Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroinflammation ; 21(1): 15, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195497

RESUMEN

BACKGROUND: Hepcidin is the master regulator of iron homeostasis. Hepcidin downregulation has been demonstrated in the brains of Alzheimer's disease (AD) patients. However, the mechanism underlying the role of hepcidin downregulation in cognitive impairment has not been elucidated. METHODS: In the present study, we generated GFAP-Cre-mediated hepcidin conditional knockout mice (HampGFAP cKO) to explore the effect of hepcidin deficiency on hippocampal structure and neurocognition. RESULTS: We found that the HampGFAP cKO mice developed AD-like brain atrophy and memory deficits. In particular, the weight of the hippocampus and the number of granule neurons in the dentate gyrus were significantly reduced. Further investigation demonstrated that the morphological change in the hippocampus of HampGFAP cKO mice was attributed to impaired neurogenesis caused by decreased proliferation of neural stem cells. Regarding the molecular mechanism, increased iron content after depletion of hepcidin followed by an elevated level of the inflammatory factor tumor necrosis factor-α accounted for the impairment of hippocampal neurogenesis in HampGFAP cKO mice. These observations were further verified in GFAP promoter-driven hepcidin knockdown mice and in Nestin-Cre-mediated hepcidin conditional knockout mice. CONCLUSIONS: The present findings demonstrated a critical role for hepcidin in hippocampal neurogenesis and validated the importance of iron and associated inflammatory cytokines as key modulators of neurodevelopment, providing insights into the potential pathogenesis of cognitive dysfunction and related treatments.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades del Sistema Nervioso Central , Animales , Humanos , Ratones , Atrofia , Encéfalo , Hepcidinas/genética , Hipocampo , Hierro , Trastornos de la Memoria/genética , Ratones Noqueados
2.
Circulation ; 144(9): 694-711, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34139860

RESUMEN

BACKGROUND: Without adequate treatment, pathological cardiac hypertrophy induced by sustained pressure overload eventually leads to heart failure. WWP1 (WW domain-containing E3 ubiquitin protein ligase 1) is an important regulator of aging-related pathologies, including cancer and cardiovascular diseases. However, the role of WWP1 in pressure overload-induced cardiac remodeling and heart failure is yet to be determined. METHODS: To examine the correlation of WWP1 with hypertrophy, we analyzed WWP1 expression in patients with heart failure and mice subjected to transverse aortic constriction (TAC) by Western blotting and immunohistochemical staining. TAC surgery was performed on WWP1 knockout mice to assess the role of WWP1 in cardiac hypertrophy, heart function was examined by echocardiography, and related cellular and molecular markers were examined. Mass spectrometry and coimmunoprecipitation assays were conducted to identify the proteins that interacted with WWP1. Pulse-chase assay, ubiquitination assay, reporter gene assay, and an in vivo mouse model via AAV9 (adeno-associated virus serotype 9) were used to explore the mechanisms by which WWP1 regulates cardiac remodeling. AAV9 carrying cardiac troponin T (cTnT) promoter-driven small hairpin RNA targeting WWP1 (AAV9-cTnT-shWWP1) was administered to investigate its rescue role in TAC-induced cardiac dysfunction. RESULTS: The WWP1 level was significantly increased in the hypertrophic hearts from patients with heart failure and mice subjected to TAC. The results of echocardiography and histology demonstrated that WWP1 knockout protected the heart from TAC-induced hypertrophy. There was a direct interaction between WWP1 and DVL2 (disheveled segment polarity protein 2). DVL2 was stabilized by WWP1-mediated K27-linked polyubiquitination. The role of WWP1 in pressure overload-induced cardiac hypertrophy was mediated by the DVL2/CaMKII/HDAC4/MEF2C signaling pathway. Therapeutic targeting WWP1 almost abolished TAC induced heart dysfunction, suggesting WWP1 as a potential target for treating cardiac hypertrophy and failure. CONCLUSIONS: We identified WWP1 as a key therapeutic target for pressure overload induced cardiac remodeling. We also found a novel mechanism regulated by WWP1. WWP1 promotes atypical K27-linked ubiquitin multichain assembly on DVL2 and exacerbates cardiac hypertrophy by the DVL2/CaMKII/HDAC4/MEF2C pathway.


Asunto(s)
Cardiomegalia/metabolismo , Proteínas Dishevelled/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Biomarcadores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomegalia/diagnóstico , Cardiomegalia/etiología , Cardiomegalia/prevención & control , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/prevención & control , Histona Desacetilasas/metabolismo , Humanos , Inmunohistoquímica , Factores de Transcripción MEF2/metabolismo , Ratones , Ratones Noqueados , Unión Proteica , Estabilidad Proteica , Proteínas Represoras/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
3.
FASEB J ; 35(2): e21174, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33200454

RESUMEN

Fear memory is a pivotal biological function by which organisms can predict possible danger to avoid or reduce harm. However, dysregulation of fear memory processing may lead to pathological fear or anxiety and produce serious clinical symptoms, such as post-traumatic stress disorder (PTSD). Iron deficiency (ID) is reported to inhibit the initiation of fear memory. In our study, we found that ferroportin1 (FPN1), the only known cellular iron export protein in mammals, and ablation in neurons and astrocytes caused iron deficiency in the cortex and hippocampus. However, little is known about its role in the development of fear memory. Moreover, direct evidence of the role of FPN1, or the related molecular mechanisms of such a role, in balancing brain iron homeostasis, especially in neuronal cells, is lacking. Herein, we deleted Fpn1 in mouse neurons, using Nestin-cre transgenic mice, and explored the impact on neuronal iron recycling and brain iron homeostasis in the cortex and hippocampus. We investigated the response of the mice to contextual fear and found that formation of fear memory was impeded after neuronal FPN1 depletion. We also found that FPN1 ablation in neurons and astrocytes caused an atypical expression of iron metabolism-related proteins in these two regions: decreased expression of DMT1, Ft-H, and Ft-L, and increased TfR1 expression. In addition, the decreased FPN1 in brain microvascular endothelial cells (BMVECs) also shed light on the cause of the decreased iron delivery to the brain through the blood-brain barrier (BBB). Our research highlights the major role played by FPN1 in brain iron homeostasis and identifies a potential target for the treatment of PTSD.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Proteínas de Transporte de Catión/genética , Miedo , Técnicas de Inactivación de Genes , Hipocampo/metabolismo , Deficiencias de Hierro , Memoria , Animales , Astrocitos/metabolismo , Proteínas de Transporte de Catión/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Homeostasis/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Trastornos por Estrés Postraumático/metabolismo
4.
FASEB J ; 35(11): e21947, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34637552

RESUMEN

Vascular remodeling is a prominent trait during the development of hypertension, attributable to the phenotypic transition of vascular smooth muscle cells (VSMCs). Increasing studies demonstrate that microRNA plays an important role in this process. Here, we surprisingly found that smooth muscle cell-specific miR-214 knockout (miR-214 cKO) significantly alleviates angiotensin II (Ang II)-induced hypertension, which has the same effect as that of miR-214 global knockout mice in response to Ang II stimulation. Under the treatment of Ang II, miR-214 cKO mice exhibit substantially reduced systolic blood pressure. The vascular medial thickness and area in miR-214 cKO blood vessels were obviously reduced, the expression of collagen I and proinflammatory factors were also inhibited. VSMC-specific deletion of miR-214 blunts the response of blood vessels to the stimulation of endothelium-dependent and -independent vasorelaxation and phenylephrine and 5-HT induced vasocontraction. In vitro, Ang II-induced VSMC proliferation, migration, contraction, hypertrophy, and stiffness were all repressed with miR-214 KO in VSMC. To further explore the mechanism of miR-214 in the regulation of the VSMC function, it is very interesting to find that the TGF-ß signaling pathway is mostly enriched in miR-214 KO VSMC. Smad7, the potent negative regulator of the TGF-ß/Smad pathway, is identified to be the target of miR-214 in VSMC. By which, miR-214 KO sharply enhances Smad7 levels and decreases the phosphorylation of Smad3, and accordingly alleviates the downstream gene expression. Further, Ang II-induced hypertension and vascular dysfunction were reversed by antagomir-214. These results indicate that miR-214 in VSMC established a crosstalk between Ang II-induced AT1R signaling and TGF-ß induced TßRI /Smad signaling, by which it exerts a pivotal role in vascular remodeling and hypertension and imply that miR-214 has the potential as a therapeutic target for the treatment of hypertension.


Asunto(s)
Angiotensina II/farmacología , Técnicas de Inactivación de Genes/métodos , Hipertensión/inducido químicamente , Hipertensión/metabolismo , MicroARNs/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Transducción de Señal/genética , Proteína smad7/metabolismo , Regulación hacia Arriba/genética , Animales , Presión Sanguínea/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Remodelación Vascular/genética
5.
Eur Heart J ; 42(36): 3786-3799, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34347073

RESUMEN

AIMS: 3' untranslated region (3' UTR) of mRNA is more conserved than other non-coding sequences in vertebrate genomes, and its sequence space has substantially expanded during the evolution of higher organisms, which substantiates their significance in biological regulation. However, the independent role of 3' UTR in cardiovascular disease was largely unknown. METHODS AND RESULTS: Using bioinformatics, RNA fluorescent in situ hybridization and quantitative real-time polymerase chain reaction, we found that 3' UTR and coding sequence regions of Ckip-1 mRNA exhibited diverse expression and localization in cardiomyocytes. We generated cardiac-specific Ckip-1 3' UTR overexpression mice under wild type and casein kinase 2 interacting protein-1 (CKIP-1) knockout background. Cardiac remodelling was assessed by histological, echocardiography, and molecular analyses at 4 weeks after transverse aortic constriction (TAC) surgery. The results showed that cardiac Ckip-1 3' UTR significantly inhibited TAC-induced cardiac hypertrophy independent of CKIP-1 protein. To determine the mechanism of Ckip-1 3' UTR in cardiac hypertrophy, we performed transcriptome and metabolomics analyses, RNA immunoprecipitation, biotin-based RNA pull-down, and reporter gene assays. We found that Ckip-1 3' UTR promoted fatty acid metabolism through AMPK-PPARα-CPT1b axis, leading to its protection against pathological cardiac hypertrophy. Moreover, Ckip-1 3' UTR RNA therapy using adeno-associated virus obviously alleviates cardiac hypertrophy and improves heart function. CONCLUSIONS: These findings disclose that Ckip-1 3' UTR inhibits cardiac hypertrophy independently of its cognate protein. Ckip-1 3' UTR is an effective RNA-based therapy tool for treating cardiac hypertrophy and heart failure.


Asunto(s)
Cardiomegalia , Insuficiencia Cardíaca , Regiones no Traducidas 3'/genética , Animales , Cardiomegalia/genética , Cardiomegalia/prevención & control , Proteínas Portadoras , Insuficiencia Cardíaca/genética , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos
6.
J Cell Physiol ; 234(5): 7600-7607, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30370612

RESUMEN

Iron plays an essential role in various cellular metabolic processes of the body. Maintenance of cellular iron homeostasis is particularly important for keeping the normal functions of the cells. Ferroportin 1 (FPN1) is the currently only known iron exporter on the cell membrane. It has been indicated that the regulation of FPN1 in response to the alteration of iron level mainly involves two processes, posttranscriptional repression by iron regulatory proteins (IRPs) and posttranslational degradation by hepcidin, the major iron-sensing hormone. However, whether there is any communication between the two types of regulations or which one plays dominant role has not been reported. In our study with IRP2-/- mice, we found that knockout of IRP2 increased FPN1 expression in the cerebral cortex of IRP2-/- mice, whereas the upregulation of FPN1 was more significant in IRP1/IRP2 dual knockdown fibroblasts. Interestingly, we found that the knockout of IRP2 severely affected the regulation effect of hepcidin on FPN1 in mouse brain. FPN1 level decreased dramatically in the brain of wild-type mice injected with hepcidin, but it did not decrease much in IRP2 knockout mice. Further investigation disclosed that the compromised hepcidin-FPN1 regulation in IRP2-/- cells was directly dependent on the existence of iron-responsive element (IRE) in FPN1 messenger RNA. These results indicate that IRPs and hepcidin coordinately regulate the FPN1 level in mice. This study will provide a more comprehensive understanding of the regulatory mechanisms of FPN1 expression.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Transporte de Catión/metabolismo , Hepcidinas/metabolismo , Proteínas Reguladoras del Hierro/metabolismo , Hierro/metabolismo , Animales , Membrana Celular/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Homeostasis/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/metabolismo , Regulación hacia Arriba/fisiología
7.
J Cell Biochem ; 120(10): 17555-17565, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31134678

RESUMEN

Anesthetics could induce cognitive dysfunctions, such as Alzheimer's disease in humans or mice. However, the precise molecular mechanism is unclear. Sevoflurane is a common anesthetic widely used in clinical practice. Here, we demonstrated the induction of cognitive dysfunction induced by Sev in mice to corroborate the signaling pathway and the differentially expressed genes (DEGs) followed by analyzing their functions. The cognitive function of mice was measured by the Morris water maze test. Transcriptomic data were annotated with Illumina HiSeq. 2000. Further, the changes in related proteins or genes were analyzed by western blotting and real-time quantitative polymerase chain reaction. Our results showed that Sev could cause a decline in cognitive competence in mice. The transcriptomic data indicated that adding up to 566 genes were upregulated and 1073 genes were downregulated. The genes of Plin4, Lcn2, Lrg1, Foxf1, and Ctla2a were significantly upregulated, while the genes of Arc, Npas4, Egr2, Hes5, and Cdh9 were downregulated dramatically. The Gene Ontology term with the highest enrichment of DEGs are involved in the regulation of cellular and macromolecule metabolism and cation and nucleic acid binding, respectively. The Kyoto encyclopedia of genes and genomes analysis indicated that the mitogen-activated protein kinases (MAPK) pathway was one of the most important metabolic pathways. In addition, the metabolic pathways related to cognitive function, such as the nervous system and neurodegenerative disease showed significant changes. Furthermore, we found that p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase of the MAPK signaling pathway played important roles in this process. In conclusion, these results provide the first important clues for identifying the DEGs and signaling pathways in the hippocampus due to a Sev-induced cognitive deficiency in mice.


Asunto(s)
Enfermedad de Alzheimer/genética , Disfunción Cognitiva/genética , Sevoflurano/efectos adversos , Transcriptoma/genética , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/patología , Anestésicos/efectos adversos , Animales , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/patología , Biología Computacional , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Redes y Vías Metabólicas/efectos de los fármacos , Ratones
8.
J Cell Biochem ; 120(8): 14076-14087, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30968973

RESUMEN

Intermittent hypobaric hypoxia can produce a protective effect on both the nervous system and non-nervous system tissues. Intermittent hypobaric hypoxia preconditioning has been shown to protect rats from cardiac ischemia-reperfusion injury by decreasing cardiac iron levels and reactive oxygen species (ROS) production, thereby decreasing oxidative stress to achieve protection. However, the specific mechanism underlying the protective effect of hypobaric hypoxia is unclear. To shed light on this phenomenon, we subjected Sprague-Dawley rats to hypobaric hypoxic preconditioning (8 hours/day). The treatment was continued for 4 weeks. We then measured the iron content in the heart, liver, spleen, and kidney. The iron levels in all of the assessed tissues decreased significantly after hypobaric hypoxia treatment, corroborating previous results that hypobaric hypoxia may produce its protective effect by decreasing ROS production by limiting the levels of catalytic iron in the tissue. We next assessed the expression levels of several proteins involved in iron metabolism (transferrin receptor, L-ferritin, and ferroportin1 [FPN1]). The increased transferrin receptor and decreased L-ferritin levels after hypobaric hypoxia were indicative of a low-iron phenotype, while FPN1 levels remained unchanged. We also examined hepcidin, transmembrane serine proteases 6 (TMPRSS6), erythroferrone (ERFE), and erythropoietin (EPO) levels, all of which play a role in the regulation of systemic iron metabolism. The expression of hepcidin decreased significantly after hypobaric hypoxia treatment, whereas the expression of TMPRSS6 and ERFE and EPO increased sharply. Finally, we measured serum iron and total iron binding capacity in the serum, as well as red blood cell count, mean corpuscular volume, hematocrit, red blood cell distribution width SD, and red blood cell distribution width CV. As expected, all of these values increased after the hypobaric hypoxia treatment. Taken together, our results show that hypobaric hypoxia can stimulate erythropoiesis, which systemically draws iron away from nonhematopoietic tissue through decreased hepcidin levels.


Asunto(s)
Hipoxia/metabolismo , Hierro/metabolismo , Animales , Apoferritinas/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Índices de Eritrocitos , Eritrocitos/metabolismo , Eritropoyetina/sangre , Eritropoyetina/metabolismo , Hematócrito , Hepcidinas/metabolismo , Hipoxia/sangre , Hierro/sangre , Masculino , Proteínas de la Membrana , Especificidad de Órganos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Receptores de Transferrina/metabolismo , Serina Endopeptidasas
9.
Adv Exp Med Biol ; 1173: 1-19, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31456202

RESUMEN

Iron is the most abundant trace element in the human body. It is well known that iron is an important component of hemoglobin involved in the transport of oxygen. As a component of various enzymes, it participates in the tricarboxylic acid cycle and oxidative phosphorylation. Iron in the nervous system is also involved in the metabolism of catecholamine neurotransmitters and is involved in the formation of myelin. Therefore, iron metabolism needs to be strictly regulated. Previous studies have shown that iron deficiency in the brain during infants and young children causes mental retardation, such as delayed development of language and body balance, and psychomotor disorders. However, if the iron is excessively deposited in the aged brain, it is closely related to the occurrence of various neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Friedreich's ataxia. Therefore, it is important to fully study and understand the mechanism of brain iron metabolism and its regulation. On this basis, exploring the relationship between brain iron regulation and the occurrence of nervous system diseases and discovering new therapeutic targets related to iron metabolism have important significance for breaking through the limitation of prevention and treatment of nervous system diseases. This review discusses the complete research history of iron and its significant role in the pathogenesis of the central nervous system (CNS) diseases.


Asunto(s)
Encéfalo/metabolismo , Enfermedades del Sistema Nervioso Central , Hierro/metabolismo , Humanos , Trastornos del Metabolismo del Hierro , Enfermedades Neurodegenerativas
10.
Adv Exp Med Biol ; 1173: 33-44, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31456204

RESUMEN

With the development of research, more and more evidences suggested that mutations in the genes associated with brain iron metabolism induced diseases in the brain. Brain iron metabolism disorders might be one cause of neurodegenerative diseases. This review mainly summarizes the normal process of iron entry into the brain across the blood-brain barrier, and the distribution and transportation of iron among neurons and glial cells, as well as the underlying regulation mechanisms. To understand the mechanisms of iron metabolism in the brain will provide theoretical basis to prevent and cure brain diseases related to iron metabolism disorders.


Asunto(s)
Encéfalo/metabolismo , Trastornos del Metabolismo del Hierro , Hierro/metabolismo , Barrera Hematoencefálica , Humanos , Neuroglía/metabolismo , Neuronas/metabolismo
11.
Adv Exp Med Biol ; 1173: 21-32, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31456203

RESUMEN

Iron is an essential trace element in the human body, but excess iron is toxic as it contributes to oxidative damage. To keep iron concentration within the optimal physiologic range, iron metabolism at the cellular level and the whole systemic level are tightly regulated. Balance of iron homeostasis depends on the expression levels and activities of iron carriers, iron transporters, and iron regulatory and storage proteins. Divalent metal transporter 1 (DMT1) at the apical membrane of intestinal enterocyte brings in non-heme iron from the diet, whereas ferroportin 1 (FPN1) at the basal membrane exports iron into the circulation. Plasma transferrin (Tf) then carries iron to various tissues and cells. After binding to transferrin receptor 1 (TfR1), the complex is endocytosed into the cell, where iron enters the cytoplasm via DMT1 on the endosomal membrane. Free iron is either utilized in metabolic processes, such as synthesis of hemoglobin and Fe-S cluster, or sequestered in the cytosolic ferritin, serving as a cellular iron store. Excess iron can be exported from the cell via FPN1. The liver-derived peptide hepcidin plays a major regulatory role in controlling FPN1 level in the enterocyte, and thus controls the whole-body iron absorption. Inside the cells, iron regulatory proteins (IRPs) modulate the expressions of DMT1, TfR1, ferritin, and FPN1 via binding to the iron-responsive element (IRE) in their mRNAs. Both the release of hepcidin and the IRP-IRE interaction are coordinated with the fluctuation of the cellular iron level. Therefore, an adequate and steady iron supplement is warranted for the utilization of cells around the body. Investigations on the molecular mechanisms of cellular iron metabolism and regulation could advance the fields of iron physiology and pathophysiology.


Asunto(s)
Hierro/metabolismo , Proteínas de Transporte de Catión/metabolismo , Enterocitos/metabolismo , Ferritinas/metabolismo , Homeostasis , Humanos , Sobrecarga de Hierro , Receptores de Transferrina/metabolismo , Factores de Transcripción/metabolismo , Transferrina/metabolismo
12.
J Cell Biochem ; 119(7): 5517-5527, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29377263

RESUMEN

Elevated body iron stores are associated with hypertension progression, while hypertension is associated with elevated plasma catecholamine levels in patients. However, there is a gap in our understanding of the connection between catecholamines and iron regulation. Hepcidin is a key iron-regulatory hormone, which maintains body iron balance. In the present study, we investigated the effects of adrenaline (AD) and norepinephrine (NE) on hepatic hepcidin regulation. Mice were treated with AD, NE, phenylephrine (PE, α1-adrenergic receptor agonist), prazosin (PZ, α1-adrenergic receptor antagonist), and/or propranolol (Pro, ß-adrenergic receptor antagonist). The levels of hepcidin, as well as signal transducer and activator of transcription 3 (STAT3), ferroportin 1 (FPN1), and ferritin-light (Ft-L) protein in the liver or spleen, were assessed. Six hours after AD, NE, or PE treatment, hepatic hepcidin mRNA levels increased. Pretreatment with PZ, but not Pro, abolished the effects of AD or NE on STAT3 phosphorylation and hepatic hepcidin expression. When mice were treated with AD or NE continuously for 7 days, an increase in hepatic hepcidin mRNA levels and serum hepcidin concentration was also observed. Meanwhile, the expected downstream effects of elevated hepcidin, namely decreased FPN1 expression and increased Ft-L protein and non-heme iron concentrations in the spleen, were observed after the continuous AD or NE treatments. Taken together, we found that AD or NE increase hepatic hepcidin expression via the α1-adrenergic receptor and STAT3 pathways in mice. The elevated hepatic hepcidin decreased FPN1 levels in the spleen, likely causing the increased iron accumulation in the spleen.


Asunto(s)
Agonistas alfa-Adrenérgicos/farmacología , Epinefrina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hepcidinas/metabolismo , Norepinefrina/farmacología , Receptores Adrenérgicos alfa 1/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Células Cultivadas , Hepcidinas/genética , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Fosforilación , Receptores Adrenérgicos alfa 1/genética , Factor de Transcripción STAT3/genética , Transducción de Señal , Regulación hacia Arriba
13.
J Cell Biochem ; 118(6): 1596-1605, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27925282

RESUMEN

Disruption of iron homeostasis in brain has been found to be closely involved in several neurodegenerative diseases. Recent studies have reported that appropriate intermittent hypobaric hypoxia played a protective role in brain injury caused by acute hypoxia. However, the mechanisms of this protective effect have not been fully understood. In this study, Sprague-Dawley (SD) rat models were developed by hypobaric hypoxia treatment in an altitude chamber, and the iron level and iron related protein levels were determined in rat brain after 4 weeks of treatment. We found that the iron levels significantly decreased in the cortex and hippocampus of rat brain as compared to that of the control rats without hypobaric hypoxia treatment. The expression levels of iron storage protein L-ferritin and iron transport proteins, including transferrin receptor-1 (TfR1), divalent metal transporter 1 (DMT1), and ferroportin1 (FPN1), were also altered. Further studies found that the iron regulatory protein 2 (IRP2) played a dominant regulatory role in the changes of iron hemostasis, whereas iron regulatory protein 1 (IRP1) mainly acted as cis-aconitase. These results, for the first time, showed the alteration of iron metabolism during hypobaric hypoxia in rat models, which link the potential neuroprotective role of hypobaric hypoxia treatment to the decreased iron level in brain. This may provide insight into the treatment of iron-overloaded neurodegenerative diseases. J. Cell. Biochem. 118: 1596-1605, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/metabolismo , Hipoxia/metabolismo , Proteína 1 Reguladora de Hierro/metabolismo , Proteína 2 Reguladora de Hierro/metabolismo , Hierro/metabolismo , Animales , Apoferritinas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Hipoxia de la Célula , Modelos Animales de Enfermedad , Homeostasis , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Transferrina/metabolismo
14.
BMC Vet Res ; 13(1): 311, 2017 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-29110666

RESUMEN

BACKGROUND: Canine parvovirus 2, a linear single-stranded DNA virus belonging to the genus Parvovirus within the family Parvoviridae, is a highly contagious pathogen of domestic dogs and several wild canidae species. Early detection of canine parvovirus (CPV-2) is crucial to initiating appropriate outbreak control strategies. Recombinase polymerase amplification (RPA), a novel isothermal gene amplification technique, has been developed for the molecular detection of diverse pathogens. In this study, a real-time RPA assay was developed for the detection of CPV-2 using primers and an exo probe targeting the CPV-2 nucleocapsid protein gene. RESULTS: The real-time RPA assay was performed successfully at 38 °C, and the results were obtained within 4-12 min for 105-101 molecules of template DNA. The assay only detected CPV-2, and did not show cross-detection of other viral pathogens, demonstrating a high level of specificity. The analytical sensitivity of the real-time RPA was 101 copies/reaction of a standard DNA template, which was 10 times more sensitive than the common RPA method. The clinical sensitivity of the real-time RPA assay matched 100% (n = 91) to the real-time PCR results. CONCLUSION: The real-time RPA assay is a simple, rapid, reliable and affordable method that can potentially be applied for the detection of CPV-2 in the research laboratory and point-of-care diagnosis.


Asunto(s)
Enfermedades de los Perros/virología , Infecciones por Parvoviridae/veterinaria , Parvovirus Canino/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/veterinaria , Animales , ADN Viral/análisis , Enfermedades de los Perros/diagnóstico , Perros , Heces/virología , Infecciones por Parvoviridae/diagnóstico , Recombinasas , Sensibilidad y Especificidad
15.
J Nanobiotechnology ; 15(1): 42, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28578696

RESUMEN

BACKGROUND: Iron deficiency in children can have significant neurological consequences, and iron supplementation is an effective treatment of choice. However, traditional routes of iron supplementation do not allow efficient iron delivery to the brain due to the presence of the blood-brain barrier. So an easily delivered iron formulation with high absorption efficiency potentially could find widespread application in iron deficient infants. RESULTS: In this study, we have developed and characterized a nanovesicular formulation of ferric ammonium citrate (ferric ammonium citrate nanoliposomes, FAC-LIP) and have shown that it can increase brain iron levels in rats following nasal administration. FAC was incorporated into liposomes with high efficiency (97%) and the liposomes were small (40 nm) and stable. Following intranasal delivery in rats, FAC-LIP significantly increased the iron content in the olfactory bulb, cerebral cortex, striatum, cerebellum and hippocampus, and was more efficient at doing so than FAC alone. No signs of apoptosis or abnormal cell morphology were observed in the brain following FAC-LIP administration, and there were no significant changes in the levels of SOD and MDA, except in the cerebellum and hippocampus. No obvious morphological changes were observed in lung epithelial cells or tracheal mucosa after nasal delivery, suggesting that the formulation was not overtly toxic. CONCLUSIONS: In this study, nanoscale FAC-LIP proved an effective system delivering iron to the brain, with high encapsulation efficiency and low toxicity in rats. Our studies provide the foundation for more detailed investigations into the applications of niosomal nasal delivery of liposomal formulations of iron as a simple and safe therapy for iron deficiency anemia. Graphical abstract The diagrammatic sketch of "Nasal delivery of nanoliposome-encapsulated ferric ammonium citrate can increase the iron content of rat brain". Nanoliposome-encapsulated ferric ammonium citrate (FAC-LIP) was successfully prepared and intranasal administration of FAC-LIP increased both the total iron contents and iron storage protein (FTL) expression in rat olfactory bulb, cerebral cortex, striatum and hippocampus, compared with those of FAC groups. Moreover, there was not overtly toxic affects to brain, lung epithelial cells and tracheal mucosa.


Asunto(s)
Encéfalo/metabolismo , Compuestos Férricos/administración & dosificación , Compuestos Férricos/farmacocinética , Compuestos de Amonio Cuaternario/administración & dosificación , Compuestos de Amonio Cuaternario/farmacocinética , Administración Intranasal , Animales , Apoptosis/efectos de los fármacos , Encéfalo/citología , Encéfalo/efectos de los fármacos , Hierro/administración & dosificación , Hierro/farmacocinética , Liposomas/química , Liposomas/ultraestructura , Masculino , Malondialdehído/metabolismo , Ratas , Ratas Sprague-Dawley , Superóxido Dismutasa/metabolismo
16.
Int J Mol Sci ; 18(7)2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28703745

RESUMEN

Mitochondrial ferritin (FtMt) is a H-ferritin-like protein which localizes to mitochondria. Previous studies have shown that this protein can protect mitochondria from iron-induced oxidative damage, while FtMt overexpression in cultured cells decreases cytosolic iron availability and protects against oxidative damage. To investigate the in vivo role of FtMt, we established FtMt overexpressing mice by pro-nucleus microinjection and examined the characteristics of the animals. We first confirmed that the protein levels of FtMt in the transgenic mice were increased compared to wild-type mice. Interestingly, we found no significant differences in the body weights or organ to body weight ratios between wild type and transgenic mice. To determine the effects of FtMt overexpression on baseline murine iron metabolism and hematological indices, we measured serum, heart, liver, spleen, kidney, testis, and brain iron concentrations, liver hepcidin expression and red blood cell parameters. There were no significant differences between wild type and transgenic mice. In conclusion, our results suggest that FtMt overexpressing mice have no significant defects and the overexpression of FtMt does not affect the regulation of iron metabolism significantly in transgenic mice.


Asunto(s)
Ferritinas/genética , Mitocondrias/metabolismo , Animales , Presión Sanguínea , Peso Corporal , Proteínas de Transporte de Catión/metabolismo , Ferritinas/metabolismo , Heterocigoto , Hierro/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora , Tamaño de los Órganos , Receptores de Transferrina/metabolismo
17.
Cell Mol Life Sci ; 72(5): 983-97, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25213357

RESUMEN

Mitochondrial ferritin (FtMt) has a significant effect on the regulation of cytosolic and mitochondrial iron levels. However, because of the deficiency of iron regulatory elements (IRE) in FtMt's gene sequence, the exact function of FtMt remains unclear. In the present study, we found that FtMt dramatically inhibited SH-SY5Y cell proliferation and tumor growth in nude mice. Interestingly, excess FtMt did not adversely affect the development of drosophila. Additionally, we found that the expression of FtMt in human normal brain tissue was significantly higher than that of neuroblastoma, but not higher than that of neurospongioma. However, the expression of transferrin receptor 1 is completely opposite. We therefore hypothesized that increased expression of FtMt may negatively affect the vitality of neuronal tumor cells. Therefore, we further investigated the underlying mechanisms of FtMt's inhibitory effects on neuronal tumor cell proliferation. As expected, FtMt overexpression disturbed the iron homeostasis of tumor cells and significantly downregulated the expression of proliferating cell nuclear antigen. Moreover, FtMt affected cell cycle, causing G1/S arrest by modifying the expression of cyclinD1, cyclinE, Cdk2, Cdk4 and p21. Remarkably, FtMt strongly upregulated the expression of the tumor suppressors, p53 and N-myc downstream-regulated gene-1 (NDRG1), but dramatically decreased C-myc, N-myc and p-Rb levels. This study demonstrates for the first time a new role and mechanism for FtMt in the regulation of cell cycle. We thus propose FtMt as a new candidate target for inhibiting neuronal tumor cell proliferation. Appropriate regulation of FtMt expression may prevent tumor cell growth. Our study may provide a new strategy for neuronal cancer therapy.


Asunto(s)
Ferritinas/metabolismo , Mitocondrias/metabolismo , Animales , Apoptosis , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Ciclina D1/metabolismo , Ciclina E/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Ferritinas/genética , Puntos de Control de la Fase G1 del Ciclo Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neuroblastoma/metabolismo , Neuroblastoma/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína de Retinoblastoma/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
18.
Nanomedicine ; 12(7): 1747-1755, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27112306

RESUMEN

The absorption mechanism of heme iron remains unclear due to the limit of labeling techniques. Quantum dots (QDs) are powerful fluorescent probes resistant to photobleaching, however, there is no data about the application of QDs in heme iron absorption. Herein, we prepared hemin-coated CdSe/ZnS (QDs-hemin), and studied their absorption in vitro and in vivo. Results showed that QDs-hemin had uniform particle sizes, physiological stability and high joint efficiency. Moreover, QDs-hemin could be successfully absorbed gradually into the duodenum with the time using synchrotron radiation micro X-ray fluorescence and confocal laser scanning microscopy. Furthermore, QDs-hemin were observed to degrade in lysosomes, and their absorption was blocked by Heme Carrier Protein 1 (HCP1) antibody and HCP1 siRNA. All the results demonstrate that QDs can be a good tracer for heme iron and that HCP1 pathway is critical and predominant over the endocytosis pathway in the absorption mechanism.


Asunto(s)
Hemina/farmacocinética , Puntos Cuánticos , Animales , Duodeno , Colorantes Fluorescentes , Hierro , Ratones , Tamaño de la Partícula , Proteína-Arginina N-Metiltransferasas
19.
RNA Biol ; 12(3): 343-53, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25826666

RESUMEN

microRNA is necessary for osteoclast differentiation, function and survival. It has been reported that miR-199/214 cluster plays important roles in vertebrate skeletal development and miR-214 inhibits osteoblast function by targeting ATF4. Here, we show that miR-214 is up-regulated during osteoclastogenesis from bone marrow monocytes (BMMs) with macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) induction, which indicates that miR-214 plays a critical role in osteoclast differentiation. Overexpression of miR-214 in BMMs promotes osteoclastogenesis, whereas inhibition of miR-214 attenuates it. We further find that miR-214 functions through PI3K/Akt pathway by targeting phosphatase and tensin homolog (Pten). In vivo, osteoclast specific miR-214 transgenic mice (OC-TG214) exhibit down-regulated Pten levels, increased osteoclast activity, and reduced bone mineral density. These results reveal a crucial role of miR-214 in the differentiation of osteoclasts, which will provide a potential therapeutic target for osteoporosis.


Asunto(s)
MicroARNs/genética , Osteoclastos/metabolismo , Osteoporosis/genética , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Animales , Secuencia de Bases , Densidad Ósea , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Bovinos , Diferenciación Celular , Regulación de la Expresión Génica , Factor Estimulante de Colonias de Macrófagos/farmacología , Ratones , Ratones Transgénicos , MicroARNs/agonistas , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Datos de Secuencia Molecular , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Osteoporosis/metabolismo , Osteoporosis/patología , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ligando RANK/farmacología , Transducción de Señal
20.
J Gastroenterol Hepatol ; 30(3): 513-20, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25318588

RESUMEN

BACKGROUND AND AIM: The body's requirement for iron is different at different developmental stages. However, the molecular mechanisms of age-dependent iron metabolism are poorly understood. In the present study, we investigated the expression of iron transport proteins in the duodenum of Sprague-Dawley rats at five different age stages. METHODS: Male Sprague-Dawley rats at postnatal week (PNW) 1, 3, 12, 44, and 88 were employed in the study. Serum iron status and tissue non-heme iron concentrations in the spleen, liver, bone marrow, heart, kidney, duodenal epithelium, and gastrocnemius were examined at each age stage. The expression of duodenal cytochrome b (DcytB), divalent metal transporter 1 (DMT1), ferroportin 1 (FPN1), hephaestin, and hepcidin were measured by real-time polymerase chain reaction or Western blot. RESULTS: The levels of serum iron and transferrin saturation were higher in the rats at PNW1 and 3 than in those at PNW12, 44, and 88. Non-heme iron contents decreased from PNW1 to PNW3 and then increased thereafter. Duodenal DcytB, DMT1, and FPN1 increased to the highest level at PNW3 and then decreased from PNW12 to 88. The hepatic hepcidin mRNA level decreased to the lowest level at PNW3 and then increased with age. CONCLUSION: Our findings showed that age had a significant effect on body iron status. The increased duodenal DcytB, DMT1, and FPN1 expression can enhance intestinal iron absorption to meet the high iron requirements in infants. Hepcidin or enterocyte iron levels may be involved in the regulation of age-dependent FPN1, DMT1, and DcytB expression in the duodenum.


Asunto(s)
Envejecimiento/genética , Envejecimiento/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Citocromos b/genética , Citocromos b/metabolismo , Duodeno/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Expresión Génica , Hierro/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Animales , Western Blotting , Enterocitos/metabolismo , Hepcidinas/metabolismo , Absorción Intestinal/genética , Masculino , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Distribución Tisular , Transferrina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA