found in classic mirror system areas, including sensorimotor, supplementary motor, inferior frontal, and parietal cortices. Classification of grasp types was successful during movement observation and execution intervals but not during movement retention. Our grasp type classification from combined and single mirror electrodes provides evidence for grasp-congruent activity in the human mirror neuron system potentially arising from strictly congruent mirror neurons.


Asunto(s)
Neuronas Espejo , Animales , Humanos , Neuronas Espejo/fisiología , Desempeño Psicomotor/fisiología , Movimiento/fisiología , Electrocorticografía , Fuerza de la Mano/fisiología
20.
Int J Gynecol Cancer ; 34(3): 436-446, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438177

RESUMEN

Lower leg lymphedema is an important complication after gynecological treatment that can severely affect the quality of life of long-term survivors of these malignancies. As a chronic and progressive disease, affected patients will require life-long therapy centered on compression. Although conventional compressive treatments can be effective, they are extremely burdensome and time-consuming for most patients and adherence is challenging. With advances in the field of reconstructive microsurgery, new procedures have been developed in the past decades to help these patients in their continuous care and have been offered at many oncological centers around the world as a first line of treatment. We performed a PubMed search using the Mesh terms 'Lymphedema/surgery' and 'Lower extremity' yielding a total of 508 articles. Of these, 35 articles were included for analysis. Articles that failed to provide a comprehensive analysis of outcomes following surgical treatment, studies examining treatment for upper limb lymphedema, primary lymphedema, or lower extremity lymphedema resulting from non-gynecologic etiologies, and studies that failed to have a minimum of 6 months follow-up were excluded. A comprehensive review of these 35 articles including over 1200 patients demonstrated large variability on the outcomes reported; however, an overall benefit from these procedures was found. Surgical options including lymphovenous anastomosis, vascularized lymph node transfers, and excisional procedures can be performed in patients with lower leg lymphedema, depending on staging and findings in indocyanine green lymphography. Surgical treatment of lymphedema is an effective option that can improve symptoms and quality of life of patients suffering from lymphedema following gynecologic cancers.


Asunto(s)
Neoplasias de los Genitales Femeninos , Linfedema , Femenino , Humanos , Calidad de Vida , Linfedema/etiología , Linfedema/cirugía , Neoplasias de los Genitales Femeninos/complicaciones , Neoplasias de los Genitales Femeninos/cirugía , Pierna , Extremidad Inferior
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA