Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 890, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39343895

RESUMEN

BACKGROUND: Fruit crops, including tropical and subtropical fruits like Avocado (Persea americana), Fig (Ficus carica), Date Palm (Phoenix dactylifera), Mango (Mangifera indica), Guava (Psidium guajava), Papaya (Carica papaya), Pineapple (Ananas comosus), and Banana (Musa acuminata) are economically vital, contributing significantly to global agricultural output, as classified by the FAO's World Programme for the Census of Agriculture. Advancements in next-generation sequencing, have transformed fruit crop breeding by providing in-depth genomic and transcriptomic data. RNA sequencing enables high-throughput analysis of gene expression, and functional genomics, crucial for addressing horticultural challenges and enhancing fruit production. The genomic and expression data for key tropical and sub-tropical fruit crops is currently lacking a comprehensive expression atlas, revealing a significant gap in resources for horticulturists who require a unified platform with diverse datasets across various conditions and cultivars. RESULTS: The Fruit Expression Atlas (FEAtl), available at http://backlin.cabgrid.res.in/FEAtl/ , is a first-ever extensive and unified expression atlas for tropical and subtropical fruit crops developed using 3-tier architecture. The expressivity of coding and non-coding genes, encompassing 2,060 RNA-Seq samples across 91 tissue types and 177 BioProjects, it provides a comprehensive view of gene expression patterns for different tissues under various conditions. FEAtl features multiple tabs that cater to different aspects of the dataset, namely, Home, About, Analyze, Statistics, and Team and contains seven central functional modules: Transcript Information,Sample Information, Expression Profiles in FPKM and TPM, Functional Analysis, Genes Based on Tau Score, and Search for Specific Gene. The expression of a transcript of interest can be easily queried by searching by tissue ID and transcript type. Expression data can be displayed as a heat map, along with functional descriptions as well as Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. CONCLUSIONS: This atlas represents a groundbreaking compilation of a wide array of information pertaining to eight distinct fruit crops and serves as a fundamental resource for comparative analysis among different fruit species and is a catalyst for functional genomic studies. Database availability: http://backlin.cabgrid.res.in/FEAtl/ .


Asunto(s)
Productos Agrícolas , Frutas , Genómica , Productos Agrícolas/genética , Frutas/genética , Genómica/métodos , Internet , Bases de Datos Genéticas , Persea/genética , Carica/genética , Musa/genética , Transcriptoma , Regulación de la Expresión Génica de las Plantas
2.
Front Plant Sci ; 15: 1292054, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38504888

RESUMEN

Plants intricately deploy defense systems to counter diverse biotic and abiotic stresses. Omics technologies, spanning genomics, transcriptomics, proteomics, and metabolomics, have revolutionized the exploration of plant defense mechanisms, unraveling molecular intricacies in response to various stressors. However, the complexity and scale of omics data necessitate sophisticated analytical tools for meaningful insights. This review delves into the application of artificial intelligence algorithms, particularly machine learning and deep learning, as promising approaches for deciphering complex omics data in plant defense research. The overview encompasses key omics techniques and addresses the challenges and limitations inherent in current AI-assisted omics approaches. Moreover, it contemplates potential future directions in this dynamic field. In summary, AI-assisted omics techniques present a robust toolkit, enabling a profound understanding of the molecular foundations of plant defense and paving the way for more effective crop protection strategies amidst climate change and emerging diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA