Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cell ; 174(5): 1106-1116.e9, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30100181

RESUMEN

The SET1/MLL family of histone methyltransferases is conserved in eukaryotes and regulates transcription by catalyzing histone H3K4 mono-, di-, and tri-methylation. These enzymes form a common five-subunit catalytic core whose assembly is critical for their basal and regulated enzymatic activities through unknown mechanisms. Here, we present the crystal structure of the intact yeast COMPASS histone methyltransferase catalytic module consisting of Swd1, Swd3, Bre2, Sdc1, and Set1. The complex is organized by Swd1, whose conserved C-terminal tail not only nucleates Swd3 and a Bre2-Sdc1 subcomplex, but also joins Set1 to construct a regulatory pocket next to the catalytic site. This inter-subunit pocket is targeted by a previously unrecognized enzyme-modulating motif in Swd3 and features a doorstop-style mechanism dictating substrate selectivity among SET1/MLL family members. By spatially mapping the functional components of COMPASS, our results provide a structural framework for understanding the multifaceted functions and regulation of the H3K4 methyltransferase family.


Asunto(s)
Proteínas Fúngicas/química , N-Metiltransferasa de Histona-Lisina/química , Histonas/química , Kluyveromyces/química , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Línea Celular , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Humanos , Insectos , Metilación , Proteínas Nucleares/química , Dominios Proteicos , Saccharomyces cerevisiae/química , Alineación de Secuencia , Especificidad por Sustrato , Factores de Transcripción/química
2.
Mol Cell ; 76(5): 712-723.e4, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31733991

RESUMEN

The COMPASS (complex of proteins associated with Set1) complex represents the prototype of the SET1/MLL family of methyltransferases that controls gene transcription by H3K4 methylation (H3K4me). Although H2B monoubiquitination (H2Bub) is well known as a prerequisite histone mark for COMPASS activity, how H2Bub activates COMPASS remains unclear. Here, we report the cryoelectron microscopy (cryo-EM) structures of an extended COMPASS catalytic module (CM) bound to the H2Bub and free nucleosome. The COMPASS CM clamps onto the nucleosome disk-face via an extensive interface to capture the flexible H3 N-terminal tail. The interface also sandwiches a critical Set1 arginine-rich motif (ARM) that autoinhibits COMPASS. Unexpectedly, without enhancing COMPASS-nucleosome interaction, H2Bub activates the enzymatic assembly by packing against Swd1 and alleviating the inhibitory effect of the Set1 ARM upon fastening it to the acidic patch. By delineating the spatial configuration of the COMPASS-H2Bub-nucleosome assembly, our studies establish the structural framework for understanding the long-studied H2Bub-H3K4me histone modification crosstalk.


Asunto(s)
Histona Metiltransferasas/ultraestructura , Histonas/ultraestructura , Cromatina/genética , Microscopía por Crioelectrón/métodos , Metilación de ADN/genética , Epigénesis Genética/genética , Epigenómica/métodos , Proteínas Fúngicas/química , Histona Metiltransferasas/química , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Histonas/genética , Kluyveromyces/genética , Kluyveromyces/metabolismo , Metiltransferasas/metabolismo , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Nucleosomas/metabolismo , Subunidades de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinación
3.
Methods ; 215: 28-37, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37244506

RESUMEN

Histone post-translational modifications (PTMs) on lysine residues, including methylation, ubiquitylation, and sumoylation, have been studied using semisynthetic histones reconstituted into nucleosomes. These studies have revealed the in vitro effects of histone PTMs on chromatin structure, gene transcription, and biochemical crosstalk. However, the dynamic and transient nature of most enzyme-chromatin interactions poses a challenge toward identifying specific enzyme-substrate interactions. To address this, we report methodology for the synthesis of two ubiquitylated activity-based probe histones, H2BK120ub(G76C) and H2BK120ub(G76Dha), that may be used to trap enzyme active-site cysteines as disulfides or in the form of thioether linkages, respectively. The general synthetic method we report for converting ubiquitylated nucleosomes into activity-based probes may also be applied to other histone sites of ubiquitylation in order to facilitate the identification of enzyme-chromatin interactions.


Asunto(s)
Cromatina , Histonas , Histonas/metabolismo , Cromatina/genética , Nucleosomas/genética , Ubiquitinación , Procesamiento Proteico-Postraduccional
4.
Mol Cell ; 63(2): 249-260, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27373336

RESUMEN

Ubiquitin-specific proteases (USPs) constitute the largest family of deubiquitinating enzymes, whose catalytic competency is often modulated by their binding partners through unknown mechanisms. Here we report on a series of crystallographic and biochemical analyses of an evolutionarily conserved deubiquitinase, USP12, which is activated by two ß-propeller proteins, UAF1 and WDR20. Our structures reveal that UAF1 and WDR20 interact with USP12 at two distinct sites far from its catalytic center. Without increasing the substrate affinity of USP12, the two ß-propeller proteins potentiate the enzyme through different allosteric mechanisms. UAF1 docks at the distal end of the USP12 Fingers domain and induces a cascade of structural changes that reach a critical ubiquitin-contacting loop adjacent to the catalytic cleft. By contrast, WDR20 anchors at the base of this loop and remotely modulates the catalytic center of the enzyme. Our results provide a mechanistic example for allosteric activation of USPs by their regulatory partners.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Regulación Alostérica , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Cumarinas/metabolismo , Células HEK293 , Humanos , Hidrólisis , Cinética , Modelos Moleculares , Complejos Multiproteicos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato , Transfección , Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/genética , Ubiquitinación , Ubiquitinas/metabolismo
5.
Org Biomol Chem ; 20(28): 5500-5509, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35786742

RESUMEN

The tumor suppressor and master gene regulator protein p53 has been the subject of intense investigation for several decades due to its mutation in about half of all human cancers. However, mechanistic studies of p53 in cells are complicated by its many dynamic binding partners and heterogeneous post-translational modifications. The design of therapeutics that rescue p53 functions in cells requires a mechanistic understanding of its protein-protein interactions in specific protein complexes and identifying changes in p53 activity by diverse post-translational modifications. This review highlights the important roles that peptide and protein chemistry have played in biophysical and biochemical studies aimed at elucidating p53 regulation by several key binding partners. The design of various peptide inhibitors that rescue p53 function in cells and new opportunities in targeting p53-protein interactions are discussed. In addition, the review highlights the importance of a protein semisynthesis approach to comprehend the role of site-specific PTMs in p53 regulation.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Mutación , Neoplasias/metabolismo , Péptidos/química , Procesamiento Proteico-Postraduccional , Proteína p53 Supresora de Tumor/metabolismo
6.
Chembiochem ; 22(21): 3082-3089, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34387015

RESUMEN

Tuberculosis is a global health problem caused by infection with the Mycobacterium tuberculosis (Mtb) bacteria. Although antibiotic treatment has dramatically reduced the impact of tuberculosis on the population, the existence and spreading of drug resistant strains urgently demands the development of new drugs that target Mtb in a different manner than currently used antibiotics. The prokaryotic ubiquitin-like protein (Pup) proteasome system is an attractive target for new drug development as it is unique to Mtb and related bacterial genera. Using a Pup-based fluorogenic substrate, we screened for inhibitors of Dop, the Mtb depupylating protease, and identified I-OMe-Tyrphostin AG538 (1) and Tyrphostin AG538 (2). The hits were validated and determined to be fast-reversible, non-ATP competitive inhibitors. We synthesized >25 analogs of 1 and 2 and show that several of the synthesized compounds also inhibit the depupylation actions of Dop on native substrate, FabD-Pup. Importantly, the pupylation activity of PafA, the sole Pup ligase in Mtb, was also inhibited by some of these compounds.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Desarrollo de Medicamentos , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Tirfostinos/farmacología , Ubiquitinas/antagonistas & inhibidores , Antibacterianos/síntesis química , Antibacterianos/química , Proteínas Bacterianas/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium tuberculosis/enzimología , Relación Estructura-Actividad , Tirfostinos/síntesis química , Tirfostinos/química , Ubiquitinas/metabolismo
7.
Proc Natl Acad Sci U S A ; 115(6): 1316-1321, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29367421

RESUMEN

Missense mutations that disrupt the RING domain of the tumor suppressor gene BRCA1 lead to increased risk of breast and ovarian cancer. The BRCA1 RING domain is a ubiquitin ligase, whose structure and function rely critically on forming a heterodimer with BARD1, which also harbors a RING domain. The function of the BARD1 RING domain is unknown. In families severely affected with breast cancer, we identified inherited BARD1 missense mutations Cys53Trp, Cys71Tyr, and Cys83Arg that alter three zinc-binding residues of the BARD1 RING domain. Each of these mutant BARD1 proteins retained the ability to form heterodimeric complexes with BRCA1 to make an active ubiquitin ligase, but the mutant BRCA1/BARD1 complexes were deficient in binding to nucleosomes and in ubiquitylating histone H2A. The BARD1 mutations also caused loss of transcriptional repression of BRCA1-regulated estrogen metabolism genes CYP1A1 and CYP3A4; breast epithelial cells edited to create heterozygous loss of BARD1 showed significantly higher expression of CYP1A1 and CYP3A4 Reintroduction of wild-type BARD1 into these cells restored CYP1A1 and CYP3A4 transcription to normal levels, but introduction of the cancer-predisposing BARD1 RING mutants failed to do so. These results indicate that an intact BARD1 RING domain is critical to BRCA1/BARD1 binding to nucleosomes and hence to ubiquitylation of histone H2A and also critical to transcriptional repression of BRCA1-regulated genes active in estrogen metabolism.


Asunto(s)
Estrógenos/metabolismo , Histonas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias de la Mama/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Estrógenos/genética , Femenino , Regulación de la Expresión Génica , Histonas/genética , Humanos , Masculino , Mutación Missense , Nucleosomas/metabolismo , Dominios Proteicos , Proteínas Supresoras de Tumor/química , Ubiquitina-Proteína Ligasas/química , Ubiquitinación
8.
Biochemistry ; 59(27): 2479-2483, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32567837

RESUMEN

The essential human enzyme lysine specific demethylase 1 (LSD1) silences genes by demethylating mono- and dimethylated lysine 4 in histone H3 (H3K4me1/2). Studies of the minimal requirements for LSD1 activity are complicated by the heterogeneity of histone modification states in cells. We overcame this challenge by generating homogeneous mononucleosome substrates containing semisynthetic H3K4me2. Biophysical and biochemical assays with full-length LSD1 revealed its ability to bind and demethylate nucleosomes. Consistent with a requirement for nucleosome binding prior to demethylation, a competing nucleosome-binding peptide from the high-mobility group protein effectively inhibited LSD1 activity. Thus, our studies provide the first glimpse of nucleosome demethylation by LSD1 in the absence of other scaffolding proteins.


Asunto(s)
Histona Demetilasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Nucleosomas/metabolismo , Procesamiento Proteico-Postraduccional , Histona Demetilasas/química , Histona Demetilasas/aislamiento & purificación , Histonas/química , Humanos , Metilación , Modelos Moleculares , Nucleosomas/química , Unión Proteica
9.
Chembiochem ; 21(22): 3208-3211, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32596917

RESUMEN

The unmodified R5 peptide from silaffin in the diatom Cylindrotheca fusiformis rapidly precipitates silica particles from neutral aqueous solutions of orthosilicic acid. A range of post-translational modifications found in R5 contribute toward tailoring silica morphologies in a species-specific manner. We investigated the specific effect of R5 lysine side-chain trimethylation, which adds permanent positive charges, on silica particle formation. Our studies revealed that a doubly trimethylated R5K3,4me3 peptide has reduced maximum activity yet, surprisingly, generates larger silica particles. Molecular dynamics simulations of R5K3,4me3 binding by the precursor orthosilicate anion revealed that orthosilicate preferentially associates with unmodified lysine side-chain amines and the peptide N terminus. Thus, larger silica particles arise from reduced orthosilicate association with trimethylated lysine side chains and their redirection to the N terminus of the R5 peptide.


Asunto(s)
Fragmentos de Péptidos/química , Precursores de Proteínas/química , Ácido Silícico/química , Dióxido de Silicio/química , Sitios de Unión , Diatomeas/química , Metilación , Simulación de Dinámica Molecular , Tamaño de la Partícula
10.
Proc Natl Acad Sci U S A ; 112(14): E1763-72, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25831519

RESUMEN

Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and protein degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world's most devastating pathogens.


Asunto(s)
Mycobacterium tuberculosis/genética , Complejo de la Endopetidasa Proteasomal/química , Virulencia , Adenosina Trifosfato/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Sitios de Unión , Escherichia coli/metabolismo , Femenino , Proteínas de Choque Térmico/metabolismo , Calor , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Mycobacterium tuberculosis/patogenicidad , Péptidos/química , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , ARN/química , Proteínas Recombinantes/química , Tuberculosis/microbiología , Ubiquitina/química
11.
J Am Chem Soc ; 139(11): 3946-3949, 2017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-28230996

RESUMEN

The C-terminal electrophilic activation of peptides by α-thioesterification requires strongly acidic conditions or complex chemical manipulations, which ultimately limit functional group compatibility and broad utility. Herein, we report a readily accessible N-mercaptoethoxyglycinamide (MEGA) solid-phase linker for the facile synthesis of latent peptide α-thioesters. Incubating peptide-MEGA sequences with 2-mercaptoethanesulfonic acid at mildly acidic pH yielded α-thioesters that were directly used in NCL without purification. The MEGA linker yielded robust access to thioesters ranging in length from 4 to 35 amino acids, and greatly simplified the synthesis of cyclic peptides. Finally, the high utility of MEGA was demonstrated by the one-pot synthesis of a functional analog of the Sunflower Trypsin Inhibitor 1.


Asunto(s)
Ésteres/síntesis química , Gluconatos/química , Péptidos/síntesis química , Compuestos de Sulfhidrilo/síntesis química , Ciclización , Ésteres/química , Concentración de Iones de Hidrógeno , Estructura Molecular , Péptidos/química , Compuestos de Sulfhidrilo/química
12.
J Pept Sci ; 23(12): 899-906, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29193517

RESUMEN

Designing new antimicrobial peptides (AMPs) focuses heavily on the activity of the peptide and less on the elements that stabilize the secondary structure of these peptides. Studies have shown that improving the structure of naturally occurring AMPs can affect activity and so here we explore the relationship between structure and activity of two non-naturally occurring AMPs. We have used a backbone-cyclized peptide as a template and designed an uncyclized analogue of this peptide that has antimicrobial activity. We focused on beta-hairpin-like structuring features. Improvements to the structure of this peptide reduced the activity of the peptide against gram-negative, Escherichia coli but improved the activity against gram-positive, Corynebacterium glutamicum. Distinctions in structuring effects on gram-negative versus gram-positive activity were also seen in a second peptide system. Structural improvements resulted in a peptide that was more active than the native against gram-positive bacterium but less active against gram-negative bacterium. Our results show that there is not always a correlation between improved hairpin-structuring and activity. Other factors such as the type of bacteria being targeted as well as net positive charge can play a role in the potency of AMPs. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Asunto(s)
Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/farmacología , Corynebacterium glutamicum/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estabilidad Proteica , Estructura Secundaria de Proteína , Relación Estructura-Actividad
13.
J Am Chem Soc ; 138(42): 13774-13777, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27723317

RESUMEN

Deubiquitylating enzymes (DUBs) remove ubiquitin (Ub) from various cellular proteins and render eukaryotic ubiquitylation a dynamic process. The misregulation of protein ubiquitylation is associated with many human diseases, and there is an urgent need to identify specific DUBs associated with therapeutically relevant targets of Ub. We report the development of two facile selenocysteine-based strategies to generate the DUB probe dehydroalanine (Dha). Optimized oxidative or alkylative elimination of Se yielded Dha at the C-terminus of Ub. The high utility of alkylative elimination, which is compatible with multiple thiols in Ub targets, was demonstrated by generating a probe derived from the Ub ligase tripartite motif protein 25 (TRIM-25). Successful capture of the TRIM-25-associated DUB, ubiquitin-specific protease 15, demonstrated the versatility of our chemical strategy for identifying target-specific DUBs.

14.
J Biol Chem ; 289(49): 33827-37, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25294883

RESUMEN

The structure of eukaryotic chromatin directly influences gene function, and is regulated by chemical modifications of the core histone proteins. Modification of the human histone H4 N-terminal tail region by the small ubiquitin-like modifier protein, SUMO-3, is associated with transcription repression. However, the direct effect of sumoylation on chromatin structure and function remains unknown. Therefore, we employed a disulfide-directed strategy to generate H4 homogenously and site-specifically sumoylated at Lys-12 (suH4ss). Chromatin compaction and oligomerization assays with nucleosomal arrays containing suH4ss established that SUMO-3 inhibits array folding and higher order oligomerization, which underlie chromatin fiber formation. Moreover, the effect of sumoylation differed from that of acetylation, and could be recapitulated with the structurally similar protein ubiquitin. Mechanistic studies at the level of single nucleosomes revealed that, unlike acetylation, the effect of SUMO-3 arises from the attenuation of long-range internucleosomal interactions more than from the destabilization of a compacted dinucleosome state. Altogether, our results present the first insight on the direct structural effects of histone H4 sumoylation and reveal a novel mechanism by which SUMO-3 inhibits chromatin compaction.


Asunto(s)
Histonas/química , Lisina/química , Nucleosomas/química , Procesamiento Proteico-Postraduccional , Ubiquitina/química , Acetilación , Ensamble y Desensamble de Cromatina , Disulfuros/química , Escherichia coli/genética , Escherichia coli/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Cinética , Lisina/metabolismo , Modelos Moleculares , Nucleosomas/genética , Nucleosomas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Sumoilación , Transcripción Genética , Ubiquitina/genética , Ubiquitina/metabolismo
15.
Chembiochem ; 16(17): 2531-6, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26457983

RESUMEN

Endless potential: The sixth Chemical Protein Synthesis Meeting, held recently in St. Augustine, Florida, showed the potential of peptide and protein chemistry when applied toward understanding and controlling complex biological processes. This report highlights the diverse and cutting-edge protein chemistry presented at the meeting.


Asunto(s)
Amidas/química , Péptidos/química , Reacción de Cicloadición , Péptidos/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Técnicas de Síntesis en Fase Sólida , Ubiquitina/síntesis química , Ubiquitina/química
16.
Anal Biochem ; 487: 27-9, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26205584

RESUMEN

The modification of proteins in Mycobacterium tuberculosis (Mtb) by the prokaryotic ubiquitin-like protein (Pup) targets them for degradation by mycobacterial proteasomes. Although functionally similar to eukaryotic deubiquitylating enzymes, the deamidase of Pup, called Dop, has no known mammalian homologs. Because Dop is necessary for persistent infection by Mtb, its selective inhibition holds potential for tuberculosis therapy. To facilitate high-throughput screens for Dop inhibitors, we developed a time-resolved Förster resonance energy transfer (TR-FRET)-based assay for Dop function. The TR-FRET assay was successfully applied to determine the Michaelis constant for adenosine triphosphate (ATP) binding and to test the cofactor tolerance of Dop.


Asunto(s)
Proteínas Bacterianas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Mycobacterium tuberculosis/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Adenosina Trifosfato/metabolismo , Factores de Tiempo
17.
Chembiochem ; 15(9): 1263-7, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24838693

RESUMEN

The reversible post-translational modification of eukaryotic proteins by ubiquitin regulates key cellular processes including protein degradation and gene transcription. Studies of the mechanistic roles for protein ubiquitylation require quantities of homogenously modified substrates that are typically inaccessible from natural sources or by enzymatic ubiquitylation in vitro. Therefore, we developed a facile and scalable methodology for site-specific chemical ubiquitylation. Our semisynthetic strategy utilized a temporary ligation auxiliary, 2-(aminooxy)ethanethiol, to direct ubiquitylation to specific lysine residues in peptide substrates. Mild reductive removal of the auxiliary after ligation yielded ubiquitylated peptides with the native isopeptide linkage. Alternatively, retention of the ligation auxiliary yielded protease-resistant analogues of ubiquitylated peptides. Importantly, our strategy was fully compatible with the presence of protein thiol groups, as demonstrated by the synthesis of peptides modified by the human small ubiquitin-related modifier 3 protein.


Asunto(s)
Péptido Hidrolasas/metabolismo , Péptidos/síntesis química , Proteínas Ubiquitinadas/síntesis química , Proteínas Ubiquitinadas/metabolismo , Ubiquitinación , Humanos , Modelos Moleculares , Conformación Molecular , Péptidos/química , Péptidos/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Proteínas Ubiquitinadas/química
18.
Biopolymers ; 101(2): 144-55, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23576160

RESUMEN

Ubiquitin (Ub) is a small 76 amino acid long protein that is highly conserved in all eukaryotes studied to date. In humans, more than 600 ligases are involved in the reversible modification of specific lysine side-chain amines in substrate proteins by conjugation with the C-terminal carboxylate of Ub. Initially monoubiquitylated proteins can undergo repetitive ubiquitylation starting from one of seven lysine residues or the α-amine in the first Ub to generate a variety of polyUb chains with different topologies and functions. The most well known role for protein ubiquitylation is in targeting substrates for proteolytic destruction by 26S proteasomes. However, a growing body of evidence indicates that both mono- and polyubiquitylation play proteasome-independent roles in modulating the structure, function, and localization of protein substrates. Understanding the complexity of Ub-mediated functions in our cells is a major challenge for modern biology. In addition to well-established in vivo genetic methods, biochemical and biophysical investigations of ubiquitylated proteins in vitro can shed light on the direct mechanistic roles for Ub in different contexts. Such studies have traditionally been limited by the ability to obtain sufficient quantities of homogenously ubiquitylated proteins with precisely defined linkages. This review focuses on recent advances in both synthetic and recombinant protein-based methods that have yielded access to homogenously site-specifically ubiquitylated proteins. Mechanistic studies of the roles for protein ubiquitylation and of the enzymes involved in protein deubiquitylation that are enabled by these chemical tools are highlighted.


Asunto(s)
Transducción de Señal , Ubiquitina/metabolismo , Animales , Disulfuros/metabolismo , Humanos , Péptidos/síntesis química , Poliubiquitina/síntesis química , Ubiquitinación
19.
Nature ; 453(7196): 812-6, 2008 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-18449190

RESUMEN

Numerous post-translational modifications of histones have been described in organisms ranging from yeast to humans. Growing evidence for dynamic regulation of these modifications, position- and modification-specific protein interactions, and biochemical crosstalk between modifications has strengthened the 'histone code' hypothesis, in which histone modifications are integral to choreographing the expression of the genome. One such modification, ubiquitylation of histone H2B (uH2B) on lysine 120 (K120) in humans, and lysine 123 in yeast, has been correlated with enhanced methylation of lysine 79 (K79) of histone H3 (refs 5-8), by K79-specific methyltransferase Dot1 (KMT4). However, the specific function of uH2B in this crosstalk pathway is not understood. Here we demonstrate, using chemically ubiquitylated H2B, a direct stimulation of hDot1L-mediated intranucleosomal methylation of H3 K79. Two traceless orthogonal expressed protein ligation (EPL) reactions were used to ubiquitylate H2B site-specifically. This strategy, using a photolytic ligation auxiliary and a desulphurization reaction, should be generally applicable to the chemical ubiquitylation of other proteins. Reconstitution of our uH2B into chemically defined nucleosomes, followed by biochemical analysis, revealed that uH2B directly activates methylation of H3 K79 by hDot1L. This effect is mediated through the catalytic domain of hDot1L, most likely through allosteric mechanisms. Furthermore, asymmetric incorporation of uH2B into dinucleosomes showed that the enhancement of methylation was limited to nucleosomes bearing uH2B. This work demonstrates a direct biochemical crosstalk between two modifications on separate histone proteins within a nucleosome.


Asunto(s)
Histonas/metabolismo , Metiltransferasas/metabolismo , Nucleosomas/metabolismo , Ubiquitina/metabolismo , Regulación Alostérica , Animales , Dominio Catalítico , N-Metiltransferasa de Histona-Lisina , Histonas/síntesis química , Humanos , Lisina/metabolismo , Metilación , Metiltransferasas/genética , Nucleosomas/química , Xenopus
20.
Cell Chem Biol ; 31(3): 383-386, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38518744

RESUMEN

In this issue of Cell Chemical Biology, Peng and Weerapana1 report the combination of chemoproteomic and proximity-based labeling approaches to identify cysteines in nuclear proteins that are reactive toward electrophilic probe compounds. They apply this novel technology to identify proteins that are localized to the nucleus and chromatin upon probe labeling.


Asunto(s)
Cisteína , Proteínas , Cisteína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA