Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 23(1): 470, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35752751

RESUMEN

BACKGROUND: The selection of tissue culture-derived somaclonal variants of Giant Cavendish banana (Musa spp., Cavendish sub-group AAA) by the Taiwan Banana Research Institute (TBRI) has resulted in several cultivars resistant to Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), a destructive fungus threatening global banana production. However, the mutations in these somaclonal variants have not yet been determined. We performed an RNA-sequencing (RNA-seq) analysis of three TBRI Foc TR4-resistant cultivars: 'Tai-Chiao No. 5' (TC5), 'Tai-Chiao No. 7' (TC7), and 'Formosana' (FM), as well as their susceptible progenitor 'Pei-Chiao' (PC), to investigate the sequence variations among them and develop cultivar-specific markers. RESULTS: A group of single-nucleotide variants (SNVs) specific to one cultivar were identified from the analysis of RNA-seq data and validated using Sanger sequencing from genomic DNA. Several SNVs were further converted into cleaved amplified polymorphic sequence (CAPS) markers or derived CAPS markers that could identify the three Foc TR4-resistant cultivars among 6 local and 5 international Cavendish cultivars. Compared with PC, the three resistant cultivars showed a loss or alteration of heterozygosity in some chromosomal regions, which appears to be a consequence of single-copy chromosomal deletions. Notably, TC7 and FM shared a common deletion region on chromosome 5; however, different TC7 tissues displayed varying degrees of allele ratios in this region, suggesting the presence of chimerism in TC7. CONCLUSIONS: This work demonstrates that reliable SNV markers of tissue culture-derived and propagated banana cultivars with a triploid genome can be developed through RNA-seq data analysis. Moreover, the analysis of sequence heterozygosity can uncover chromosomal deletions and chimerism in banana somaclonal variants. The markers obtained from this study will assist with the identification of TBRI Cavendish somaclonal variants for the quality control of tissue culture propagation, and the protection of breeders' rights.


Asunto(s)
Fusarium , Musa , Fusarium/genética , Perfilación de la Expresión Génica , Musa/genética , Musa/microbiología , Mutación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
2.
Phytopathology ; 111(10): 1800-1810, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33703920

RESUMEN

Bananas are among the world's most important cash and staple crops but are threatened by various devastating pathogens. The phytohormone salicylic acid (SA) plays a key role in the regulation of plant immune response. Tracking the expression of SA-responsive marker genes under pathogen infection is important in pathogenesis elucidation. However, the common SA-responsive marker genes are not consistently induced in different banana cultivars or different organs. Here, we conducted transcriptome analysis for SA response of a banana cultivar, 'Pei-Chiao' (Cavendish, AAA genome), and identified three genes, MaWRKY40, MaWRKY70, and Downy Mildew Resistant 6 (DMR6)-Like Oxygenase 1 (MaDLO1) that are robustly induced upon SA treatment in both the leaves and roots. Consistent induction of these three genes by SA treatment was also detected in both the leaves and roots of bananas belonging to different genome types such as 'Tai-Chiao No. 7' (Cavendish, AAA genome), 'Pisang Awak' (ABB genome), and 'Lady Finger' (AA genome). Furthermore, the biotrophic pathogen cucumber mosaic virus elicited the expression of MaWRKY40 and MaDLO1 in infected leaves of susceptible cultivars. The hemibiotrophic fungal pathogen Fusarium oxysporum f. sp. cubense tropical race 4 (TR4) also consistently induced the expression of MaWRKY40 and MaDLO1 in the infected roots of the F. oxysporum f. sp. cubense TR4-resistant cultivar. These results indicate that MaWRKY40 and MaDLO1 can be used as reliable SA-responsive marker genes for the study of plant immunity in banana. Revealing SA-responsive marker genes provides a stepping stone for further studies in banana resistance to pathogens.


Asunto(s)
Musa , Productos Agrícolas , Inmunidad , Musa/genética , Enfermedades de las Plantas , Ácido Salicílico
3.
Front Plant Sci ; 12: 771777, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659327

RESUMEN

[This corrects the article DOI: 10.3389/fpls.2021.713216.].

4.
Front Plant Sci ; 12: 713216, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34456952

RESUMEN

Bananas (Musa spp.) are some of the most important fruit crops in the world, contributing up to US$10 billion in export values annually. In this study, we use high-throughput sequencing to obtain genomic resources of high-copy DNA molecules in bananas. We sampled 13 wild species and eight cultivars that represent the three genera (Ensete, Musa, and Musella) of the banana family (Musaceae). Their plastomic, 45S rDNA, and mitochondrial scaffolds were recovered from genome skimming data. Two major clades (Clades I & II) within Musa are strongly supported by the three genomic compartment data. We document, for the first time, that the plastomes of Musaceae have expanded inverted repeats (IR) after they diverged from their two close relatives, Heliconiaceae (the lobster-claws) and Strelitziaceae (the traveler's bananas). The presence/absence of rps19 within IR regions reinforces the two intra-generic clades within Musa. Our comparisons of the bananas' plastomic and mitochondrial DNA sequence trees aid in identifying hybrid bananas' parentage. As the mitochondrial genes of Musa have elevated substitution rates, paternal inheritance likely plays an influential role on the Musa mitogenome evolution. We propose genome skimming as a useful method for reliable genealogy tracing and phylogenetics in bananas.

5.
PLoS One ; 12(7): e0181630, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28719631

RESUMEN

Fusarium oxysporum formae specialis cubense (Foc) is a soil-borne fungus that causes Fusarium wilt, which is considered to be the most destructive disease of bananas. The fungus is believed to have evolved with its host in the Indo-Malayan region, and from there it was spread to other banana-growing areas with infected planting material. The diversity and distribution of Foc in Asia was investigated. A total of 594 F. oxysporum isolates collected in ten Asian countries were identified by vegetative compatibility groups (VCGs) analysis. To simplify the identification process, the isolates were first divided into DNA lineages using PCR-RFLP analysis. Six lineages and 14 VCGs, representing three Foc races, were identified in this study. The VCG complex 0124/5 was most common in the Indian subcontinent, Vietnam and Cambodia; whereas the VCG complex 01213/16 dominated in the rest of Asia. Sixty-nine F. oxysporum isolates in this study did not match any of the known VCG tester strains. In this study, Foc VCG diversity in Bangladesh, Cambodia and Sri Lanka was determined for the first time and VCGs 01221 and 01222 were first reported from Cambodia and Vietnam. New associations of Foc VCGs and banana cultivars were recorded in all the countries where the fungus was collected. Information obtained in this study could help Asian countries to develop and implement regulatory measures to prevent the incursion of Foc into areas where it does not yet occur. It could also facilitate the deployment of disease resistant banana varieties in infested areas.


Asunto(s)
Fusarium/fisiología , Especificidad del Huésped , Musa/microbiología , Asia , Proteínas Fúngicas/genética , Fusarium/genética , Variación Genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA