Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Trends Genet ; 35(3): 175-185, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30685209

RESUMEN

Wolbachia bacteria inhabit the cells of about half of all arthropod species, an unparalleled success stemming in large part from selfish invasive strategies. Cytoplasmic incompatibility (CI), whereby the symbiont makes itself essential to embryo viability, is the most common of these and constitutes a promising weapon against vector-borne diseases. After decades of theoretical and experimental struggle, major recent advances have been made toward a molecular understanding of this phenomenon. As pieces of the puzzle come together, from yeast and Drosophila fly transgenesis to CI diversity patterns in natural mosquito populations, it becomes clearer than ever that the CI induction and rescue stem from a toxin-antidote (TA) system. Further, the tight association of the CI genes with prophages provides clues to the possible evolutionary origin of this phenomenon and the levels of selection at play.


Asunto(s)
Toxinas Bacterianas/genética , Citoplasma/genética , Enfermedades Transmitidas por Vectores/genética , Wolbachia/genética , Animales , Antídotos/química , Antídotos/uso terapéutico , Artrópodos/genética , Artrópodos/microbiología , Toxinas Bacterianas/química , Culicidae/genética , Culicidae/microbiología , Citoplasma/microbiología , Drosophila/genética , Drosophila/microbiología , Técnicas de Transferencia de Gen , Simbiosis/genética , Enfermedades Transmitidas por Vectores/microbiología , Wolbachia/patogenicidad
2.
PLoS Genet ; 15(2): e1007965, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30707693

RESUMEN

More than any other genome components, Transposable Elements (TEs) have the capacity to move across species barriers through Horizontal Transfer (HT), with substantial evolutionary consequences. Previous large-scale surveys, based on full-genomes comparisons, have revealed the transposition mode as an important predictor of HT rates variation across TE superfamilies. However, host biology could represent another major explanatory factor, one that needs to be investigated through extensive taxonomic sampling. Here we test this hypothesis using a field collection of 460 arthropod species from Tahiti and surrounding islands. Through targeted massive parallel sequencing, we uncover patterns of HT in three widely-distributed TE superfamilies with contrasted modes of transposition. In line with earlier findings, the DNA transposons under study (TC1-Mariner) were found to transfer horizontally at the highest frequency, closely followed by the LTR superfamily (Copia), in contrast with the non-LTR superfamily (Jockey), that mostly diversifies through vertical inheritance and persists longer within genomes. Strikingly, across all superfamilies, we observe a marked excess of HTs in Lepidoptera, an insect order that also commonly hosts baculoviruses, known for their ability to transport host TEs. These results turn the spotlight on baculoviruses as major potential vectors of TEs in arthropods, and further emphasize the importance of non-vertical TE inheritance in genome evolution.


Asunto(s)
Artrópodos/genética , Elementos Transponibles de ADN , Lepidópteros/genética , Animales , Artrópodos/clasificación , Baculoviridae/genética , Evolución Molecular , Transferencia de Gen Horizontal , Variación Genética , Genoma de los Insectos , Lepidópteros/clasificación , Lepidópteros/virología , Modelos Genéticos , Filogenia , Polinesia
3.
Am Nat ; 194(4): 470-481, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31490728

RESUMEN

Nongenetic inheritance media-from methyl-accepting cytosines to culture-tend to mutate more frequently than DNA sequences. Whether this makes them inexhaustible suppliers for adaptive evolution will depend on the effect of nongenetic mutations (hereafter, epimutations) on fitness-related traits. Here we investigate how these effects might themselves evolve, specifically whether natural selection may set boundaries to the adaptive potential of nongenetic inheritance media because of their higher mutability. In our model, the genetic and epigenetic contributions to a nonneutral phenotype are controlled by an epistatic modifier locus, which evolves under the combined effects of drift and selection. We show that a pure genetic control evolves when the environment is stable-provided that the population is large-such that the phenotype becomes robust to frequent epimutations. When the environment fluctuates, however, selection on the modifier locus also fluctuates and can overall produce a large nongenetic contribution to the phenotype, especially when the epimutation rate matches the rate of environmental variation. We further show that selection on the modifier locus is generally insensitive to recombination, meaning it is mostly direct, that is, not relying on subsequent effects in future generations. These results suggest that unstable inheritance media might significantly contribute to fitness variation of traits subject to highly variable selective pressures but little to traits responding to scarcely variable aspects of the environment. More generally, our study demonstrates that the rate of mutation and the adaptive potential of any inheritance media should not be seen as independent properties.


Asunto(s)
Evolución Biológica , Epigénesis Genética , Mutación , Epistasis Genética , Variación Genética , Modelos Genéticos , Fenotipo
4.
Ecol Appl ; 29(5): e01914, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31050090

RESUMEN

New genetic diagnostic approaches have greatly aided efforts to document global biodiversity and improve biosecurity. This is especially true for organismal groups in which species diversity has been underestimated historically due to difficulties associated with sampling, the lack of clear morphological characteristics, and/or limited availability of taxonomic expertise. Among these methods, DNA sequence barcoding (also known as "DNA barcoding") and by extension, meta-barcoding for biological communities, has emerged as one of the most frequently utilized methods for DNA-based species identifications. Unfortunately, the use of DNA barcoding is limited by the availability of complete reference libraries (i.e., a collection of DNA sequences from morphologically identified species), and by the fact that the vast majority of species do not have sequences present in reference databases. Such conditions are critical especially in tropical locations that are simultaneously biodiversity rich and suffer from a lack of exploration and DNA characterization by trained taxonomic specialists. To facilitate efforts to document biodiversity in regions lacking complete reference libraries, we developed a novel statistical approach that categorizes unidentified species as being either likely native or likely nonnative based solely on measures of nucleotide diversity. We demonstrate the utility of this approach by categorizing a large sample of specimens of terrestrial insects and spiders (collected as part of the Moorea BioCode project) using a generalized linear mixed model (GLMM). Using a training data set of known endemic (n = 45) and known introduced species (n = 102), we then estimated the likely native/nonnative status for 4,663 specimens representing an estimated 1,288 species (412 identified species), including both those specimens that were either unidentified or whose endemic/introduced status was uncertain. Using this approach, we were able to increase the number of categorized specimens by a factor of 4.4 (from 794 to 3,497), and the number of categorized species by a factor of 4.8 from (147 to 707) at a rate much greater than chance (77.6% accuracy). The study identifies phylogenetic signatures of both native and nonnative species and suggests several practical applications for this approach including monitoring biodiversity and facilitating biosecurity.


Asunto(s)
Biodiversidad , Código de Barras del ADN Taxonómico , Animales , ADN , Biblioteca de Genes , Filogenia
5.
Mol Biol Evol ; 34(5): 1183-1193, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28201740

RESUMEN

Wolbachia bacteria infect about half of all arthropods, with diverse and extreme consequences ranging from sex-ratio distortion and mating incompatibilities to protection against viruses. These phenotypic effects, combined with efficient vertical transmission from mothers to offspring, satisfactorily explain the invasion dynamics of Wolbachia within species. However, beyond the species level, the lack of congruence between the host and symbiont phylogenetic trees indicates that Wolbachia horizontal transfers and extinctions do happen and underlie its global distribution. But how often do they occur? And has the Wolbachia pandemic reached its equilibrium? Here, we address these questions by inferring recent acquisition/loss events from the distribution of Wolbachia lineages across the mitochondrial DNA tree of 3,600 arthropod specimens, spanning 1,100 species from Tahiti and surrounding islands. We show that most events occurred within the last million years, but are likely attributable to individual level variation (e.g., imperfect maternal transmission) rather than population level variation (e.g., Wolbachia extinction). At the population level, we estimate that mitochondria typically accumulate 4.7% substitutions per site during an infected episode, and 7.1% substitutions per site during the uninfected phase. Using a Bayesian time calibration of the mitochondrial tree, these numbers translate into infected and uninfected phases of approximately 7 and 9 million years. Infected species thus lose Wolbachia slightly more often than uninfected species acquire it, supporting the view that its present incidence, estimated here slightly below 0.5, represents an epidemiological equilibrium.


Asunto(s)
Wolbachia/genética , Animales , Artrópodos/genética , ADN Mitocondrial/genética , Evolución Molecular , Variación Genética , Genética de Población , Haplotipos , Filogenia , Simbiosis/genética
7.
PLoS Genet ; 10(12): e1004822, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25474676

RESUMEN

Symbionts that distort their host's sex ratio by favouring the production and survival of females are common in arthropods. Their presence produces intense Fisherian selection to return the sex ratio to parity, typified by the rapid spread of host 'suppressor' loci that restore male survival/development. In this study, we investigated the genomic impact of a selective event of this kind in the butterfly Hypolimnas bolina. Through linkage mapping, we first identified a genomic region that was necessary for males to survive Wolbachia-induced male-killing. We then investigated the genomic impact of the rapid spread of suppression, which converted the Samoan population of this butterfly from a 100:1 female-biased sex ratio in 2001 to a 1:1 sex ratio by 2006. Models of this process revealed the potential for a chromosome-wide effect. To measure the impact of this episode of selection directly, the pattern of genetic variation before and after the spread of suppression was compared. Changes in allele frequencies were observed over a 25 cM region surrounding the suppressor locus, with a reduction in overall diversity observed at loci that co-segregate with the suppressor. These changes exceeded those expected from drift and occurred alongside the generation of linkage disequilibrium. The presence of novel allelic variants in 2006 suggests that the suppressor was likely to have been introduced via immigration rather than through de novo mutation. In addition, further sampling in 2010 indicated that many of the introduced variants were lost or had declined in frequency since 2006. We hypothesize that this loss may have resulted from a period of purifying selection, removing deleterious material that introgressed during the initial sweep. Our observations of the impact of suppression of sex ratio distorting activity reveal a very wide genomic imprint, reflecting its status as one of the strongest selective forces in nature.


Asunto(s)
Mariposas Diurnas/genética , Evolución Molecular , Genoma de los Insectos/genética , Interacciones Huésped-Patógeno/genética , Razón de Masculinidad , Supresión Genética , Animales , Femenino , Variación Genética , Infecciones por Bacterias Gramnegativas/genética , Infecciones por Bacterias Gramnegativas/veterinaria , Desequilibrio de Ligamiento , Masculino , Datos de Secuencia Molecular , Samoa , Wolbachia/genética , Wolbachia/patogenicidad
8.
BMC Evol Biol ; 16(1): 240, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27825303

RESUMEN

BACKGROUND: RAD-seq is a powerful tool, increasingly used in population genomics. However, earlier studies have raised red flags regarding possible biases associated with this technique. In particular, polymorphism on restriction sites results in preferential sampling of closely related haplotypes, so that RAD data tends to underestimate genetic diversity. RESULTS: Here we (1) clarify the theoretical basis of this bias, highlighting the potential confounding effects of population structure and selection, (2) confront predictions to real data from in silico digestion of full genomes and (3) provide a proof of concept toward an ABC-based correction of the RAD-seq bias. Under a neutral and panmictic model, we confirm the previously established relationship between the true polymorphism and its RAD-based estimation, showing a more pronounced bias when polymorphism is high. Using more elaborate models, we show that selection, resulting in heterogeneous levels of polymorphism along the genome, exacerbates the bias and leads to a more pronounced underestimation. On the contrary, spatial genetic structure tends to reduce the bias. We confront the neutral and panmictic model to "ideal" empirical data (in silico RAD-sequencing) using full genomes from natural populations of the fruit fly Drosophila melanogaster and the fungus Shizophyllum commune, harbouring respectively moderate and high genetic diversity. In D. melanogaster, predictions fit the model, but the small difference between the true and RAD polymorphism makes this comparison insensitive to deviations from the model. In the highly polymorphic fungus, the model captures a large part of the bias but makes inaccurate predictions. Accordingly, ABC corrections based on this model improve the estimations, albeit with some imprecisions. CONCLUSION: The RAD-seq underestimation of genetic diversity associated with polymorphism in restriction sites becomes more pronounced when polymorphism is high. In practice, this means that in many systems where polymorphism does not exceed 2 %, the bias is of minor importance in the face of other sources of uncertainty, such as heterogeneous bases composition or technical artefacts. The neutral panmictic model provides a practical mean to correct the bias through ABC, albeit with some imprecisions. More elaborate ABC methods might integrate additional parameters, such as population structure and selection, but their opposite effects could hinder accurate corrections.


Asunto(s)
Drosophila melanogaster/genética , Schizophyllum/genética , Animales , Teorema de Bayes , Simulación por Computador , Enzimas de Restricción del ADN/metabolismo , Genoma , Metagenómica , Polimorfismo Genético , Análisis de Secuencia de ADN
9.
Genetica ; 143(2): 139-43, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25666920

RESUMEN

Reduced representation genomics approaches, of which RADseq is currently the most popular form, offer the possibility to produce genome wide data from potentially any species, without previous genomic information. The application of RADseq to highly multiplexed libraries (including numerous specimens, and potentially numerous different species) is however limited by technical constraints. First, the cost of synthesis of Illumina adaptors including molecular identifiers (MIDs) becomes excessive when numerous specimens are to be multiplexed. Second, the necessity to empirically adjust the ratio of adaptors to genomic DNA concentration impedes the high throughput application of RADseq to heterogeneous samples, of variable DNA concentration and quality. In an attempt to solve these problems, we propose here some adjustments regarding the adaptor synthesis. First, we show that the common and unique (MID) parts of adaptors can be synthesized separately and subsequently ligated, which drastically reduces the synthesis cost, and thus allows multiplexing hundreds of specimens. Second, we show that self-ligation of adaptors, which makes the adaptor concentration so critical, can be simply prevented by using unphosphorylated adaptors, which significantly improves the ligation and sequencing yield.


Asunto(s)
Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/economía , Análisis de Secuencia de ADN/métodos , Animales , Drosophila melanogaster/genética , Genómica/economía , Genómica/métodos
10.
BMC Genomics ; 14: 20, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23324387

RESUMEN

BACKGROUND: The endosymbiont Wolbachia pipientis causes diverse and sometimes dramatic phenotypes in its invertebrate hosts. Four Wolbachia strains sequenced to date indicate that the constitution of the genome is dynamic, but these strains are quite divergent and do not allow resolution of genome diversification over shorter time periods. We have sequenced the genome of the strain wBol1-b, found in the butterfly Hypolimnas bolina, which kills the male offspring of infected hosts during embyronic development and is closely related to the non-male-killing strain wPip from Culex pipiens. RESULTS: The genomes of wBol1-b and wPip are similar in genomic organisation, sequence and gene content, but show substantial differences at some rapidly evolving regions of the genome, primarily associated with prophage and repetitive elements. We identified 44 genes in wBol1-b that do not have homologs in any previously sequenced strains, indicating that Wolbachia's non-core genome diversifies rapidly. These wBol1-b specific genes include a number that have been recently horizontally transferred from phylogenetically distant bacterial taxa. We further report a second possible case of horizontal gene transfer from a eukaryote into Wolbachia. CONCLUSIONS: Our analyses support the developing view that many endosymbiotic genomes are highly dynamic, and are exposed and receptive to exogenous genetic material from a wide range of sources. These data also suggest either that this bacterial species is particularly permissive for eukaryote-to-prokaryote gene transfers, or that these transfers may be more common than previously believed. The wBol1-b-specific genes we have identified provide candidates for further investigations of the genomic bases of phenotypic differences between closely-related Wolbachia strains.


Asunto(s)
Transferencia de Gen Horizontal , Genoma Bacteriano/genética , Wolbachia/genética , Adenosina Trifosfatasas/genética , Animales , Proteínas Bacterianas/genética , Mariposas Diurnas/microbiología , Masculino , Proteínas de Transporte de Membrana/genética , Anotación de Secuencia Molecular , Filogenia , Canales de Translocación SEC , Proteína SecA , Simbiosis/genética
11.
Am Nat ; 182(1): E15-24, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23778233

RESUMEN

Numerous insects carry intracellular bacteria that manipulate the insects' reproduction and thus facilitate their own spread. Cytoplasmic incompatibility (CI) is a common form of such manipulation, where a (currently uncharacterized) bacterial modification of male sperm induces the early death of embryos unless the fertilized eggs carry the same bacteria, inherited from the mother. The death of uninfected embryos provides an indirect selective advantage to infected ones, thus enabling the spread of the bacteria. Here we use and expand recently developed algorithms to infer the genetic architecture underlying the complex incompatibility data from the mosquito Culex pipiens. We show that CI requires more genetic determinants than previously believed and that quantitative variation in gene products potentially contributes to the observed CI patterns. In line with population genetic theory of CI, our analysis suggests that toxin factors (those inducing embryo death) are present in fewer copies in the bacterial genomes than antitoxin factors (those ensuring that infected embryos survive). In combination with comparative genomics, our approach will provide helpful guidance to identify the genetic basis of CI and more generally of other toxin/antitoxin systems that can be conceptualized under the same framework.


Asunto(s)
Culex/genética , Culex/microbiología , Evolución Molecular , Genoma Bacteriano , Simbiosis , Wolbachia/genética , Wolbachia/fisiología , Algoritmos , Alelos , Animales , Culex/fisiología , Citoplasma/microbiología , Drosophila , Femenino , Hibridación Genética , Masculino , Modelos Genéticos , Mutación , Reproducción
12.
Elife ; 122023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37278068

RESUMEN

The accidental endogenization of viral elements within eukaryotic genomes can occasionally provide significant evolutionary benefits, giving rise to their long-term retention, that is, to viral domestication. For instance, in some endoparasitoid wasps (whose immature stages develop inside their hosts), the membrane-fusion property of double-stranded DNA viruses have been repeatedly domesticated following ancestral endogenizations. The endogenized genes provide female wasps with a delivery tool to inject virulence factors that are essential to the developmental success of their offspring. Because all known cases of viral domestication involve endoparasitic wasps, we hypothesized that this lifestyle, relying on a close interaction between individuals, may have promoted the endogenization and domestication of viruses. By analyzing the composition of 124 Hymenoptera genomes, spread over the diversity of this clade and including free-living, ecto, and endoparasitoid species, we tested this hypothesis. Our analysis first revealed that double-stranded DNA viruses, in comparison with other viral genomic structures (ssDNA, dsRNA, ssRNA), are more often endogenized and domesticated (that is, retained by selection) than expected from their estimated abundance in insect viral communities. Second, our analysis indicates that the rate at which dsDNA viruses are endogenized is higher in endoparasitoids than in ectoparasitoids or free-living hymenopterans, which also translates into more frequent events of domestication. Hence, these results are consistent with the hypothesis that the endoparasitoid lifestyle has facilitated the endogenization of dsDNA viruses, in turn, increasing the opportunities of domestications that now play a central role in the biology of many endoparasitoid lineages.


Asunto(s)
Virus , Avispas , Animales , Femenino , Evolución Biológica , ADN , Domesticación , Genoma Viral , Virus/genética , Avispas/genética
13.
Curr Opin Insect Sci ; 49: 78-84, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34954414

RESUMEN

Wolbachia endosymbionts commonly induce cytoplasmic incompatibility, making infected males' sperm lethal to the embryos unless these are rescued by the same bacterium, inherited from their mother. Causal genes were recently identified but two families of mechanistic models are still opposed. In the toxin-antidote model, interaction between the toxin and the antidote is required for rescuing the embryos. In host modification models, a host factor is misregulated in sperm and rescue occurs through compensation or withdrawal of this modification. While these models have been thoroughly discussed, the multiplicity of compatibility types, that is, the existence of many mutually incompatible strains, as seen in Culex mosquitoes, has not received sufficient attention. To explain such a fact, host modification models must posit that the same embryonic defects can be induced and rescued through a large variety of host targets. Conversely, the toxin-antidote model simply accommodates this pattern in a lock-key fashion, through variations in the toxin-antidote interaction sites.


Asunto(s)
Wolbachia , Animales , Antídotos , Genómica , Masculino , Modelos Moleculares , Fenotipo , Wolbachia/genética
14.
Biol Rev Camb Philos Soc ; 96(2): 433-453, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33128345

RESUMEN

Wolbachia is one of the most abundant endosymbionts on earth, with a wide distribution especially in arthropods. Effective maternal transmission and the induction of various phenotypes in their hosts are two key features of this bacterium. Here, we review our current understanding of another central aspect of Wolbachia's success: their ability to switch from one host species to another. We build on the proposal that Wolbachia host shifts occur in four main steps: (i) physical transfer to a new species; (ii) proliferation within that host; (iii) successful maternal transmission; and (iv) spread within the host species. Host shift can fail at each of these steps, and the likelihood of ultimate success is influenced by many factors. Some stem from traits of Wolbachia (different strains have different abilities for host switching), others on host features such as genetic resemblance (e.g. host shifting is likely to be easier between closely related species), ecological connections (the donor and recipient host need to interact), or the resident microbiota. Host shifts have enabled Wolbachia to reach its enormous current incidence and global distribution among arthropods in an epidemiological process shaped by loss and acquisition events across host species. The ability of Wolbachia to transfer between species also forms the basis of ongoing endeavours to control pests and disease vectors, following artificial introduction into uninfected hosts such as mosquitoes. Throughout, we emphasise the many knowledge gaps in our understanding of Wolbachia host shifts, and question the effectiveness of current methodology to detect these events. We conclude by discussing an apparent paradox: how can Wolbachia maintain its ability to undergo host shifts given that its biology seems dominated by vertical transmission?


Asunto(s)
Artrópodos , Wolbachia , Animales , Evolución Biológica , Mosquitos Vectores , Simbiosis
15.
Life (Basel) ; 11(10)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34685422

RESUMEN

Natural selection is commonly seen not just as an explanation for adaptive evolution, but as the inevitable consequence of "heritable variation in fitness among individuals". Although it remains embedded in biological concepts, such a formalisation makes it tempting to explore whether this precondition may be met not only in life as we know it, but also in other physical systems. This would imply that these systems are subject to natural selection and may perhaps be investigated in a biological framework, where properties are typically examined in light of their putative functions. Here we relate the major questions that were debated during a three-day workshop devoted to discussing whether natural selection may take place in non-living physical systems. We start this report with a brief overview of research fields dealing with "life-like" or "proto-biotic" systems, where mimicking evolution by natural selection in test tubes stands as a major objective. We contend the challenge may be as much conceptual as technical. Taking the problem from a physical angle, we then discuss the framework of dissipative structures. Although life is viewed in this context as a particular case within a larger ensemble of physical phenomena, this approach does not provide general principles from which natural selection can be derived. Turning back to evolutionary biology, we ask to what extent the most general formulations of the necessary conditions or signatures of natural selection may be applicable beyond biology. In our view, such a cross-disciplinary jump is impeded by reliance on individuality as a central yet implicit and loosely defined concept. Overall, these discussions thus lead us to conjecture that understanding, in physico-chemical terms, how individuality emerges and how it can be recognised, will be essential in the search for instances of evolution by natural selection outside of living systems.

16.
Curr Biol ; 17(3): 273-7, 2007 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-17276921

RESUMEN

Sex-ratio distorters are found in numerous species and can reach high frequencies within populations. Here, we address the compelling, but poorly tested, hypothesis that the sex ratio bias caused by such elements profoundly alters their host's mating system. We compare aspects of female and male reproductive biology between island populations of the butterfly Hypolimnas bolina that show varying degrees of female bias, because of a male-killing Wolbachia infection. Contrary to expectation, female bias leads to an increase in female mating frequency, up to a point where male mating capacity becomes limiting. We show that increased female mating frequency can be explained as a facultative response to the depleted male mating resources in female biased populations. In other words, this system is one where male-killing bacteria trigger a vicious circle of increasing male fatigue and female promiscuity.


Asunto(s)
Mariposas Diurnas/microbiología , Mariposas Diurnas/fisiología , Conducta Sexual Animal , Wolbachia/fisiología , Animales , Asia Sudoriental , Australia , Mariposas Diurnas/genética , Femenino , Masculino , Islas del Pacífico , Razón de Masculinidad
17.
Mol Ecol Resour ; 20(5): 1294-1298, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32340081

RESUMEN

Promoted by the barcoding approach, mitochondrial DNA is more than ever used as a molecular marker to identify species boundaries. Yet, it has been repeatedly argued that it may be poorly suited for this purpose, especially in insects where mitochondria are often associated with invasive intracellular bacteria that may promote their introgression. Here, we inform this debate by assessing how divergent nuclear genomes can be when mitochondrial barcodes indicate very high proximity. To this end, we obtained RAD-seq data from 92 barcode-based species-like units (operational taxonomic units [OTUs]) spanning four insect orders. In 100% of the cases, the observed median nuclear divergence was lower than 2%, a value that was recently estimated as one below which nuclear gene flow is not uncommon. These results suggest that although mitochondria may occasionally leak between species, this process is rare enough in insects to make DNA barcoding a reliable tool for clustering specimens into species-like units.


Asunto(s)
Código de Barras del ADN Taxonómico , Insectos , Análisis de Secuencia de ADN , Animales , Análisis por Conglomerados , ADN Mitocondrial/genética , Insectos/clasificación , Insectos/genética , Filogenia
18.
BMC Evol Biol ; 9: 64, 2009 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-19317891

RESUMEN

BACKGROUND: The interaction between the Blue Moon butterfly, Hypolimnas bolina, and Wolbachia has attracted interest because of the high prevalence of male-killing achieved within the species, the ecological consequences of this high prevalence, the intensity of selection on the host to suppress the infection, and the presence of multiple Wolbachia infections inducing different phenotypes. We examined diversity in the co-inherited marker, mtDNA, and the partitioning of this between individuals of different infection status, as a means to investigate the population biology and evolutionary history of the Wolbachia infections. RESULTS: Part of the mitochondrial COI gene was sequenced from 298 individuals of known infection status revealing ten different haplotypes. Despite very strong biological evidence that the sample represents a single species, the ten haplotypes did not fall within a monophyletic clade within the Hypolimnas genus, with one haplotype differing by 5% from the other nine. There were strong associations between infection status and mtDNA haplotype. The presence of wBol1 infection in association with strongly divergent haplotypes prompted closer examination of wBol1 genetic variation. This revealed the existence of two cryptic subtypes, wBol1a and wBol1b. The wBol1a infection, by far the most common, was in strict association with the single divergent mtDNA haplotype. The wBol1b infection was found with two haplotypes that were also observed in uninfected specimens. Finally, the wBol2 infection was associated with a large diversity of mtDNA haplotypes, most often shared with uninfected sympatric butterflies. CONCLUSION: This data overall supports the hypothesis that high prevalence of male-killing Wolbachia (wBol1) in H. bolina is associated with very high transmission efficiency rather than regular horizontal transmission. It also suggests this infection has undergone a recent selective sweep and was introduced in this species through introgression. In contrast, the sharing of haplotypes between wBol2-infected and uninfected individuals indicates that this strain is not perfectly transmitted and/or shows a significant level of horizontal transmission.


Asunto(s)
Mariposas Diurnas/genética , Mariposas Diurnas/microbiología , Evolución Molecular , Wolbachia/patogenicidad , Animales , ADN Mitocondrial/genética , Genes de Insecto , Genes Mitocondriales , Haplotipos , Interacciones Huésped-Patógeno , Patrón de Herencia , Mitocondrias/genética , Filogenia , Análisis de Secuencia de ADN
19.
Curr Biol ; 16(24): 2453-8, 2006 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-17174921

RESUMEN

Maternally inherited selfish genetic elements are common in animals . Whereas host genetics and ecology are recognized as factors that may limit the incidence of these parasites , theory suggests one further factor-interference with other selfish elements-that could affect their prevalence . In this paper, we show that spatial heterogeneity in the occurrence of the male-killing Wolbachia wBol1 in the tropical butterfly Hypolimnas bolina is caused by a second infection that can exclude the male-killer. We first provide evidence of a second Wolbachia strain, wBol2, present in most populations that do not carry the male-killer but rare or absent when the male-killer is present. Crossing data indicate that wBol2 in males induces cytoplasmic incompatibility to both uninfected and wBol1-infected females. The wBol2 infection can therefore not only spread through uninfected populations but also resist invasion by wBol1. Thus, we provide empirical support for the hypothesis that the incidence of particular selfish genetic elements can limit the presence of competing types.


Asunto(s)
Mariposas Diurnas/genética , Mariposas Diurnas/microbiología , Citoplasma/genética , Secuencias Repetitivas de Ácidos Nucleicos , Wolbachia/genética , Animales , Antibacterianos/farmacología , Asia Sudoriental , Mariposas Diurnas/fisiología , ADN Bacteriano , Femenino , Geografía , Masculino , Datos de Secuencia Molecular , Fenotipo , Reproducción/genética , Reproducción/fisiología , Especificidad de la Especie , Simbiosis , Tetraciclina/farmacología , Wolbachia/efectos de los fármacos , Wolbachia/fisiología
20.
PLoS Biol ; 4(9): e283, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16933972

RESUMEN

Male-killing bacteria are widespread in arthropods, and can profoundly alter the reproductive biology of their host species. Here we detail the first case of complete suppression of a male killer. The nymphalid butterfly Hypolimnas bolina is infected with a strain of the bacterium Wolbachia, wBol1, which kills male host embryos in Polynesian populations, but does not do so in many areas of Southeast Asia, where both males and female adults are naturally infected, and wBol1-infected females produce a 1:1 sex ratio. We demonstrate that absence of male killing by wBol1 is associated with dominant zygotic suppression of the action of the male killer. Simulations demonstrate host suppressors of male-killer action can spread very rapidly, and historical data indicating the presence of male killing in Southeast Asia in the very recent past suggests suppressor spread has been a very recent occurrence. Thus, male killer/host interactions are much more dynamic than previously recognised, with rapid and dramatic loss of the phenotype. Our results also indicate that suppression can render male killers completely quiescent, leading to the conclusion that some species that do not currently express a male killer may have done so in the past, and thus that more species have had their biology affected by these parasites than previously believed.


Asunto(s)
Evolución Biológica , Mariposas Diurnas/microbiología , Razón de Masculinidad , Wolbachia/patogenicidad , Animales , Mariposas Diurnas/genética , Femenino , Variación Genética , Masculino , Óvulo , Wolbachia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA