Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 97(8): e0026723, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37582207

RESUMEN

Avian leukemia virus subgroup J (ALV-J) causes various diseases associated with tumor formation and decreased fertility and induced immunosuppressive disease, resulting in significant economic losses in the poultry industry globally. Virus usually exploits the host cellular machinery for their replication. Although there are increasing evidences for the cellular proteins involving viral replication, the interaction between ALV-J and host proteins leading to the pivotal steps of viral life cycle are still unclear. Here, we reported that ribonucleoside-diphosphate reductase subunit M2 (RRM2) plays a critical role during ALV-J infection by interacting with capsid protein P27 and activating Wnt/ß-catenin signaling. We found that the expression of RRM2 is effectively increased during ALV-J infection, and that RRM2 facilitates ALV-J replication by interacting with viral capsid protein P27. Furthermore, ALV-J P27 activated Wnt/ß-catenin signaling by promoting ß-catenin entry into the nucleus, and RRM2 activated Wnt/ß-catenin signaling by enhancing its phosphorylation at Ser18 during ALV-J infection. These data suggest that the upregulation of RRM2 expression by ALV-J infection favors viral replication in host cells via activating Wnt/ß-catenin signaling. IMPORTANCE Our results revealed a novel mechanism by which RRM2 facilitates ALV-J growth. That is, the upregulation of RRM2 expression by ALV-J infection favors viral replication by interacting with capsid protein P27 and activating Wnt/ß-catenin pathway in host cells. Furthermore, the phosphorylation of serine at position 18 of RRM2 was verified to be the important factor regulating the activation of Wnt/ß-catenin signaling. This study provides insights for further studies of the molecular mechanism of ALV-J infection.


Asunto(s)
Virus de la Leucosis Aviar , Leucosis Aviar , Ribonucleósido Difosfato Reductasa , Vía de Señalización Wnt , Animales , Virus de la Leucosis Aviar/metabolismo , beta Catenina/metabolismo , Proteínas de la Cápside/metabolismo , Pollos , Ribonucleósido Difosfato Reductasa/metabolismo
2.
Infect Immun ; 91(12): e0035123, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37930004

RESUMEN

Virulent Glaesserella parasuis may engender systemic infection characterized by fibrinous polyserositis and pneumonia. G. parasuis causes systemic disease through upper respiratory tract infection, but the mechanism has not been fully characterized. Tight junction (TJ) proteins maintain the integrity and impermeability of the epithelial barriers. In this work, we applied the recombinant cytolethal distending toxin (CDT) holotoxin and cdt-deficient mutants to assess whether CDT interacted with TJ proteins of airway tract cells. Our results indicated that CDT induced the TJ occludin (OCLN) expression in newborn pig tracheal epithelial cells within the first 3 hours of bacterial infection, followed by a significant decrease. Overexpression of OCLN in target cells made them more susceptible to G. parasuis adhesion, whereas ablation of OCLN expression by CRISPR/Cas 9 gene editing technology in target cells decreased their susceptibility to bacterial adhesion. In addition, CDT treatment could upregulate the OCLN levels in the lung tissue of C57/BL6 mice. In summary, highly virulent G. parasuis strain SC1401 stimulated the tight junction expression, resulting in higher bacterial adhesion to respiratory tract cells, and this process is closely related to CDT. Our results may provide novel insights into G. parasuis infection and CDT-mediated pathogenesis.


Asunto(s)
Adhesión Bacteriana , Infecciones por Haemophilus , Haemophilus parasuis , Pulmón , Ocludina , Animales , Ratones , Células Epiteliales/microbiología , Haemophilus parasuis/genética , Haemophilus parasuis/patogenicidad , Ocludina/genética , Ocludina/metabolismo , Porcinos , Regulación hacia Arriba , Infecciones por Haemophilus/metabolismo , Infecciones por Haemophilus/microbiología , Pulmón/microbiología , Ratones Endogámicos C57BL
3.
Curr Issues Mol Biol ; 45(6): 4529-4543, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37367036

RESUMEN

Colon cancer is the third most important cancer type, leading to a remarkable number of deaths, indicating the necessity of new biomarkers and therapeutic targets for colon cancer patients. Several transmembrane proteins (TMEMs) are associated with tumor progression and cancer malignancy. However, the clinical significance and biological roles of TMEM211 in cancer, especially in colon cancer, are still unknown. In this study, we found that TMEM211 was highly expressed in tumor tissues and the increased TMEM211 was associated with poor prognosis in colon cancer patients from The Cancer Genome Atlas (TCGA) database. We also showed that abilities regarding migration and invasion were reduced in TMEM211-silenced colon cancer cells (HCT116 and DLD-1). Moreover, TMEM211-silenced colon cancer cells showed decreased levels of Twist1, N-cadherin, Snail and Slug but increased levels of E-cadherin. Levels of phosphorylated ERK, AKT and RelA (NF-κB p65) were also decreased in TMEM211-silenced colon cancer cells. Our findings indicate that TMEM211 regulates epithelial-mesenchymal transition for metastasis through coactivating the ERK, AKT and NF-κB signaling pathways, which might provide a potential prognostic biomarker or therapeutic target for colon cancer patients in the future.

4.
Microb Pathog ; 184: 106336, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37683832

RESUMEN

Pasteurella multocida.(PM) infection is a major cause of avian cholera, but the pathogenesis of the disease is unknown. The purpose of this study was to further understand the host response to infection by using a duck model of PM, 20 female ducks were divided into two groups (n = 10). One group was infected with PM, while the other served as an uninfected control group. The ducks were observed after infection and samples were collected for testing. In this study, we report the mechanism of PM-induced inflammation to further mediate apoptosis and autophagic signaling pathways in liver cells. Our results demonstrated that PM infection initially induces hemorrhagic and necrotic lesions in the liver tissue of duck, promoting inflammasome assembly and release, triggering inflammation. The TLR4/NF-κB axis activated and interacted with multiple inflammation-related proteins, including TNF-α and IL-1ß, which affected apoptosis and autophagy. Tumor necrosis factor induced hepatocyte apoptosis was implicated in a wide range of liver diseases; the release of TNF-α and activation with NF-κB further incite apoptotic pathways,such as Bax/BCL2/caspase to promote apoptotic genes APAF1, Bax, Caspase3, BCL-2, p53, and Cytc expression. Finally, PM-induced autophagy suppressed liver injury by promoting the Beclin-1, LC3B, p62, and mTOR. Thus, liver injury caused by PM via promoting autophagy was induced. In conclusion, we analyzed the liver injury of ducks infected with PM, and confirmed that inflammation appeared in the liver; this was followed by the intricate interplay between inflammation, apoptosis, and autophagy signaling pathways. The observed results provided a reference basis for studying pathogenic mechanisms of PM-host interactions.


Asunto(s)
Pasteurella multocida , Animales , Femenino , Pasteurella multocida/metabolismo , Patos , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa , Proteína X Asociada a bcl-2 , Hígado/patología , Inflamación/patología , Autofagia , Apoptosis
5.
Int J Mol Sci ; 24(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37240342

RESUMEN

Areca nut (AN) is used for traditional herbal medicine and social activities in several countries. It was used as early as about A.D. 25-220 as a remedy. Traditionally, AN was applied for several medicinal functions. However, it was also reported to have toxicological effects. In this review article, we updated recent trends of research in addition to acquire new knowledge about AN. First, the history of AN usage from ancient years was described. Then, the chemical components of AN and their biological functions was compared; arecoline is an especially important compound in AN. AN extract has different effects caused by different components. Thus, the dual effects of AN with pharmacological and toxicological effects were summarized. Finally, we described perspectives, trends and challenges of AN. It will provide the insight of removing or modifying the toxic compounds of AN extractions for enhancing their pharmacological activity to treat several diseases in future applications.


Asunto(s)
Extractos Vegetales , Plantas Medicinales , Extractos Vegetales/química , Areca/efectos adversos , Areca/química , Nueces/química , Arecolina/farmacología
6.
Int J Mol Sci ; 24(10)2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37239984

RESUMEN

Glaesserella parasuis (G. parasuis.) is the etiological pathogen of Glässer's disease, which causes high economic losses to the pig industry. The heme-binding protein A precursor (HbpA) was a putative virulence-associated factor proposed to be potential subunit vaccine candidate in G. parasuis. In this study, three monoclonal antibodies (mAb) 5D11, 2H81, and 4F2 against recombinant HbpA (rHbpA) of G. parasuis SH0165 (serotype 5) were generated by fusing SP2/0-Ag14 murine myeloma cells and spleen cells from BALB/c mice immunized with the rHbpA. Indirect enzyme-linked immunosorbent assay (ELISA) and indirect immunofluorescence assay (IFA) demonstrated that the antibody designated 5D11 showed a strong binding affinity with the HbpA protein and was chosen for subsequent experiments. The subtypes of the 5D11 were IgG1/κ chains. Western blot analysis showed that mAb 5D11 could react with all 15 serotype reference strains of G. parasuis. None of the other bacteria tested reacted with 5D11. In addition, a linear B-cell epitope recognized by 5D11 was identified by serial truncations of HbpA protein and then a series of truncated peptides were synthesized to define the minimal region that was required for mAb 5D11 binding. The 5D11 epitope was located on amino acids 324-LPQYEFNLEKAKALLA-339 by testing the 5D11 monoclonal for reactivity with 14 truncations. The minimal epitope 325-PQYEFNLEKAKALLA-339 (designated EP-5D11) was pinpointed by testing the mAb 5D11 for reactivity with a series of synthetic peptides of this region. The epitope was highly conserved among G. parasuis strains, confirmed by alignment analysis. These results indicated that mAb 5D11 and EP-5D11 might potentially be used to develop serological diagnostic tools for G. parasuis. Three-dimensional structural analysis revealed that amino acids of EP-5D11 were in close proximity and may be exposed on the surface of the HbpA protein.


Asunto(s)
Anticuerpos Monoclonales , Epítopos de Linfocito B , Animales , Ratones , Porcinos , Proteína Estafilocócica A , Péptidos , Ensayo de Inmunoadsorción Enzimática , Mapeo Epitopo
7.
BMC Microbiol ; 22(1): 151, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672661

RESUMEN

BACKGROUND: Leptospirosis is a significant emerging infectious disease worldwide. Rodents are considered to be the most critical hosts of Leptospira spp. Fujian Province is a region highly endemic for leptospirosis in China. However, the genetic diversity of leptospires circulating among rodents in Fujian is limited. RESULTS: The carrier status of rodents for Leptospira spp. was investigated by culture and serological detection in Fujian during 2018-2020. A total of 710 rodents, including 11 species, were trapped, with Rattus losea being the dominant trapped species (50.56%). Fourteen pathogenic Leptospira strains were obtained. Seven L. borgpetersenii serogroup Javanica strains belonging to ST143, 4 L. interrogans serogroup Icterohaemorrhagiae strains belonging to ST1 and ST17, 2 L. interrogans serogroup Bataviae strains belonging to ST96 and ST333, and 1 L. interrogans serogroup Pyrogenes strains belonging to ST332 were identified using 16S rDNA gene sequencing, microscopic agglutination test (MAT) and Multilocus sequence typing (MLST). L. borgpetersenii serogroup Javanica belonging to ST143 was the dominant type (50.00%). A total of 387 rodent serum samples were tested by MAT. Serum were considered positive for seroreactivity at a titer ≥ 1:160 against at least one serovar. A total of 90 (23.26%) serum samples tested positive, and four serogroups were identified, with Javanica being the dominant serogroup (87.78%), which was similar to the dominant serogroup isolated from rodents. This study demonstrates a high prevalence of leptospirosis in rodents and public health education among high-risk workers is highly recommended. CONCLUSIONS: R. losea was the dominant trapped rodent, and L. borgpetersenii serogroup Javanica ST143 was widely distributed among rodents in Fujian from 2018 to 2020. Despite the low number of isolates obtained from rodents, this study suggests that continuous epidemiological surveillance of the aetiological characteristics of pathogenic Leptospira in wild animal reservoirs may help reduce the possible risk of disease transmission.


Asunto(s)
Leptospira , Leptospirosis , Animales , China/epidemiología , Leptospirosis/epidemiología , Leptospirosis/veterinaria , Tipificación de Secuencias Multilocus , Ratas , Roedores , Serogrupo
8.
Arch Biochem Biophys ; 727: 109349, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35820644

RESUMEN

Bacterial immunoglobulin-like (BIg) domain containing proteins play a variety of biological functions. Leptospiral Immunoglobulin-like (Lig) proteins are well-known virulence factors located on the surface of the pathogenic Leptospira that act during adhesion, invasion, and immune evasion. The Lig proteins have many roles and have been designated as multifaceted proteins. However, the hydrolyzing function of Lig proteins is not yet investigated in detail. Here, we report novel in-vitro nuclease and protease activities in the Ig-like domain of LigA protein. All Ig-like domains were able to cleave DNA in the presence of a divalent ion, but not RNA. Site-directed mutagenesis revealed Mg+2 binding residues in the Ig-like domain of LigA7. The basis of novel nuclease activity may be associated with protein adopting different conformation in the presence of divalent ions and substrate as investigated by change of intrinsic fluorescence. The docking of a stretch of double-strand DNA shows the binding on the positive surface of the protein. In addition, the protein is also observed to cleave a general protease substrate, ß-casein, in our experimental condition. Our results proposed that the novel functions may be associated with neutrophil extracellular Trap (NET) evasion. Overall this study enhances the basic knowledge of non-nuclease proteins involved in the DNA cleavage activity and makes the foundation to explore its in-vivo activity in pathogenic Leptospira and other pathogens as well. Moreover, this information may be utilized to develop preventive strategies to interfere with Leptospira immune evasion.


Asunto(s)
Antígenos Bacterianos , Leptospira , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/química , Inmunoglobulinas/química , Inmunoglobulinas/metabolismo , Leptospira/genética , Péptido Hidrolasas , Factores de Virulencia/metabolismo
9.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36077023

RESUMEN

The YfeA gene, belonging to the well-conserved ABC (ATP-binding cassette) transport system Yfe, encodes the substrate-binding subunit of the iron, zinc, and manganese transport system in bacteria. As a potential vaccine candidate in Glaesserella parasuis, the functional mechanisms of YfeA in the infection process remain obscure. In this study, vaccination with YfeA effectively protected the C56BL6 mouse against the G. parasuis SC1401 challenge. Bioinformatics analysis suggests that YfeA is highly conserved in G. parasuis, and its metal-binding sites have been strictly conserved throughout evolution. Stimulation of RAW 264.7 macrophages with YfeA verified that toll-like receptors (TLR) 2 and 4 participated in the positive transcription and expression of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α. The activation of TLR2 and TLR4 utilized the MyD88/MAL and TRIF/TRAM pairs to initiate TLRs signaling. Furthermore, YfeA was shown to stimulate nuclear translocation of NF-κB and activated diverse mitogen-activated protein (MAP) kinase signaling cascades, which are specific to the secretion of particular cytokine(s) in murine macrophages. Separate blocking TLR2, TLR4, MAPK, and RelA (p65) pathways significantly decreased YfeA-induced pro-inflammatory cytokine production. In addition, YfeA-stimulated RAW 264.7 produces the pro-inflammatory hallmark, reactive oxygen species (ROS). In conclusion, our findings indicate that YfeA is a novel pro-inflammatory mediator in G. parasuis and induces TLR2 and TLR4-dependent pro-inflammatory activity in RAW 264.7 macrophages through P38, JNK-MAPK, and NF-κB signaling pathways.


Asunto(s)
Haemophilus parasuis , Proteínas de Unión Periplasmáticas , Animales , Citocinas/metabolismo , Macrófagos/metabolismo , Ratones , FN-kappa B/metabolismo , Proteínas de Unión Periplasmáticas/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
10.
Microb Pathog ; 160: 105196, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34534643

RESUMEN

Pasteurella multocida, an important gram-negative pathogen that mainly inhibits the upper respiratory tracts of domestic and wild animals such as chicken, duck, cattle and pig, which can cause cholera fowl, haemorrhagic septicaemia and infectious pneumonia. Currently, the prevalence and infection of P.multocida is still one of the most serious threats to the poultry industry in China, but studies on its characteristics are still insufficient. Here, this study was conducted to isolate and identify P.multocida in infected ducks and determined the leading serotypes and epidemiology of the diseases this pathogen causes. Results indicated that all the isolates were positive for KMT1 gene and the PCR amplified products were approximately 460 bp, demonstrating that these strains were all P.multocida. Moreover, all the isolated strains were identified as capsular type A and lipopolysaccharide type L1. Virulence factor identification results revealed that all strains possessed genes related to pili, adhesin, iron metabolism and uptake. In contrast, toxin coding gene (toxA) and sialidase encodes genes (nan B and nan H) were not detected in any isolates. The drug susceptibility results indicated that all the isolates were resistant to Lincomycin, Chloramphenicol, Clindamycin and Oxacillin but were sensitive to Ceftriaxone and Cefalotin. The animal experiments were also performed to further determine the pathogenicity of these isolated strains. Animal experiment revealed that the liver, kidney, and heart of infected ducks were swollen and had bleeding spots. We also observed hepatocyte hypertrophy, hepatic sinus congestion and single-cell infiltration in infected ducks through H&E staining. In summary, this study demonstrated that all the isolated strains belong to capsular A and lipopolysaccharide type L1 P.multocida, but their virulence factors, drug resistance and pathogenicity were different.


Asunto(s)
Infecciones por Pasteurella , Pasteurella multocida , Enfermedades de las Aves de Corral , Animales , Bovinos , China/epidemiología , Patos , Infecciones por Pasteurella/veterinaria , Pasteurella multocida/genética , Enfermedades de las Aves de Corral/epidemiología , Porcinos
11.
Arch Virol ; 166(5): 1463-1468, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33718993

RESUMEN

Porcine circovirus 3 (PCV3) is a recently emerged circovirus discovered in 2016 that has drawn the attention of the swine industry worldwide. In this study, we evaluated the genetic diversity of PCV3 strains on pig farms. A total of 261 samples from sows, weaning pigs, growing pigs, and stillborn/mummified fetuses were analyzed by quantitative real-time PCR. The results revealed that at least two main lineages of PCV3 are circulating in Brazil. For the first time, it was possible to detect the presence of two different PCV3 strains in the same host.


Asunto(s)
Infecciones por Circoviridae/veterinaria , Circovirus/genética , Coinfección/veterinaria , Enfermedades de los Porcinos/virología , Animales , Brasil/epidemiología , Infecciones por Circoviridae/virología , Circovirus/aislamiento & purificación , Coinfección/virología , ADN Viral/genética , Granjas , Variación Genética , Genotipo , Sistemas de Lectura Abierta/genética , Filogenia , Porcinos , Carga Viral
12.
Proc Natl Acad Sci U S A ; 115(14): E3106-E3115, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29555731

RESUMEN

Many microbial pathogens produce a ß-(1→6)-linked poly-N-acetyl-d-glucosamine (PNAG) surface capsule, including bacterial, fungal, and protozoan cells. Broadly protective immune responses to this single conserved polysaccharide antigen in animals are possible but only when a deacetylated poly-N-acetyl-d-glucosamine (dPNAG; <30% acetate) glycoform is administered as a conjugate to a carrier protein. Unfortunately, conventional methods for natural extraction or chemical synthesis of dPNAG and its subsequent conjugation to protein carriers can be technically demanding and expensive. Here, we describe an alternative strategy for creating broadly protective vaccine candidates that involved coordinating recombinant poly-N-acetyl-d-glucosamine (rPNAG) biosynthesis with outer membrane vesicle (OMV) formation in laboratory strains of Escherichia coli The glycosylated outer membrane vesicles (glycOMVs) released by these engineered bacteria were decorated with the PNAG glycopolymer and induced high titers of PNAG-specific IgG antibodies after immunization in mice. When a Staphylococcus aureus enzyme responsible for PNAG deacetylation was additionally expressed in these cells, glycOMVs were generated that elicited antibodies to both highly acetylated PNAG (∼95-100% acetate) and a chemically deacetylated dPNAG derivative (∼15% acetate). These antibodies mediated efficient in vitro killing of two distinct PNAG-positive bacterial species, namely S. aureus and Francisella tularensis subsp. holarctica, and mice immunized with PNAG-containing glycOMVs developed protective immunity against these unrelated pathogens. Collectively, our results reveal the potential of glycOMVs for targeting this conserved polysaccharide antigen and engendering protective immunity against the broad range of pathogens that produce surface PNAG.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Antígenos de Superficie/inmunología , Bacterias/inmunología , Infecciones Bacterianas/prevención & control , Vacunas Bacterianas/uso terapéutico , Inmunización/métodos , Vesículas Transportadoras/inmunología , Animales , Infecciones Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Femenino , Ratones , Ratones Endogámicos BALB C , Vacunas Conjugadas/inmunología , Vacunas Conjugadas/uso terapéutico , beta-Glucanos/metabolismo
13.
Ecotoxicol Environ Saf ; 217: 112225, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33864983

RESUMEN

Long-term exposure to excessive fluoride causes chronic damage in the body tissues and could lead to skeletal and dental fluorosis. Cartilage damage caused by excessive fluoride intake has gained wide attention, but how fluoride accumulation blocks the development of chondrocytes is still unclear. Here, we report a negative correlation between the length and growth plate width after NaF treatments via apoptosis and autophagy, with shrinkage of cells, nuclear retraction, dissolution of chondrocytes. Whereas, fluoride exposure had no significant effect on the number and distribution of the osteoclasts which were well aligned. More importantly, fluoride exposure induced apoptosis of tibial bone through CytC/Bcl-2/P53 pathways via targeting Caspase3, Caspase9, Bak1, and Bax expressions. Meanwhile, the Beclin1, mTOR, Pakin, Pink, and p62 were elevated in NaF treatment group, which indicated that long-term excessive fluoride triggered the autophagy in the tibial bone and produced the chondrocyte injury. Altogether, fluoride exposure induced the chondrocyte injury by regulating the autophagy and apoptosis in the tibial bone of ducks, which demonstrates that fluoride exposure is a risk factor for cartilage development. These findings revealed the essential role of CytC/Bcl-2/P53 pathways in long-term exposure to fluoride pollution and block the development of chondrocytes in ducks, and CytC/Bcl-2/P53 can be targeted to prevent fluoride induced chondrocyte injury.


Asunto(s)
Condrocitos/fisiología , Patos/fisiología , Fluoruros/toxicidad , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Beclina-1/metabolismo , Condrocitos/efectos de los fármacos , Condrogénesis , Fluoruros/metabolismo , Placa de Crecimiento
14.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34360998

RESUMEN

Candida albicans, an opportunistic fungus, causes dental caries and contributes to mucosal bacterial dysbiosis leading to a second infection. Furthermore, C.albicans forms biofilms that are resistant to medicinal treatment. To make matters worse, antifungal resistance has spread (albeit slowly) in this species. Thus, it has been imperative to develop novel, antifungal drug compounds. Herein, a peptide was engineered with the sequence of RRFSFWFSFRR-NH2; this was named P19. This novel peptide has been observed to exert disruptive effects on fungal cell membrane physiology. Our results showed that P19 displayed high binding affinity to lipopolysaccharides (LPS), lipoteichoic acids (LTA) and the plasma membrane phosphatidylinositol (PI), phosphatidylserine (PS), cardiolipin, and phosphatidylglycerol (PG), further indicating that the molecular mechanism of P19 was not associated with the receptor recognition, but rather related to competitive interaction with the plasma membrane. In addition, compared with fluconazole and amphotericin B, P19 has been shown to have a lower potential for resistance selection than established antifungal agents.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Oligopéptidos/farmacología , Antifúngicos/química , Candida albicans/fisiología , Cardiolipinas/metabolismo , Membrana Celular/efectos de los fármacos , Lipopolisacáridos/metabolismo , Oligopéptidos/química , Fosfatidilgliceroles/metabolismo , Fosfatidilinositoles/metabolismo , Fosfatidilserinas/metabolismo , Ácidos Teicoicos/metabolismo , Triptófano/química
15.
Artículo en Inglés | MEDLINE | ID: mdl-31767723

RESUMEN

Isoniazid (INH) is a cornerstone of antitubercular therapy. Mycobacterium tuberculosis complex bacteria are the only mycobacteria sensitive to clinically relevant concentrations of INH. All other mycobacteria, including M. marinum and M. avium subsp. paratuberculosis are resistant. INH requires activation by bacterial KatG to inhibit mycobacterial growth. We tested the role of the differences between M. tuberculosis KatG and that of other mycobacteria in INH sensitivity. We cloned the M. boviskatG gene into M. marinum and M. avium subsp. paratuberculosis and measured the MIC of INH. We recombinantly expressed KatG of these mycobacteria and tested in vitro binding to, and activation of, INH. Introduction of katG from M. bovis into M. marinum and M. avium subsp. paratuberculosis rendered them 20 to 30 times more sensitive to INH. Analysis of different katG sequences across the genus found KatG evolution diverged from RNA polymerase-defined mycobacterial evolution. Biophysical and biochemical tests of M. bovis and nontuberculous mycobacteria (NTM) KatG proteins showed lower affinity to INH and substantially lower enzymatic capacity for the conversion of INH into the active form in NTM. The KatG proteins of M. marinum and M. avium subsp. paratuberculosis are substantially less effective in INH activation than that of M. tuberculosis, explaining the relative INH insensitivity of these microbes. These data indicate that the M. tuberculosis complex KatG is divergent from the KatG of NTM, with a reciprocal relationship between resistance to host defenses and INH resistance. Studies of bacteria where KatG is functionally active but does not activate INH may aid in understanding M. tuberculosis INH-resistance mechanisms, and suggest paths to overcome them.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/metabolismo , Catalasa/metabolismo , Isoniazida/farmacología , Mycobacterium/efectos de los fármacos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Catalasa/genética , Activación Enzimática , Proteínas de Unión al Hemo/genética , Proteínas de Unión al Hemo/metabolismo , Mycobacterium/enzimología , Mycobacterium/genética , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Micobacterias no Tuberculosas/efectos de los fármacos , Micobacterias no Tuberculosas/enzimología , Micobacterias no Tuberculosas/genética , Filogenia , Multimerización de Proteína , Alineación de Secuencia , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
16.
Microb Pathog ; 143: 104133, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32169486

RESUMEN

Bacillus cereus (B. cereus) is widely distributed in the environment. It is one of the most common opportunistic food-borne pathogens associated with food poisoning, not only being majorly reported to cause fatal infections of the gastrointestinal tract, but also responsible for abdominal distress and vomiting. The current study was undertaken to evaluate the biological characteristics and the genetic evolution of B. cereus isolated from infected organs of dead Elaphurus davidianus (E. davidianus). B. cereus was characterized through antibiotic sensitivity tests, mouse lethality assay, whole genome sequencing analysis, and genome annotation. The results revealed that the isolated B. cereus strain was highly resistant to rifampicin, lincomycin, sulfamethoxazole, erythromycin, and ampicillin, with a high pathogenicity phenotype. KEGG annotation revealed that "metabolic pathways" had the largest number of unigenes, followed by "biosynthesis of secondary metabolites" and "biosynthesis of antibiotics". GO analysis resulted in 8039 unigenes categorized. Meanwhile, 54,779 unigenes were annotated and grouped into 23 categories based on COG functional classifications. Moreover, one gene (codY) was found to be related to the host in conformity with the analysis done on PHI-base. Other tests led to the identification of 16 B. cereus virulence factor genes and five resistance types, with potential resistance against bacitracin, penicillin, and fosfomycin. We isolated a highly drug-resistant and pathogenic B. cereus strain from E. davidianus, showing that a variety of antimicrobial drugs should be avoided in clinical treatments. Furthermore, to the best of our knowledge, this is the first study to report whole genome sequencing of a emergence of food-borne B. cereus strain isolated from E. davidianus deer; it will be helpful to extensively investigate the genetic and molecular mechanisms of drug resistance and pathogenesis about B. cereus in both humans and animals.


Asunto(s)
Bacillus cereus/genética , Ciervos/microbiología , Evolución Molecular , Animales , Antibacterianos/farmacología , Bacillus cereus/efectos de los fármacos , Bacillus cereus/patogenicidad , Farmacorresistencia Bacteriana/genética , Femenino , Genoma Bacteriano/genética , Ratones , Pruebas de Sensibilidad Microbiana , Virulencia/genética , Secuenciación Completa del Genoma
17.
Mol Cell Probes ; 53: 101641, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32735874

RESUMEN

Gallibacterium anatis (G. anatis), one of the major pathogens causing reproductive tract disorders in laying hens, leads to a reduction in egg production and increased mortality, caused by either single or mixed infections with other pathogens. As a specific virulence factor of G. anatis, the role of GtxA in layers' salpingitis remains unclear. In this study, we explored the effect of GtxA on G. anatis infection by comparing wild strain Yu-PDS-RZ-1-SLG (RZ) and its GtxA deleted counterpart RZΔgtxA in primary chicken oviduct epithelial cells (COEC). Their adherence, invasion, cytoxicity, and ability to induce apoptosis and and cytokine secretion were evaluated and the cytotoxicity and cytokine secretion of the recombinant GtxA protein and its N-terminal adenylate cyclase and C-terminal RTX hemolysin domain were also analyzed. We found that the adhesion ability of RZΔgtxA was significantly lower than that of parental strain RZ, and its toxicity to COEC was weakened; Meanwhile, apoptosis was inhibited and the expression of IL-6, IL-2, TNF-α and IFN-γ were dramatically reduced in COEC infected by RZΔgtxA. In contrast, the recombinant protein GtxA inhibited the proliferation of oviduct cells and induced obvious cytotoxicity, and the expression of IL-6, TNF-α and IFN-γ were up-regulated in COEC interacted with recombinant proteins. Our study indicates that GtxA promotes G. anatis adherence to cells, changes cells permeability and expression of inflammatory factors, resulting in cell damage and apoptosis.


Asunto(s)
Toxinas Bacterianas/genética , Infecciones por Pasteurellaceae/veterinaria , Pasteurellaceae/patogenicidad , Enfermedades de las Aves de Corral/microbiología , Animales , Adhesión Bacteriana , Pollos , Citocinas/metabolismo , Células Epiteliales/citología , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Femenino , Eliminación de Gen , Oviductos/citología , Oviductos/inmunología , Oviductos/microbiología , Pasteurellaceae/genética , Pasteurellaceae/inmunología , Infecciones por Pasteurellaceae/inmunología , Factores de Virulencia/genética
19.
BMC Microbiol ; 19(1): 234, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31660853

RESUMEN

BACKGROUND: Porcine enzootic pneumonia is a worldwide problem in swine production. The infected host demonstrates a respiratory disease whose etiologic agent is Mycoplasma hyopneumoniae (Mhp). A total of 266 lung samples with Mycoplasma-like lesions were collected from two slaughterhouses. We analyzed the genetic profile of Mhp field samples using 16 genes that encode proteins involved in the mechanisms of bacterial pathogenesis and/or the immune responses of the host. Bioinformatic analyses were performed to classify the Mhp field samples based on their similarity according to the presence of the studied genes. RESULTS: Our results showed variations in the frequency of the 16 studied genes among different Mhp field samples. It was also noted that samples from the same farm were genetically different from each other and samples from different regions could be genetically similar, which is evidence of the presence of different genetic profiles among the Mhp field strains that circulate in Brazilian swine herds. CONCLUSION: This work demonstrated the genetic diversity of several Mhp field strains based on 16 selected genes related to virulence and/or immune response in Brazil. Our findings demonstrate the difference between Mhp field strains could influence the virulence, and we hypothesize that the most frequent genes in Mhp field strains could possibly be used as vaccine candidates. Based on our results, we suspect that Mhp genetic variability may be associated with the frequency of genes among the field strains and we have demonstrated that some Mhp field samples could not have many important genes described in the literature.


Asunto(s)
Proteínas Bacterianas/genética , Variación Genética , Mycoplasma hyopneumoniae/genética , Neumonía Porcina por Mycoplasma/microbiología , Mataderos , Animales , Antígenos Bacterianos/genética , Brasil , Evolución Molecular , Mycoplasma hyopneumoniae/inmunología , Mycoplasma hyopneumoniae/patogenicidad , Análisis de Secuencia de ADN/métodos , Porcinos , Factores de Virulencia/genética
20.
Microb Pathog ; 134: 103565, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31158493

RESUMEN

Haemophilus parasuis (H. parasuis) is rather difficult to manipulate genetically due to the diversity of restriction-modification systems and other mechanisms harbored by various isolates. This prevents exogenous plasmids from replicating in this species and hinders research efforts focused on transcriptional regulators in this bacterium. In this study, we generated a convenient promoter reporter system based on gene knock-in method using natural transformation in H. parasuis. Gene knock-in has proven useful as a powerful tool facilitating identification and studying the transcription activities of regulators under a variety of conditions that favor gene transcription or expression from an incorporated promoter. The vectors, pDK-K and pDK-G, carrying promoterless reporter lacZ gene and two homologous sequences flanking a knock-in site, may have some advantages over the extensively used plasmid-bearing reporter system in other bacteria in stability and ease of genetic manipulation in H. parasuis. The knock-in site was positioned at a site occupied by flanking genes that were both hypothetical and had the same transcription orientation, thus the expression of the reversely cloned promoter-lacZ fusion wouldn't be affected by the upstream promoter on the chromosome. The expression activity of lacZ gene under the transcriptional activation of a 300 bp promoter-proximal segment of cyaA, crp or comA genes in H. parasuis was separately validated using X-gal and o-nitrophenyl-ß-d-galactoside(ONPG) as substrates. The derivatives harboring promoter-lacZ fusion segments showed significantly higher ß-galactosidase activity levels than the promoterlessones both in TSB++ broth and on TSA++ plate as screened either by X-gal method or the standard Miller method. We also used pDK vector to further certify that the cyaA promoter is inducible and whose transcriptional levels were in correlation with the growth kinetics of the bacteria in TSB++. With this system, gene knock-in method based on natural transformation in H. parasuis proved to be useful in identifying transcriptional regulation of a certain promoter.


Asunto(s)
Expresión Génica , Genes Reporteros/genética , Haemophilus parasuis/genética , Plásmidos/genética , Regiones Promotoras Genéticas/genética , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Vectores Genéticos , Genoma Bacteriano , Inestabilidad Genómica , Cinética , Operón Lac , Elementos Reguladores de la Transcripción/genética , Transformación Bacteriana , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA