Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nature ; 590(7846): 405-409, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33597759

RESUMEN

Twisted bilayer graphene is created by slightly rotating the two crystal networks in bilayer graphene with respect to each other. For small twist angles, the material undergoes a self-organized lattice reconstruction, leading to the formation of a periodically repeated domain1-3. The resulting superlattice modulates the vibrational3,4 and electronic5,6 structures within the material, leading to changes in the behaviour of electron-phonon coupling7,8 and to the observation of strong correlations and superconductivity9. However, accessing these modulations and understanding the related effects are challenging, because the modulations are too small for experimental techniques to accurately resolve the relevant energy levels and too large for theoretical models to properly describe the localized effects. Here we report hyperspectral optical images, generated by a nano-Raman spectroscope10, of the crystal superlattice in reconstructed (low-angle) twisted bilayer graphene. Observations of the crystallographic structure with visible light are made possible by the nano-Raman technique, which reveals the localization of lattice dynamics, with the presence of strain solitons and topological points1 causing detectable spectral variations. The results are rationalized by an atomistic model that enables evaluation of the local density of the electronic and vibrational states of the superlattice. This evaluation highlights the relevance of solitons and topological points for the vibrational and electronic properties of the structures, particularly for small twist angles. Our results are an important step towards understanding phonon-related effects at atomic and nanometric scales, such as Jahn-Teller effects11 and electronic Cooper pairing12-14, and may help to improve device characterization15 in the context of the rapidly developing field of twistronics16.

2.
Chemistry ; : e202402492, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39243206

RESUMEN

The on-surface synthesis strategy has emerged as a promising route for fabricating well-defined two-dimensional (2D) BN-substituted carbon nanomaterials with tunable electronic properties. This approach relies on specially designed precursors and requires a thorough understanding of the on-surface reaction pathways. It promises precise structural control at the atomic scale, thus complementing chemical vapor deposition (CVD). In this study, we investigated a novel heteroatomic precursor, tetrabromoborazine, which incorporates a BN core and an OH group, on Ag(111) using low temperature scanning tunnelling microscopy/spectroscopy (LT-STM/STS) and X-ray photoelectron spectroscopy (XPS). Through sequential temperature-induced reactions involving dehalogenation and dehydrogenation, distinct tetrabromoborazine derivatives were produced as reaction intermediates, leading to the formation of specific self-assemblies. Notably, the resulting intricate supramolecular structures include a chiral kagomé lattice composed of molecular dimers exhibiting a unique electronic signature. The final product obtained was a random covalent carbon network with BN-substitution and embedded oxygen heteroatoms. Our study offers valuable insights into the significance of the structure and functionalization of BN precursors in temperature-induced on-surface reactions, which can help future rational precursor design. Additionally, it introduces complex surface architectures that offer a high areal density of borazine cores.

3.
Nanotechnology ; 35(17)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38211329

RESUMEN

In the context of advanced nanoelectronics, two-dimensional semiconductors such as transition metal dichalcogenides (TMDs) are gaining considerable interest due to their ultimate thinness, clean surface and high carrier mobility. The engineering prospects offered by those materials are further enlarged by the recent realization of atomically sharp TMD-based lateral junctions, whose electronic properties are governed by strain effects arising from the constituents lattice mismatch. Although most theoretical studies considered only misfit strain, first-principles simulations are employed here to investigate the transport properties under external deformation of a three-terminal device constructed from a MoS2/WSe2/MoS2junction. Large modulation of the current is reported owing to the change in band offset, illustrating the importance of strain on the p-n junction characteristics. The device operation is demonstrated for both local and global deformations, even for ultra-short channels, suggesting potential applications for ultra-thin body straintronics.

4.
J Phys Chem A ; 127(51): 10797-10806, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38109190

RESUMEN

Using first-principles calculations, we investigate the absorption spectra (in the near-infrared, visible, and first UV range) of the two most probable eumelanin tetrameric molecules exhibiting either a linear open-chain or a cyclic porphyrine-like configuration. In order to simulate a realistic molecular system, an implicit solvent model is used in our calculations to mimic the effect of the solvated environment around the eumelanin molecule. Although the presence of solvent is found not to significantly affect the absorption pattern of both molecules, the onset of the spectra are shifted toward higher energies, especially for the linear tetramer. Interestingly, the absorption spectra and optical onsets of the two molecules differ significantly both in a vacuum and in ethanol. However, the two predicted spectra do not allow us to definitely discriminate between the two configurations when comparing the theoretical predictions with the available experimental spectrum. In addition, a mix of the two eumelanin configurations (close to fifty-fifty) leads to a maximum overlap between theoretical and experimental spectra. Consequently, this theoretical research shows that deeper insight can be gained using beyond DFT techniques on the real form of eumelanin protomolecules present in living systems as well as on their possible use in hybrid solar cells.

5.
Nano Lett ; 22(15): 6069-6074, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35878122

RESUMEN

The importance of phonons in the strong correlation phenomena observed in twisted-bilayer graphene (TBG) at the so-called magic-angle is under debate. Here we apply gate-dependent micro-Raman spectroscopy to monitor the G band line width in TBG devices of twist angles θ = 0° (Bernal), ∼1.1° (magic-angle), and ∼7° (large-angle). The results show a broad and p-/n-asymmetric doping behavior at the magic angle, in clear contrast to the behavior observed in twist angles above and below this point. Atomistic modeling reproduces the experimental observations in close connection with the joint density of electronic states in the electron-phonon scattering process, revealing how the unique electronic structure of magic-angle TBGs influences the electron-phonon coupling and, consequently, the G band line width. Overall, the value of the G band line width in magic-angle TBG is larger when compared to that of the other samples, in qualitative agreement with our calculations.

6.
Nano Lett ; 22(1): 128-134, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34898223

RESUMEN

When confined in circular cavities, graphene relativistic charge carriers occupy whispering gallery modes (WGMs) in analogy to classical acoustic and optical fields. The rich geometrical patterns of the WGMs decorating the local density of states offer promising perspectives to devise new disruptive quantum devices. However, exploiting these highly sensitive resonances requires the transduction of the WGMs to the outside world through source and drain electrodes, a yet unreported configuration. Here, we create a circular p-n island in a graphene device using a polarized scanning gate microscope tip and probe the resulting WGM signatures in in-plane electronic transport through the p-n island. Combining tight-binding simulations and the exact solution of the Dirac equation, we assign the measured device conductance features to WGMs and demonstrate mode selectivity by displacing the p-n island with respect to a constriction. This work therefore constitutes a proof of concept for graphene whisperitronic devices.

7.
Nano Lett ; 22(6): 2202-2208, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35230103

RESUMEN

In the context of graphene-based composite applications, a complete understanding of charge conduction in multilayer reduced graphene oxides (rGO) is highly desirable. However, these rGO compounds are characterized by multiple and different sources of disorder depending on the chemical method used for their synthesis. Most importantly, the precise role of interlayer interaction in promoting or jeopardizing electronic flow remains unclear. Here, thanks to the development of a multiscale computational approach combining first-principles calculations with large-scale transport simulations, the transport scaling laws in multilayer rGO are unraveled, explaining why diffusion worsens with increasing film thickness. In contrast, contacted films are found to exhibit an opposite trend when the mean free path becomes shorter than the channel length, since conduction becomes predominantly driven by interlayer hopping. These predictions are favorably compared with experimental data and open a road toward the optimization of graphene-based composites with improved electrical conduction.


Asunto(s)
Grafito , Electrónica , Grafito/química , Óxidos/química
8.
Angew Chem Int Ed Engl ; 61(38): e202202137, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-35274798

RESUMEN

This work describes the design and synthesis of a π-conjugated telluro[3,2-ß][1]-tellurophene-based synthon that, embodying pyridyl and haloaryl chalcogen-bonding acceptors, self-assembles into nanoribbons through chalcogen bonds. The ribbons π-stack in a multi-layered architecture both in single crystals and thin films. Theoretical studies of the electronic states of chalcogen-bonded material showed the presence of a local charge density between Te and N atoms. OTFT-based charge transport measurements showed hole-transport properties for this material. Its integration as a p-type semiconductor in multi-layered CuI -based light-emitting electrochemical cells (LECs) led to a 10-fold increase in stability (38 h vs. 3 h) compared to single-layered devices. Finally, using the reference tellurotellurophene congener bearing a C-H group instead of the pyridyl N atom, a herringbone solid-state assembly is formed without charge transport features, resulting in LECs with poor stabilities (<1 h).

9.
Nano Lett ; 20(5): 3113-3121, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32134680

RESUMEN

Numerous theoretically proposed devices and novel phenomena have sought to take advantage of the intense pseudogauge fields that can arise in strained graphene. Many of these proposals, however, require fields to oscillate with a spatial frequency smaller than the magnetic length, while to date only the generation and effects of fields varying at a much larger length scale have been reported. Here, we describe the creation of short wavelength, periodic pseudogauge-fields using rippled graphene under extreme (>10%) strain and study of its effects on Dirac electrons. Combining scanning tunneling microscopy and atomistic calculations, we find that spatially oscillating strain generates a new quantization different from the familiar Landau quantization. Graphene ripples also cause large variations in carbon-carbon bond length, creating an effective electronic superlattice within a single graphene sheet. Our results thus also establish a novel approach of synthesizing effective 2D lateral heterostructures by periodically modulating lattice strain.

10.
Nano Lett ; 19(10): 7418-7426, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31532994

RESUMEN

Graphene grown by chemical vapor deposition (CVD) is the most promising material for industrial-scale applications based on graphene monolayers. It also holds promise for spintronics; despite being polycrystalline, spin transport in CVD graphene has been measured over lengths up to 30 µm, which is on par with the best measurements made in single-crystal graphene. These results suggest that grain boundaries (GBs) in CVD graphene, while impeding charge transport, may have little effect on spin transport. However, to date very little is known about the true impact of disordered networks of GBs on spin relaxation. Here, by using first-principles simulations, we derive an effective tight-binding model of graphene GBs in the presence of spin-orbit coupling (SOC), which we then use to evaluate spin transport in realistic morphologies of polycrystalline graphene. The spin diffusion length is found to be independent of the grain size, and it is determined only by the strength of the substrate-induced SOC. This result is consistent with the D'yakonov-Perel' mechanism of spin relaxation in the diffusive regime, but we find that it also holds in the presence of quantum interference. These results clarify the role played by GBs and demonstrate that the average grain size does not dictate the upper limit for spin transport in CVD-grown graphene, a result of fundamental importance for optimizing large-scale graphene-based spintronic devices.

11.
Proc Natl Acad Sci U S A ; 112(47): 14527-32, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26575621

RESUMEN

Heteroatom doping is an efficient way to modify the chemical and electronic properties of graphene. In particular, boron doping is expected to induce a p-type (boron)-conducting behavior to pristine (nondoped) graphene, which could lead to diverse applications. However, the experimental progress on atomic scale visualization and sensing properties of large-area boron-doped graphene (BG) sheets is still very scarce. This work describes the controlled growth of centimeter size, high-crystallinity BG sheets. Scanning tunneling microscopy and spectroscopy are used to visualize the atomic structure and the local density of states around boron dopants. It is confirmed that BG behaves as a p-type conductor and a unique croissant-like feature is frequently observed within the BG lattice, which is caused by the presence of boron-carbon trimers embedded within the hexagonal lattice. More interestingly, it is demonstrated for the first time that BG exhibits unique sensing capabilities when detecting toxic gases, such as NO2 and NH3, being able to detect extremely low concentrations (e.g., parts per trillion, parts per billion). This work envisions that other attractive applications could now be explored based on as-synthesized BG.

12.
Acc Chem Res ; 47(11): 3292-300, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25350633

RESUMEN

CONSPECTUS: Graphene-related nanostructures stand out as exceptional materials due to both their wide range of properties and their expanse of interest in both applied and fundamental research. They are good examples of nanoscale materials for which the properties do not necessarily replicate those of the bulk. For the description and the understanding of their properties, it is clear that a general quantum-mechanical approach is mandatory. The remarkable result of density functional theory (DFT) is that the quantum-mechanical description of materials at the ground state is made amenable to simulations at a relatively low computational cost. The knowledge of materials has undergone a revolution after the introduction of DFT as an unrivaled instrument for the investigation of materials properties through computer experiments. Their deeper understanding comes from a variety of tools developed from concepts intrinsically present in DFT, notably the total energy and the charge density. Such tools allow the prediction of a diverse set of physicochemical properties relevant for material scientists. This Account lays out an example-driven tour through the achievements of ground-state DFT applied to the description of graphene-related nanostructures and to the deep understanding of their outstanding properties. After a brief introduction to DFT, the survey starts with the determination of the most basic properties that can be obtained from DFT, that is, band structures, lattice parameters, and spin ground state. Next follows an exploration of how total energies of different systems can give information about relative stability, formation energies, and reaction paths. Exploiting the derivatives of the energy with respect to displacements leads the way toward the extraction of vibrational and mechanical properties. In addition, a close examination of the charge density gives information about charge transfer mechanisms, which can be linked to chemical reactivity. The ground state density and Hamiltonian finally connect to the concepts behind transport phenomena, which drive much of the application-oriented research on graphene and graphene-related nanostructures. In each section, a selection of cases that are of current importance are used to illustrate the use and relevance of DFT-based techniques. In summary, this Account presents an introductory landscape of the possibilities of ground-state DFT for the study of graphene-related nanostructures. The prospect is rich, and the use of DFT for the study of graphene-related nanostructures will continue to be fruitful for the advancement of these and other materials.

13.
Nano Lett ; 14(8): 4238-44, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-24954396

RESUMEN

Graphene nanoribbons (GNRs) are promising candidates for next generation integrated circuit (IC) components; this fact motivates exploration of the relationship between crystallographic structure and transport of graphene patterned at IC-relevant length scales (<10 nm). We report on the controlled fabrication of pristine, freestanding GNRs with widths as small as 0.7 nm, paired with simultaneous lattice-resolution imaging and electrical transport characterization, all conducted within an aberration-corrected transmission electron microscope. Few-layer GNRs very frequently formed bonded-bilayers and were remarkably robust, sustaining currents in excess of 1.5 µA per carbon bond across a 5 atom-wide ribbon. We found that the intrinsic conductance of a sub-10 nm bonded bilayer GNR scaled with width as GBL(w) ≈ 3/4(e(2)/h)w, where w is the width in nanometers, while a monolayer GNR was roughly five times less conductive. Nanosculpted, crystalline monolayer GNRs exhibited armchair-terminated edges after current annealing, presenting a pathway for the controlled fabrication of semiconducting GNRs with known edge geometry. Finally, we report on simulations of quantum transport in GNRs that are in qualitative agreement with the observations.


Asunto(s)
Grafito/química , Nanotubos de Carbono/química , Conductividad Eléctrica , Nanotubos de Carbono/ultraestructura
14.
Nano Lett ; 13(4): 1446-50, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23477418

RESUMEN

Using both first-principles techniques and a real-space Kubo-Greenwood approach, electronic and transport properties of nitrogen-doped graphene with a single sublattice preference are investigated. Such a breaking of the sublattice symmetry leads to the appearance of a true band gap in graphene electronic spectrum even for a random distribution of the N dopants. More surprisingly, a natural spatial separation of both types of charge carriers at the band edge is predicted, leading to a highly asymmetric electronic transport. Both the presence of a band gap, allowing large on/off ratio, and an asymmetric transport pave a new route toward efficient graphene-based field-effect transistors.


Asunto(s)
Grafito/química , Nanoestructuras/química , Transistores Electrónicos , Transporte de Electrón , Electrónica , Nitrógeno/química , Tamaño de la Partícula
15.
Nano Lett ; 13(8): 3487-93, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23879314

RESUMEN

The first electrical-transport measurements of monatomic carbon chains are reported in this study. The chains were obtained by unraveling carbon atoms from graphene ribbons while an electrical current flowed through the ribbon and, successively, through the chain. The formation of the chains was accompanied by a characteristic drop in the electrical conductivity. The conductivity of the chains was much lower than previously predicted for ideal chains. First-principles calculations using both density functional and many-body perturbation theory show that strain in the chains has an increasing effect on the conductivity as the length of the chains increases. Indeed, carbon chains are always under varying nonzero strain that transforms their atomic structure from the cumulene to the polyyne configuration, thus inducing a tunable band gap. The modified electronic structure and the characteristics of the contact to the graphitic periphery explain the low conductivity of the locally constrained carbon chain.

16.
ACS Nano ; 18(34): 23354-23364, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39145421

RESUMEN

There has been extensive activity exploring the doping of semiconducting two-dimensional (2D) transition metal dichalcogenides in order to tune their electronic and magnetic properties. The outcome of doping depends on various factors, including the intrinsic properties of the host material, the nature of the dopants used, their spatial distribution, as well as their interactions with other types of defects. A thorough atomic-level analysis is essential to fully understand these mechanisms. In this work, the vanadium-doped WSe2 monolayer grown by molecular beam epitaxy is investigated using four-dimensional scanning transmission electron microscopy (4D-STEM). Through center-of-mass-based reconstruction, atomic-scale maps are produced, allowing the visualization of both the electric field and the electrostatic potential around individual V atoms. To provide quantitative insights, these results are successfully compared to multislice image simulations based on ab initio calculations, accounting for lens aberrations. Finally, a negative charge around the V dopants is detected as a drop in the electrostatic potential, unambiguously demonstrating that 4D-STEM can be used to detect and to accurately analyze single-dopant charge states in semiconducting 2D materials.

17.
Nat Commun ; 14(1): 8178, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081818

RESUMEN

The superlattice obtained by aligning a monolayer graphene and boron nitride (BN) inherits from the hexagonal lattice a sixty degrees periodicity with the layer alignment. It implies that, in principle, the properties of the heterostructure must be identical for 0° and 60° of layer alignment. Here, we demonstrate, using dynamically rotatable van der Waals heterostructures, that the moiré superlattice formed in a bilayer graphene/BN has different electronic properties at 0° and 60° of alignment. Although the existence of these non-identical moiré twins is explained by different relaxation of the atomic structures for each alignment, the origin of the observed valley Hall effect remains to be explained. A simple Berry curvature argument is not sufficient to explain the 120° periodicity of this observation. Our results highlight the complexity of the interplay between mechanical and electronic properties in moiré structures and the importance of taking into account atomic structure relaxation to understand their electronic properties.

18.
Nanoscale ; 15(18): 8134-8140, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-36974920

RESUMEN

Nanomechanical measurements of minimally twisted van der Waals materials remained elusive despite their fundamental importance for device realisation. Here, we use Ultrasonic Force Microscopy (UFM) to locally quantify the variation of out-of-plane Young's modulus in minimally twisted double bilayer graphene (TDBG). We reveal a softening of the Young's modulus by 7% and 17% along single and double domain walls, respectively. Our experimental results are confirmed by force-field relaxation models. This study highlights the strong tunability of nanomechanical properties in engineered twisted materials, and paves the way for future applications of designer 2D nanomechanical systems.

19.
Nano Lett ; 11(8): 3058-64, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21696176

RESUMEN

The quantum transport properties of graphene nanoribbon networks are investigated using first-principles calculations based on density functional theory. Focusing on systems that can be experimentally realized with existing techniques, both in-plane conductance in interconnected graphene nanoribbons and tunneling conductance in out-of-plane nanoribbon intersections were studied. The characteristics of the ab initio electronic transport through in-plane nanoribbon cross-points is found to be in agreement with results obtained with semiempirical approaches. Both simulations confirm the possibility of designing graphene nanoribbon-based networks capable of guiding electrons along desired and predetermined paths. In addition, some of these intersections exhibit different transmission probability for spin up and spin down electrons, suggesting the possible applications of such networks as spin filters. Furthermore, the electron transport properties of out-of-plane nanoribbon cross-points of realistic sizes are described using a combination of first-principles and tight-binding approaches. The stacking angle between individual sheets is found to play a central role in dictating the electronic transmission probability within the networks.

20.
ACS Nano ; 16(9): 14007-14016, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36068013

RESUMEN

We report on large spin-filtering effects in epitaxial graphene-based spin valves, strongly enhanced in our specific multilayer case. Our results were obtained by the effective association of chemical vapor deposited (CVD) multilayer graphene with a high quality epitaxial Ni(111) ferromagnetic spin source. We highlight that the Ni(111) spin source electrode crystallinity and metallic state are preserved and stabilized by multilayer graphene CVD growth. Complete nanometric spin valve junctions are fabricated using a local probe indentation process, and spin properties are extracted from the graphene-protected ferromagnetic electrode through the use of a reference Al2O3/Co spin analyzer. Strikingly, spin-transport measurements in these structures give rise to large negative tunnel magneto-resistance TMR = -160%, pointing to a particularly large spin polarization for the Ni(111)/Gr interface PNi/Gr, evaluated up to -98%. We then discuss an emerging physical picture of graphene-ferromagnet systems, sustained both by experimental data and ab initio calculations, intimately combining efficient spin filtering effects arising (i) from the bulk band structure of the graphene layers purifying the extracted spin direction, (ii) from the hybridization effects modulating the amplitude of spin polarized scattering states over the first few graphene layers at the interface, and (iii) from the epitaxial interfacial matching of the graphene layers with the spin-polarized Ni surface selecting well-defined spin polarized channels. Importantly, these main spin selection effects are shown to be either cooperating or competing, explaining why our transport results were not observed before. Overall, this study unveils a path to harness the full potential of low Resitance.Area (RA) graphene interfaces in efficient spin-based devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA