Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell ; 165(6): 1316-1318, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27259144

RESUMEN

Differential stability of kinetochore-microtubule attachments at low versus high tension is critical for accurate chromosome segregation. Miller et al. find that a TOG domain microtubule-binding protein imparts intrinsic tension selectivity to kinetochore-microtubule attachments.


Asunto(s)
Segregación Cromosómica , Cinetocoros , Microtúbulos/genética , Huso Acromático/metabolismo
2.
Genes Dev ; 31(11): 1089-1094, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28698300

RESUMEN

Mitotic duration is determined by activation of the anaphase-promoting complex/cyclosome (APC/C) bound to its coactivator, Cdc20. Kinetochores, the microtubule-interacting machines on chromosomes, restrain mitotic exit when not attached to spindle microtubules by generating a Cdc20-containing complex that inhibits the APC/C. Here, we show that flux of Cdc20 through kinetochores also accelerates mitotic exit by promoting its dephosphorylation by kinetochore-localized protein phosphatase 1, which allows Cdc20 to activate the APC/C. Both APC/C activation and inhibition depend on Cdc20 fluxing through the same binding site at kinetochores. The microtubule attachment status of kinetochores therefore optimizes mitotic duration by controlling the balance between opposing Cdc20 fates.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/genética , Proteínas Cdc20/metabolismo , Cinetocoros/metabolismo , Activación Transcripcional , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas Cdc20/genética , Fosforilación , Unión Proteica , Proteína Fosfatasa 1/metabolismo
3.
Development ; 144(14): 2694-2701, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619826

RESUMEN

Proteins that are essential for embryo production, cell division and early embryonic events are frequently reused later in embryogenesis, during organismal development or in the adult. Examining protein function across these different biological contexts requires tissue-specific perturbation. Here, we describe a method that uses expression of a fusion between a GFP-targeting nanobody and a SOCS-box containing ubiquitin ligase adaptor to target GFP-tagged proteins for degradation. When combined with endogenous locus GFP tagging by CRISPR-Cas9 or with rescue of a null mutant with a GFP fusion, this approach enables routine and efficient tissue-specific protein ablation. We show that this approach works in multiple tissues - the epidermis, intestine, body wall muscle, ciliated sensory neurons and touch receptor neurons - where it recapitulates expected loss-of-function mutant phenotypes. The transgene toolkit and the strain set described here will complement existing approaches to enable routine analysis of the tissue-specific roles of C. elegans proteins.


Asunto(s)
Caenorhabditis elegans/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Genes de Helminto , Técnicas Genéticas , Proteínas Fluorescentes Verdes/genética , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Mutación , Proteolisis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismo , Distribución Tisular
4.
PLoS Genet ; 13(7): e1006941, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28759579

RESUMEN

The microtubule-based motor dynein generates pulling forces for centrosome centration and mitotic spindle positioning in animal cells. How the essential dynein activator dynactin regulates these functions of the motor is incompletely understood. Here, we dissect the role of dynactin's microtubule binding activity, located in the p150 CAP-Gly domain and an adjacent basic patch, in the C. elegans zygote. Analysis of p150 mutants engineered by genome editing suggests that microtubule tip tracking of dynein-dynactin is dispensable for targeting the motor to the cell cortex and for generating robust cortical pulling forces. Instead, mutations in p150's CAP-Gly domain inhibit cytoplasmic pulling forces responsible for centration of centrosomes and attached pronuclei. The centration defects are mimicked by mutations of α-tubulin's C-terminal tyrosine, and both p150 CAP-Gly and tubulin tyrosine mutants decrease the frequency of early endosome transport from the cell periphery towards centrosomes during centration. Our results suggest that p150 GAP-Gly domain binding to tyrosinated microtubules promotes initiation of dynein-mediated organelle transport in the dividing one-cell embryo, and that this function of p150 is critical for generating cytoplasmic pulling forces for centrosome centration.


Asunto(s)
Núcleo Celular/genética , Complejo Dinactina/genética , Dineínas/genética , Microtúbulos/genética , Animales , Caenorhabditis elegans/genética , Centrosoma/metabolismo , Dineínas/química , Edición Génica , Proteínas Asociadas a Microtúbulos/genética , Unión Proteica , Dominios Proteicos , Huso Acromático/genética , Tubulina (Proteína)/genética , Tirosina/genética , Cigoto/crecimiento & desarrollo , Cigoto/metabolismo
5.
Mol Biol Cell ; 35(6): ar83, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656792

RESUMEN

The KMN (Knl1/Mis12/Ndc80) network at the kinetochore, primarily known for its role in chromosome segregation, has been shown to be repurposed during neurodevelopment. Here, we investigate the underlying neuronal mechanism and show that the KMN network promotes the proper axonal organization within the C. elegans head nervous system. Postmitotic degradation of KNL-1, which acts as a scaffold for signaling and has microtubule-binding activities at the kinetochore, led to disorganized ganglia and aberrant placement and organization of axons in the nerve ring - an interconnected axonal network. Through gene-replacement approaches, we demonstrate that the signaling motifs within KNL-1, responsible for recruiting protein phosphatase 1, and activating the spindle assembly checkpoint are required for neurodevelopment. Interestingly, while the microtubule-binding activity is crucial to KMN's neuronal function, microtubule dynamics and organization were unaffected in the absence of KNL-1. Instead, the NDC-80 microtubule-binding mutant displayed notable defects in axon bundling during nerve ring formation, indicating its role in facilitating axon-axon contacts. Overall, these findings provide evidence for a noncanonical role for the KMN network in shaping the structure and connectivity of the nervous system in C. elegans during brain development.


Asunto(s)
Axones , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cinetocoros , Proteínas Asociadas a Microtúbulos , Microtúbulos , Neuronas , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Axones/metabolismo , Axones/fisiología , Cinetocoros/metabolismo , Neuronas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Sistema Nervioso/metabolismo , Huso Acromático/metabolismo , Proteínas del Citoesqueleto/metabolismo , Segregación Cromosómica , Transducción de Señal
6.
Curr Opin Cell Biol ; 84: 102214, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37544207

RESUMEN

Dendrites are intricately designed neuronal compartments that play a vital role in the gathering and processing of sensory or synaptic inputs. Their diverse and elaborate structures are distinct features of neuronal organization and function. Central to the generation of these dendritic arbors is the neuronal cytoskeleton. In this review, we delve into the current progress toward our understanding of how dendrite arbors are generated and maintained, focusing on the role of the actin and microtubule cytoskeleton.


Asunto(s)
Actinas , Dendritas , Microtúbulos , Citoesqueleto/fisiología , Neuronas
7.
bioRxiv ; 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36993239

RESUMEN

Multiple microtubule-directed activities concentrate on chromosomes during mitosis to ensure their accurate distribution to daughter cells. These activities include couplers and dynamics regulators localized at the kinetochore, the specialized microtubule interface built on centromeric chromatin, as well as motor proteins recruited to kinetochores and to mitotic chromatin. Here, we describe an in vivo reconstruction approach in which the effect of removing the major microtubule-directed activities on mitotic chromosomes is compared to the selective presence of individual activities. This approach revealed that the kinetochore dynein module, comprised of the minus end-directed motor cytoplasmic dynein and its kinetochore-specific adapters, is sufficient to biorient chromosomes and to remodel outer kinetochore composition following microtubule attachment; by contrast, the kinetochore dynein module is unable to support chromosome congression. The chromosome-autonomous action of kinetochore dynein, in the absence of the other major microtubule-directed factors on chromosomes, rotates and orients a substantial proportion of chromosomes such that their sister chromatids attach to opposite spindle poles. In tight coupling with orientation, the kinetochore dynein module drives removal of outermost kinetochore components, including the dynein motor itself and spindle checkpoint activators. The removal is independent of the other major microtubule-directed activities and kinetochore-localized protein phosphatase 1, suggesting that it is intrinsic to the kinetochore dynein module. These observations indicate that the kinetochore dynein module has the ability coordinate chromosome biorientation with attachment state-sensitive remodeling of the outer kinetochore that facilitates cell cycle progression.

8.
Elife ; 122023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37067150

RESUMEN

Phosphorylation is a key post-translational modification that is utilised in many biological processes for the rapid and reversible regulation of protein localisation and activity. Polo-like kinase 1 (PLK-1) is essential for both mitotic and meiotic cell divisions, with key functions being conserved in eukaryotes. The roles and regulation of PLK-1 during mitosis have been well characterised. However, the discrete roles and regulation of PLK-1 during meiosis have remained obscure. Here, we used Caenorhabditis elegans oocytes to show that PLK-1 plays distinct roles in meiotic spindle assembly and/or stability, chromosome alignment and segregation, and polar body extrusion during meiosis I. Furthermore, by a combination of live imaging and biochemical analysis we identified the chromosomal recruitment mechanisms of PLK-1 during C. elegans oocyte meiosis. The spindle assembly checkpoint kinase BUB-1 directly recruits PLK-1 to the kinetochore and midbivalent while the chromosome arm population of PLK-1 depends on a direct interaction with the centromeric-associated protein CENP-CHCP-4. We found that perturbing both BUB-1 and CENP-CHCP-4 recruitment of PLK-1 leads to severe meiotic defects, resulting in highly aneuploid oocytes. Overall, our results shed light on the roles played by PLK-1 during oocyte meiosis and provide a mechanistic understanding of PLK-1 targeting to meiotic chromosomes.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Segregación Cromosómica , Cinetocoros , Meiosis , Oocitos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/metabolismo , Quinasa Tipo Polo 1
9.
J Cell Sci ; 123(Pt 11): 1862-72, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20442250

RESUMEN

We investigated the role of Pav-KLP, a kinesin-6, in the coordination of spindle and cortical dynamics during mitosis in Drosophila embryos. In vitro, Pav-KLP behaves as a dimer. In vivo, it localizes to mitotic spindles and furrows. Inhibition of Pav-KLP causes defects in both spindle dynamics and furrow ingression, as well as causing changes in the distribution of actin and vesicles. Thus, Pav-KLP stabilizes the spindle by crosslinking interpolar microtubule bundles and contributes to actin furrow formation possibly by transporting membrane vesicles, actin and/or actin regulatory molecules along astral microtubules. Modeling suggests that furrow ingression during cellularization depends on: (1) a Pav-KLP-dependent force driving an initial slow stage of ingression; and (2) the subsequent Pav-KLP-driven transport of actin- and membrane-containing vesicles to the furrow during a fast stage of ingression. We hypothesize that Pav-KLP is a multifunctional mitotic motor that contributes both to bundling of interpolar microtubules, thus stabilizing the spindle, and to a biphasic mechanism of furrow ingression by pulling down the furrow and transporting vesicles that deliver new material to the descending furrow.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/citología , Proteínas Asociadas a Microtúbulos/metabolismo , Huso Acromático/metabolismo , Moduladores de Tubulina/metabolismo , Actinas/metabolismo , Animales , Anticuerpos Bloqueadores/administración & dosificación , Drosophila/embriología , Proteínas de Drosophila/inmunología , Embrión no Mamífero , Fluorescencia , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/inmunología , Centro Organizador de los Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Mitosis/efectos de los fármacos , Transporte de Proteínas , Huso Acromático/efectos de los fármacos , Huso Acromático/ultraestructura , Moduladores de Tubulina/inmunología
10.
J Cell Biol ; 177(6): 995-1004, 2007 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-17576796

RESUMEN

Anaphase B in Drosophila embryos is initiated by the inhibition of microtubule (MT) depolymerization at spindle poles, which allows outwardly sliding interpolar (ip) MTs to drive pole-pole separation. Using fluorescence recovery after photobleaching, we observed that MTs throughout the preanaphase B spindle are very dynamic and display complete recovery of fluorescence, but during anaphase B, MTs proximal to the poles stabilize and therefore display lower recovery than those elsewhere. Fluorescence microscopy of the MT tip tracker EB1 revealed that growing MT plus ends localize throughout the preanaphase B spindle but concentrate in the overlap region of interpolar MTs (ipMTs) at anaphase B onset. None of these changes occurred in the presence of nondegradable cyclin B. Modeling suggests that they depend on the establishment of a spatial gradient of MT plus-end catastrophe frequencies, decreasing toward the equator. The resulting redistribution of ipMT plus ends to the overlap zone, together with the suppression of minus-end depolymerization at the poles, could constitute a mechanical switch that initiates spindle elongation.


Asunto(s)
Anafase , Microtúbulos/metabolismo , Animales , Drosophila , Embrión no Mamífero , Microscopía Fluorescente , Fotoblanqueo , Huso Acromático/metabolismo
11.
Elife ; 92020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33355089

RESUMEN

Protein Phosphatase 2A (PP2A) is a heterotrimer composed of scaffolding (A), catalytic (C), and regulatory (B) subunits. PP2A complexes with B56 subunits are targeted by Shugoshin and BUBR1 to protect centromeric cohesion and stabilise kinetochore-microtubule attachments in yeast and mouse meiosis. In Caenorhabditis elegans, the closest BUBR1 orthologue lacks the B56-interaction domain and Shugoshin is not required for meiotic segregation. Therefore, the role of PP2A in C. elegans female meiosis is unknown. We report that PP2A is essential for meiotic spindle assembly and chromosome dynamics during C. elegans female meiosis. BUB-1 is the main chromosome-targeting factor for B56 subunits during prometaphase I. BUB-1 recruits PP2A:B56 to the chromosomes via a newly identified LxxIxE motif in a phosphorylation-dependent manner, and this recruitment is important for proper chromosome congression. Our results highlight a novel mechanism for B56 recruitment, essential for recruiting a pool of PP2A involved in chromosome congression during meiosis I.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Cromosomas/fisiología , Meiosis/fisiología , Oocitos/fisiología , Proteína Fosfatasa 2/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Segregación Cromosómica , Oocitos/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
12.
Dev Cell ; 48(6): 864-872.e7, 2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30827898

RESUMEN

Dynamic coupling of microtubule ends to kinetochores, built on the centromeres of chromosomes, directs chromosome segregation during cell division. Here, we report that the evolutionarily ancient kinetochore-microtubule coupling machine, the KMN (Knl1/Mis12/Ndc80-complex) network, plays a critical role in neuronal morphogenesis. We show that the KMN network concentrates in microtubule-rich dendrites of developing sensory neurons that collectively extend in a multicellular morphogenetic event that occurs during C. elegans embryogenesis. Post-mitotic degradation of KMN components in sensory neurons disrupts dendritic extension, leading to patterning and functional defects in the sensory nervous system. Structure-guided mutations revealed that the molecular interface that couples kinetochores to spindle microtubules also functions in neuronal development. These results identify a cell-division-independent function for the chromosome-segregation machinery and define a microtubule-coupling-dependent event in sensory nervous system morphogenesis.


Asunto(s)
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Morfogénesis , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Caenorhabditis elegans/embriología , Proteínas de Caenorhabditis elegans/metabolismo , Dendritas/metabolismo , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Mitosis
13.
Curr Biol ; 28(21): 3408-3421.e8, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30415699

RESUMEN

The kinetochore is a dynamic multi-protein assembly that forms on each sister chromatid and interacts with microtubules of the mitotic spindle to drive chromosome segregation. In animals, kinetochores without attached microtubules expand their outermost layer into crescent and ring shapes to promote microtubule capture and spindle assembly checkpoint (SAC) signaling. Kinetochore expansion is an example of protein co-polymerization, but the mechanism is not understood. Here, we present evidence that kinetochore expansion is driven by oligomerization of the Rod-Zw10-Zwilch (RZZ) complex, an outer kinetochore component that recruits the motor dynein and the SAC proteins Mad1-Mad2. Depletion of ROD in human cells suppresses kinetochore expansion, as does depletion of Spindly, the adaptor that connects RZZ to dynein, although dynein itself is dispensable. Expansion is also suppressed by mutating ZWILCH residues implicated in Spindly binding. Conversely, supplying cells with excess ROD facilitates kinetochore expansion under otherwise prohibitive conditions. Using the C. elegans early embryo, we demonstrate that ROD-1 has a concentration-dependent propensity for oligomerizing into micrometer-scale filaments, and we identify the ROD-1 ß-propeller as a key regulator of self-assembly. Finally, we show that a minimal ROD-1-Zw10 complex efficiently oligomerizes into filaments in vitro. Our results suggest that RZZ's capacity for oligomerization is harnessed by kinetochores to assemble the expanded outermost domain, in which RZZ filaments serve as recruitment platforms for SAC components and microtubule-binding proteins. Thus, we propose that reversible RZZ self-assembly into filaments underlies the adaptive change in kinetochore size that contributes to chromosome segregation fidelity.


Asunto(s)
Caenorhabditis elegans/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Animales , Caenorhabditis elegans/embriología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Dineínas/metabolismo , Humanos , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
14.
Dev Cell ; 41(4): 424-437.e4, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28535376

RESUMEN

During cell division, genome inheritance is orchestrated by microtubule attachments formed at kinetochores of mitotic chromosomes. The primary microtubule coupler at the kinetochore, the Ndc80 complex, is regulated by Aurora kinase phosphorylation of its N-terminal tail. Dephosphorylation is proposed to stabilize kinetochore-microtubule attachments by strengthening electrostatic interactions of the tail with the microtubule lattice. Here, we show that removal of the Ndc80 tail, which compromises in vitro microtubule binding, has no effect on kinetochore-microtubule attachments in the Caenorhabditis elegans embryo. Despite this, preventing Aurora phosphorylation of the tail results in prematurely stable attachments that restrain spindle elongation. This premature stabilization requires the conserved microtubule-binding Ska complex, which enriches at attachment sites prior to anaphase onset to dampen chromosome motion. We propose that Ndc80-tail dephosphorylation promotes stabilization of kinetochore-microtubule attachments via the Ska complex and that this mechanism ensures accurate segregation by constraining chromosome motion following biorientation on the spindle.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Anafase , Animales , Cromosomas/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Eliminación de Gen , Complejos Multiproteicos/química , Fosforilación , Unión Proteica , Polos del Huso/metabolismo
15.
Dev Cell ; 43(2): 157-171.e7, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-29065307

RESUMEN

In animal cells, nuclear envelope breakdown (NEBD) is required for proper chromosome segregation. Whereas mitotic kinases have been implicated in NEBD, how they coordinate their activity to trigger this event is unclear. Here, we show that both in human cells and Caenorhabditis elegans, the Polo-like kinase 1 (PLK-1) is recruited to the nuclear pore complexes, just prior to NEBD, through its Polo-box domain (PBD). We provide evidence that PLK-1 localization to the nuclear envelope (NE) is required for efficient NEBD. We identify the central channel nucleoporins NPP-1/Nup58, NPP-4/Nup54, and NPP-11/Nup62 as the critical factors anchoring PLK-1 to the NE in C. elegans. In particular, NPP-1, NPP-4, and NPP-11 primed at multiple Polo-docking sites by Cdk1 and PLK-1 itself physically interact with the PLK-1 PBD. We conclude that nucleoporins play an unanticipated regulatory role in NEBD, by recruiting PLK-1 to the NE thereby facilitating phosphorylation of critical downstream targets.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitosis/fisiología , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Células HeLa , Humanos , Membrana Nuclear/genética , Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Quinasa Tipo Polo 1
16.
J Cell Biol ; 216(4): 943-960, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28320824

RESUMEN

The molecular motor dynein concentrates at the kinetochore region of mitotic chromosomes in animals to accelerate spindle microtubule capture and to control spindle checkpoint signaling. In this study, we describe the molecular mechanism used by the Rod-Zw10-Zwilch complex and the adaptor Spindly to recruit dynein to kinetochores in Caenorhabditis elegans embryos and human cells. We show that Rod's N-terminal ß-propeller and the associated Zwilch subunit bind Spindly's C-terminal domain, and we identify a specific Zwilch mutant that abrogates Spindly and dynein recruitment in vivo and Spindly binding to a Rod ß-propeller-Zwilch complex in vitro. Spindly's N-terminal coiled-coil uses distinct motifs to bind dynein light intermediate chain and the pointed-end complex of dynactin. Mutations in these motifs inhibit assembly of a dynein-dynactin-Spindly complex, and a null mutant of the dynactin pointed-end subunit p27 prevents kinetochore recruitment of dynein-dynactin without affecting other mitotic functions of the motor. Conservation of Spindly-like motifs in adaptors involved in intracellular transport suggests a common mechanism for linking dynein to cargo.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Dineínas/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Huso Acromático/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Segregación Cromosómica/fisiología , Complejo Dinactina/metabolismo , Células HeLa , Humanos , Cinetocoros/fisiología , Microtúbulos/metabolismo , Microtúbulos/fisiología , Mitosis/fisiología , Huso Acromático/fisiología
17.
Elife ; 4: e08649, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26371552

RESUMEN

Non-centrosomal microtubule arrays assemble in differentiated tissues to perform mechanical and transport-based functions. In this study, we identify Caenorhabditis elegans NOCA-1 as a protein with homology to vertebrate ninein. NOCA-1 contributes to the assembly of non-centrosomal microtubule arrays in multiple tissues. In the larval epidermis, NOCA-1 functions redundantly with the minus end protection factor Patronin/PTRN-1 to assemble a circumferential microtubule array essential for worm growth and morphogenesis. Controlled degradation of a γ-tubulin complex subunit in this tissue revealed that γ-tubulin acts with NOCA-1 in parallel to Patronin/PTRN-1. In the germline, NOCA-1 and γ-tubulin co-localize at the cell surface, and inhibiting either leads to a microtubule assembly defect. γ-tubulin targets independently of NOCA-1, but NOCA-1 targeting requires γ-tubulin when a non-essential putatively palmitoylated cysteine is mutated. These results show that NOCA-1 acts with γ-tubulin to assemble non-centrosomal arrays in multiple tissues and highlight functional overlap between the ninein and Patronin protein families.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Multimerización de Proteína , Tubulina (Proteína)/metabolismo , Animales
18.
Curr Opin Cell Biol ; 26: 113-22, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24529253

RESUMEN

Accurate segregation of the replicated genome during cell division depends on dynamic attachments formed between chromosomes and the microtubule polymers of the spindle. Here we review recent advances in mechanistic analysis of microtubule attachment formation and regulation.


Asunto(s)
Segregación Cromosómica , Cinetocoros , Microtúbulos/fisiología , Animales , Humanos , Microtúbulos/química , Microtúbulos/genética , Proteínas Nucleares/metabolismo , Unión Proteica
19.
J Cell Biol ; 204(5): 647-57, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24567362

RESUMEN

Recruitment of Mad1-Mad2 complexes to unattached kinetochores is a central event in spindle checkpoint signaling. Despite its importance, the mechanism that recruits Mad1-Mad2 to kinetochores is unclear. In this paper, we show that MAD-1 interacts with BUB-1 in Caenorhabditis elegans. Mutagenesis identified specific residues in a segment of the MAD-1 coiled coil that mediate the BUB-1 interaction. In addition to unattached kinetochores, MAD-1 localized between separating meiotic chromosomes and to the nuclear periphery. Mutations in the MAD-1 coiled coil that selectively disrupt interaction with BUB-1 eliminated MAD-1 localization to unattached kinetochores and between meiotic chromosomes, both of which require BUB-1, and abrogated checkpoint signaling. The identified MAD-1 coiled-coil segment interacted with a C-terminal region of BUB-1 that contains its kinase domain, and mutations in this region prevented MAD-1 kinetochore targeting independently of kinase activity. These results delineate an interaction between BUB-1 and MAD-1 that targets MAD-1-MAD-2 complexes to kinetochores and is essential for spindle checkpoint signaling.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/citología , Proteínas de Ciclo Celular/fisiología , Cinetocoros/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Nucleares/fisiología , Anafase/fisiología , Animales , Sitios de Unión , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromosomas/metabolismo , Cinetocoros/fisiología , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Proteínas Mad2/fisiología , Meiosis/fisiología , Modelos Biológicos , Mutagénesis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Estructura Terciaria de Proteína , Transducción de Señal , Técnicas del Sistema de Dos Híbridos
20.
Science ; 342(6163): 1239-42, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24231804

RESUMEN

The microtubule-based mitotic spindle segregates chromosomes during cell division. During chromosome segregation, the centromeric regions of chromosomes build kinetochores that establish end-coupled attachments to spindle microtubules. Here, we used the Caenorhabditis elegans embryo as a model system to examine the crosstalk between two kinetochore protein complexes implicated in temporally distinct stages of attachment formation. The kinetochore dynein module, which mediates initial lateral microtubule capture, inhibited microtubule binding by the Ndc80 complex, which ultimately forms the end-coupled attachments that segregate chromosomes. The kinetochore dynein module directly regulated Ndc80, independently of phosphorylation by Aurora B kinase, and this regulation was required for accurate segregation. Thus, the conversion from initial dynein-mediated, lateral attachments to correctly oriented, Ndc80-mediated end-coupled attachments is actively controlled.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Segregación Cromosómica , Dineínas/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Secuencias de Aminoácidos , Animales , Aurora Quinasa B/metabolismo , Caenorhabditis elegans/embriología , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Embrión no Mamífero/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Complejos Multiproteicos/metabolismo , Fenotipo , Fosforilación , Unión Proteica , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA