Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cancer Sci ; 114(8): 3301-3317, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37260027

RESUMEN

Gastric cancer is a common cancer worldwide, particularly in East Asia. Chemotherapy is used in adjuvant or palliative therapies for gastric cancer. However, subsequent chemoresistance often develops. Growth differentiation factor 15 (GDF15) links to several cancers, but its effect on chemoresistance in gastric cancer remains unclear. Here, we analyzed clinical samples from genetic databases and included patients with gastric cancer. We dissected the regulatory mechanism underlying GDF15-mediated resistance of cisplatin in human gastric cancer cells. We showed that GDF15 serum levels might be a valuable biomarker for predicting prognosis in gastric cancer. The expressions of GDF15 and its receptor glial cell-derived neurotrophic factor family receptor a-like (GFRAL) in gastric tumors are important for malignant progression. Moreover, GDF15 expression is increased in gastric cancer cells with cisplatin resistance, resulting from elevated intracellular glutathione (GSH) and antioxidant activities. Upregulated GDF15 could increase intracellular GSH content by activating the GFRAL-GCN2-eIF2α-ATF4 signaling, enhancing cystine-uptake transporter xCT expression, and contributing biosynthesis of GSH in human gastric cancer cells. In conclusion, our results indicate that GDF15 could induce chemoresistance by upregulating xCT expression and GSH biosynthesis in human gastric cancer cells. Targeting GDF15 could be a promising treatment method for gastric cancer progression.


Asunto(s)
Cisplatino , Neoplasias Gástricas , Humanos , Cisplatino/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Regulación hacia Arriba , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Glutatión/metabolismo
2.
PLoS Biol ; 17(10): e3000508, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31593566

RESUMEN

CDGSH iron-sulfur domain-containing protein 2 (Cisd2) is pivotal to mitochondrial integrity and intracellular Ca2+ homeostasis. In the heart of Cisd2 knockout mice, Cisd2 deficiency causes intercalated disc defects and leads to degeneration of the mitochondria and sarcomeres, thereby impairing its electromechanical functioning. Furthermore, Cisd2 deficiency disrupts Ca2+ homeostasis via dysregulation of sarco/endoplasmic reticulum Ca2+-ATPase (Serca2a) activity, resulting in an increased level of basal cytosolic Ca2+ and mitochondrial Ca2+ overload in cardiomyocytes. Most strikingly, in Cisd2 transgenic mice, a persistently high level of Cisd2 is sufficient to delay cardiac aging and attenuate age-related structural defects and functional decline. In addition, it results in a younger cardiac transcriptome pattern during old age. Our findings indicate that Cisd2 plays an essential role in cardiac aging and in the heart's electromechanical functioning. They highlight Cisd2 as a novel drug target when developing therapies to delay cardiac aging and ameliorate age-related cardiac dysfunction.


Asunto(s)
Envejecimiento Prematuro/genética , Envejecimiento/fisiología , Bloqueo Atrioventricular/genética , Proteínas Relacionadas con la Autofagia/genética , Corazón/fisiopatología , Proteínas del Tejido Nervioso/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Envejecimiento Prematuro/metabolismo , Envejecimiento Prematuro/fisiopatología , Animales , Bloqueo Atrioventricular/diagnóstico por imagen , Bloqueo Atrioventricular/metabolismo , Bloqueo Atrioventricular/fisiopatología , Proteínas Relacionadas con la Autofagia/deficiencia , Calcio/metabolismo , Electrocardiografía , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Corazón/fisiología , Homeostasis/fisiología , Masculino , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Proteínas del Tejido Nervioso/deficiencia , Sarcómeros/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Transcriptoma
3.
Int J Med Sci ; 19(5): 893-900, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693737

RESUMEN

Purpose: The alteration of the exosomal proteins in the aqueous humor (AH) is linked to the development of eye diseases. The goal of this study was to examine the exosomal protein profile of patients with age-related macular degeneration (AMD) to better understand their role in the pathogenesis of AMD. Methods: Exosomes were isolated from the AH of 28 AMD and 25 control eyes. The quality, concentration, and size distribution of exosomes were measured using a nanoparticle tracking analysis system (NTA). Total exosomal proteins from each sample were purified and digested with trypsin for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Results: Based on LC-MS/MS analysis, we got 105 exosomal peptides from AMD and control patients. Gene ontology (GO) analysis in the biology process revealed that exosomal proteins of AMD were enriched in the lipoprotein metabolic process. T-test analysis revealed six exosomal proteins in patients with AMD were significantly different from controls. Comparing the exosomal protein profile of AMD patients who were receiving anti-VEGF therapy, we observed the amount of two proteins decreased with the duration of the anti-VEGF treatment time. Conclusions: In this study, we successfully isolated and purified AH exosomes. Our results provide pioneering findings for the exosomal protein profile in AMD development and under therapy. These unique proteins could be the new targets for drug discovery or biological markers for evaluating therapeutic efficacy.


Asunto(s)
Exosomas , Degeneración Macular , Humor Acuoso/metabolismo , Cromatografía Liquida , Exosomas/metabolismo , Humanos , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/genética , Degeneración Macular/metabolismo , Proteómica , Espectrometría de Masas en Tándem
4.
Int J Med Sci ; 18(9): 2023-2029, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33850473

RESUMEN

Objectives: Myopia is the most common refractive vision disorder. In recent years, several studies have suggested that the alteration of the exosomal protein levels in the aqueous humor (AH) is associated with the development of several eye diseases. Therefore, we aimed to explore the exosomal protein profile of the AH from myopia patients. Methods: Exosomes were isolated from the AH. The quality, concentration, and size distribution of exosomes for each patient were measured using nanoparticle tracking analysis system. Then, the exosomal proteins were purified and digested by trypsin for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Results: There was no significant difference observed between the myopia and control when comparing the concentration and size distribution of exosomes in the AH for each sample. Based on LC-MS/MS analysis, myopia patients had higher and more complex exosomal peptide content. We found two proteins that were common in AH exosomes and eight proteins that were highly expressed in the myopia group. Conclusions: Our results provide pioneering findings for the exploration of the exosomal protein profile in myopia development. Further studies may provide significant information for the diagnosis, clinical treatment, and prognosis of myopia.


Asunto(s)
Humor Acuoso/metabolismo , Exosomas/metabolismo , Proteínas del Ojo/análisis , Miopía/patología , Anciano , Anciano de 80 o más Años , Humor Acuoso/citología , Estudios de Casos y Controles , Catarata/complicaciones , Extracción de Catarata , Cromatografía Líquida de Alta Presión , Proteínas del Ojo/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Miopía/complicaciones , Miopía/diagnóstico , Proteómica , Espectrometría de Masas en Tándem
5.
Tohoku J Exp Med ; 249(3): 213-221, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31776299

RESUMEN

Myopia is the most common refractive disorder in Eastern Asia. The development of myopia is associated with the cooperation of various ocular tissues. Exosomes in the aqueous humor (AH) have been implicated to modulate intracellular communications by transferring exosomal miRNAs and proteins between cells. These exosomal miRNAs and proteins are likely involved in the pathogenesis of various eye diseases. In this study, we aimed to explore human exosomal miRNA profiles and their roles in myopia development. AH samples were collected from 16 patients (8 myopia and 8 control) undergoing routine cataract surgeries. Exosomes were isolated from AH of each individual using the ExoQuick solution. The numbers and sizes of exosomes were not significantly different between the myopia and control groups. The individual exosomes of the same group were pooled to purify RNA. Unexpectedly, the myopia group contained 2.78-fold total RNA amount than that in the control group. Thereafter, miRNA profiles were analyzed using the OpenArray system. We thus found 15 myopia-specific miRNAs and four myopia-absent miRNAs. By using bioinformatics analysis, we identified six well-known myopia-associated genes that are potential targets of five myopia-specific miRNAs (has-miR-582-3p, has-miR-17-5p, has-miR-885-3p, has-miR-19b-3p, and has-miR-450b-5p). These genes are cholinergic receptor muscarinic 2 (CHRM2), cyclic nucleotide-gated channel beta 3 (CNGB3), vascular endothelial growth factor A (VEGFA), adenosine A2a receptor (ADORA2A), insulin-like growth factor 1 (IGF1), and lumican (LUM). Moreover, CHRM2 may be a target of myopia-absent miRNA (has-miR-378a-5p). In conclusion, we show the expression profiles of AH-derived exosomal miRNAs and their potential roles in myopia development.


Asunto(s)
Humor Acuoso/metabolismo , Exosomas/genética , Perfilación de la Expresión Génica , MicroARNs/genética , Miopía/genética , Anciano , Secuencia de Bases , Estudios de Casos y Controles , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad
6.
Int J Mol Sci ; 19(11)2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30380689

RESUMEN

The integrated stress response (ISR) pathway is essential for adaption of various stresses and is related to mitochondrion-to-nucleus communication. Mitochondrial dysfunction-induced reactive oxygen species (ROS) was demonstrated to activate general control nonderepressible 2 (GCN2)⁻eukaryotic translation initiation factor 2α (eIF2α)⁻activating transcription factor-4 (ATF4) pathway-mediated cisplatin resistance of human gastric cancer cells. However, whether or how ISR activation per se could enhance chemoresistance remains unclear. In this study, we used eIF2α phosphatase inhibitor salubrinal to activate the ISR pathway and found that salubrinal reduced susceptibility to cisplatin. Moreover, salubrinal up-regulated ATF4-modulated gene expression, and knockdown of ATF4 attenuated salubrinal-induced drug resistance, suggesting that ATF4-modulated genes contribute to the process. The ATF4-modulated genes, xCT (a cystine/glutamate anti-transporter), tribbles-related protein 3 (TRB3), heme oxygenase 1 (HO-1), and phosphoenolpyruvate carboxykinase 2 (PCK2), were associated with a poorer prognosis for gastric cancer patients. By silencing individual genes, we found that xCT, but not TRB3, HO-1, or PCK2, is responsible for salubrinal-induced cisplatin resistance. In addition, salubrinal increased intracellular glutathione (GSH) and decreased cisplatin-induced lipid peroxidation. Salubrinal-induced cisplatin resistance was attenuated by inhibition of xCT and GSH biosynthesis. In conclusion, our results suggest that ISR activation by salubrinal up-regulates ATF4-modulated gene expression, increases GSH synthesis, and decreases cisplatin-induced oxidative damage, which contribute to cisplatin resistance in gastric cancer cells.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/genética , Antineoplásicos/farmacología , Cinamatos/farmacología , Cisplatino/farmacología , Resistencia a Antineoplásicos , Glutatión/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Tiourea/análogos & derivados , Factor de Transcripción Activador 4/metabolismo , Línea Celular Tumoral , Factor 2 Eucariótico de Iniciación/antagonistas & inhibidores , Factor 2 Eucariótico de Iniciación/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Tiourea/farmacología , Regulación hacia Arriba/efectos de los fármacos
7.
Int J Med Sci ; 13(9): 717-23, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27648002

RESUMEN

OBJECTIVES: Diabetic retinopathy (DR) is a common microvascular complication in both type I and type II diabetes. Several previous reports indicated the serum centration of some secretary factors were highly associated with DR. Therefore, we hypothesis regulatory SNPs (rSNPs) genotype in secretary factors may alter these gene expression and lead to DR. METHODS: At first, pyrosequencing were applying to screen the SNPs which present allele frequency different in DR and DNR. Then individual genotyping was processed by Taqman assays in Taiwanese DR and DNR patients. To evaluate the effect of SNP allele on transcriptional activity, we measured promoter activity using luciferase reporter constructs. RESULTS: We found the frequencies of the CC, CG, and GG genotype of the rs2010963 polymorphism were 15.09%, 47.14%, and 37.74% in DR and 12.90%, 19.35%, and 67.74% in DNR, respectively (p = 0.0205). The prevalence of DR was higher (p = 0.00793) in patients with the CC or CG genotype (62.26% and 32.26% for DR and DNR, respectively) compared with the patients with the GG genotype. To evaluate the effect of rs2010963-C allele on transcriptional activity, we measured promoter activity using luciferase reporter constructs. The rs2010963-C reporter showed 1.6 to 2-fold higher luciferase activity than rs2010963-G in 3 cell lines. CONCLUSION: Our data proposed rs2010963-C altered the expression level of VEGFA in different tissues. We suggested small increase but long term exposure to VEGFA may lead to DR finally.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Retinopatía Diabética/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factor A de Crecimiento Endotelial Vascular/genética , Adulto , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Retinopatía Diabética/patología , Femenino , Regulación de la Expresión Génica , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Factor A de Crecimiento Endotelial Vascular/biosíntesis
8.
Int J Colorectal Dis ; 30(12): 1617-26, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26206347

RESUMEN

PURPOSE: Colorectal polyps are generally believed to be the precursors of colorectal cancers (CRC); however, the proportion and speed of progression differed widely in different subsets of polyps. Using microarray-based comparative genomic hybridization (aCGH) platform and CD133 immunostaining, we characterized colon polyps according to their association with CRC that developed in the same individual. PATIENTS AND METHODS: aCGH was performed to unveil genomic changes in 18 cancer-synchronous polyps (CSP), and 9 cancer-preceding polyps (CPP), together with their corresponding cancers and 16 cases of incidental polyps (IP), were examined for comparison. aCGH profiles were analyzed to determine the clonal relationship (CR) between the paired adenoma and carcinoma. CD133 expressions in each subset of polyps were quantified by immunohistochemistry (IHC) staining. RESULTS: Progressive genomic changes were observed from IP, CSP/CPP to CRC; they encompass an entire chromosomal region in IP and sub-chromosomal region in CSP/CPP and CRC. CR analyses demonstrated that 50 % of CSP and 67 % of CPP were clonally related to the concurrent or later developed carcinomas, respectively. The CD133 expression levels were significantly higher in CSP/CPP than those in IP (P < 0.0001) and even higher in CSP/CPP that were clonally related to their corresponding carcinomas than CSP/CPP that were unrelated (P < 0.05). CONCLUSIONS: There were more genomic changes in CSP/CPP than IP; more than half of the CSP/CPP were clonally related to the corresponding carcinomas. Genomic changes at sub-chromosomal regions and/or high CD133 expression were associated with CSP/CPP and highlighted their carcinogenic potential.


Asunto(s)
Antígenos CD/genética , Pólipos del Colon/genética , Glicoproteínas/genética , Péptidos/genética , Antígeno AC133 , Adenoma/genética , Anciano , Anciano de 80 o más Años , Antígenos CD/metabolismo , Carcinoma/genética , Pólipos del Colon/metabolismo , Hibridación Genómica Comparativa , Femenino , Expresión Génica , Glicoproteínas/metabolismo , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Péptidos/metabolismo , Estudios Prospectivos , Factores de Riesgo
9.
Hepatology ; 58(1): 239-50, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23460382

RESUMEN

UNLABELLED: Eukaryotic translation initiation factor 3 subunit I (eIF3I) with transforming capability is often overexpressed in human hepatocellular carcinoma (HCC) but its oncogenic mechanisms remain unknown. We demonstrate that eIF3I is overexpressed in various cancers along with activated Akt1 phosphorylation and kinase activity in an eIF3I dose-dependent manner. A novel eIF3I and Akt1 protein interaction was identified in HCC cell lines and tissues and was required for eIF3I-mediated activation of Akt1 signaling. Expression of either antisense eIF3I or dominant negative Akt1 mutant suppressed eIF3I-mediated Akt1 oncogenic signaling and various other tumorigenic effects. Oncogenic domain mapping of the eIF3I and Akt1 interaction suggested that the C-terminal eIF3I interacted with the Akt1 kinase domain and conferred the majority of oncogenic functions. In addition, eIF3I interaction with Akt1 prevented PP2A dephosphorylation of Akt1 and resulted in constitutively active Akt1 oncogenic signaling. Importantly, concordant expression of endogenous eIF3I and phospho-Akt1 was detected in HCC cell lines and tissues. Treatment of eIF3I overexpressing HCC cells with the Akt1 specific inhibitor API-2 suppressed eIF3I-mediated tumorigenesis in vitro and in vivo. CONCLUSION: We describe a constitutive Akt1 oncogenic mechanism resulting from interaction of overexpressed eIF3I with Akt1 that prevents PP2A-mediated dephosphorylation. Overexpression of eIF3I in HCC is oncogenic and is a surrogate marker and therapeutic target for treatment with Akt1 inhibitors.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Factor 3 de Iniciación Eucariótica/biosíntesis , Factor 3 de Iniciación Eucariótica/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores
10.
Nucleic Acids Res ; 40(Database issue): D972-7, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22139933

RESUMEN

Lung cancer is the most common cause of cancer-related mortality with more than 1.4 million deaths per year worldwide. To search for significant somatic alterations in lung cancer, we analyzed, integrated and manually curated various data sets and literatures to present an integrated genomic database of non-small cell lung cancer (IGDB.NSCLC, http://igdb.nsclc.ibms.sinica.edu.tw). We collected data sets derived from hundreds of human NSCLC (lung adenocarcinomas and/or squamous cell carcinomas) to illustrate genomic alterations [chromosomal regions with copy number alterations (CNAs), gain/loss and loss of heterozygosity], aberrant expressed genes and microRNAs, somatic mutations and experimental evidence and clinical information of alterations retrieved from literatures. IGDB.NSCLC provides user friendly interfaces and searching functions to display multiple layers of evidence especially emphasizing on concordant alterations of CNAs with co-localized altered gene expression, aberrant microRNAs expression, somatic mutations or genes with associated clinicopathological features. These significant concordant alterations in NSCLC are graphically or tabularly presented to facilitate and prioritize as the putative cancer targets for pathological and mechanistic studies of lung tumorigenesis and for developing new strategies in clinical interventions.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Bases de Datos Genéticas , Neoplasias Pulmonares/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Perfilación de la Expresión Génica , Genes Relacionados con las Neoplasias , Variación Genética , Genómica , Humanos , Neoplasias Pulmonares/metabolismo , MicroARNs/metabolismo , Mutación , Integración de Sistemas
11.
FEBS Open Bio ; 14(4): 687-694, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403291

RESUMEN

FNDC3B (fibronectin type III domain containing 3B) is highly expressed in hepatocellular carcinoma (HCC) and other cancer types, and fusion genes involving FNDC3B have been identified in HCC and leukemia. Growing evidence suggests the significance of FNDC3B in tumorigenesis, particularly in cell migration and tumor metastasis. However, its regulatory mechanisms remain elusive. In this study, we employed bioinformatic, gene regulation, and protein-DNA interaction screening to investigate the transcription factors (TFs) involved in regulating FNDC3B. Initially, 338 candidate TFs were selected based on previous chromatin immunoprecipitation (ChIP)-seq experiments available in public domain databases. Through TF knockdown screening and ChIP coupled with Droplet Digital PCR assays, we identified that E2F1 (E2F transcription factor 1) is crucial for the activation of FNDC3B. Overexpression or knockdown of E2F1 significantly impacts the expression of FNDC3B. In conclusion, our study elucidated the mechanistic link between FNDC3B and E2F1. These findings contribute to a better understanding of FNDC3B in tumorigenesis and provide insights into potential therapeutic targets for cancer treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/metabolismo , Inmunoprecipitación de Cromatina , Transformación Celular Neoplásica , Movimiento Celular/genética , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Fibronectinas/metabolismo
12.
Nucleic Acids Res ; 39(Database issue): D520-4, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21051335

RESUMEN

Cell line identification is emerging as an essential method for every cell line user in research community to avoid using misidentified cell lines for experiments and publications. IGRhCellID (http://igrcid.ibms.sinica.edu.tw) is designed to integrate eight cell identification methods including seven methods (STR profile, gender, immunotypes, karyotype, isoenzyme profile, TP53 mutation and mutations of cancer genes) available in various public databases and our method of profiling genome alterations of human cell lines. With data validation of 11 small deleted genes in human cancer cell lines, profiles of genomic alterations further allow users to search for human cell lines with deleted gene to serve as indigenous knock-out cell model (such as SMAD4 in gene view), with amplified gene to be the cell models for testing therapeutic efficacy (such as ERBB2 in gene view) and with overlapped aberrant chromosomal loci for revealing common cancer genes (such as 9p21.3 homozygous deletion with co-deleted CDKN2A, CDKN2B and MTAP in chromosome view). IGRhCellID provides not only available methods for cell identification to help eradicating concerns of using misidentified cells but also designated genetic features of human cell lines for experiments.


Asunto(s)
Línea Celular , Bases de Datos Factuales , Genómica , Línea Celular Tumoral , Genes , Sitios Genéticos , Humanos
13.
J Ethnopharmacol ; 317: 116834, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37355084

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Kuan-Sin-Yin (KSY) is a traditional Chinese medical decoction, designed based on the classic Si-Jun-Zi-Tang decoction and used clinically to improve the synergic effects of energy promotion, liver function and cancer related symptom and quality of life. However, the anti-hepatocellular carcinoma (HCC) function of KSY is unclear. AIM OF THE STUDY: This study aimed to investigate the anti-mobility activity of KSY on HCC cells and elucidate its molecular mechanism. MATERIALS AND METHODS: Two malignancy hepatocellular carcinoma cells, Mahlavu and SK-Hep-1, were used for the test of cell proliferation via alarm blue assay. The wound healing and Transwell assays were used to determine the anti-mobility activity of KSY in HCC cells. Cell morphology was analyzed via confocal microscopy. The genomic profile of KSY-treated HCC cells was analyzed by microarray. The potential signaling pathways and bio-functions of KSY-mediated genes were analyzed by ingenuity pathway analysis (IPA). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the messenger RNA (mRNA) level of indicated gene. RESULTS: KSY did not affect cell viability of HCC cells but significantly inhibited cell migration and invasion in those HCC Mahlavu and SK-Hep-1 cells. In parallel, KSY induced changes in morphology of HCC cells via re-modulating actin cytoskeleton. KSY upregulated 1270 genes but reduced 1534 genes in Mahlavu cells. KSY regulated various gene networks which controlled cell migration, invasion and movement. Specifically, KSY reduced expression of chemokine (C-C motif) ligand 2 (CCL2), which is correlated to cell mobility, and concomitantly downregulated mRNA levels of phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) and CEA cell adhesion molecule 1 (CEACAM1). CONCLUSION: These findings indicated that regulation of CCL2-mediated PIK3R3 and CEACAM1 may be involved in KSY inhibited cell mobility. Moreover, KSY may be a potential a Chinese decoction for reducing cell mobility.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Medicina Tradicional China , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Regulación hacia Abajo , Calidad de Vida , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Quimiocina CCL2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo
14.
Sci Rep ; 12(1): 14576, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36028747

RESUMEN

PERM1 (PGC-1/ERR-induced regulator in muscle 1) is a muscle-specific protein induced by PGC-1 and ERRs. Previous studies have shown that PERM1 promotes mitochondrial biogenesis and metabolism in cardiomyocytes in vitro. However, the role of endogenous PERM1 in the heart remains to be investigated with loss-of-function studies in vivo. We report the generation and characterization of systemic Perm1 knockout (KO) mice. The baseline cardiac phenotype of the homozygous Perm1 KO mice appeared normal. However, RNA-sequencing and unbiased pathway analyses showed that homozygous downregulation of PERM1 leads to downregulation of genes involved in fatty acid and carbohydrate metabolism in the heart. Transcription factor binding site analyses suggested that PPARα and PGC-1α are involved in changes in the gene expression profile. Chromatin immunoprecipitation assays showed that PERM1 interacts with the proximal regions of PPAR response elements (PPREs) in endogenous promoters of genes involved in fatty acid oxidation. Co-immunoprecipitation and reporter gene assays showed that PERM1 promoted transcription via the PPRE, partly in a PPARα and PGC-1α dependent manner. These results suggest that endogenous PERM1 is involved in the transcription of genes involved in fatty acid oxidation through physical interaction with PPARα and PGC-1α in the heart in vivo.


Asunto(s)
Metabolismo de los Lípidos , Proteínas Musculares , PPAR alfa , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Animales , Ácidos Grasos , Ratones , Ratones Noqueados , Proteínas Musculares/metabolismo , Miocitos Cardíacos , PPAR alfa/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
15.
Hepatology ; 52(5): 1690-701, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20799341

RESUMEN

UNLABELLED: Recurrent cancer genome aberrations are indicators of residing crucial cancer genes. Although recent advances in genomic technologies have led to a global view of cancer genome aberrations, the identification of target genes and biomarkers from the aberrant loci remains difficult. To facilitate searches of cancer genes in human hepatocellular carcinoma (HCC), we established a comprehensive protocol to analyze copy number alterations (CNAs) in cancer genomes using high-density single nucleotide polymorphism arrays with unpaired reference genomes. We identified common HCC genes by overlapping the shared aberrant loci in multiple cell lines with functional validation and clinical implications. A total of 653 amplicons and 57 homozygous deletions (HDs) were revealed in 23 cell lines. To search for novel HCC genes, we overlapped aberrant loci to uncover 6 HDs and 126 amplicons shared by at least two cell lines. We selected two novel genes, fibronectin type III domain containing 3B (FNDC3B) at the 3q26.3 overlapped amplicon and solute carrier family 29 member 2 (SLC29A2) at the 11q13.2 overlapped amplicon, to investigate their aberrations in HCC tumorigenesis. Aberrant up-regulation of FNDC3B and SLC29A2 occurred in multiple HCC data sets. Knockdown of these genes in amplified cells decreased cell proliferation, anchorage-independent growth, and tumor formation in xenograft models. Importantly, up-regulation of SLC29A2 in HCC tissues was significantly associated with advanced stages (P = 0.0031), vascular invasion (P = 0.0353), and poor patient survival (P = 0.0325). Overexpression of FNDC3B or SLC29A2 in unamplified HCC cells promoted cell proliferation through activation of the signal transducer and activator of transcription 3 signaling pathway. CONCLUSION: A standardized genome-wide CNA analysis protocol using data from user-generated or public domains normalized with unpaired reference genomes has been established to facilitate high-throughput detection of cancer genes as significant target genes and biomarkers for cancer diagnosis and therapy.


Asunto(s)
Carcinoma Hepatocelular/genética , Genes Relacionados con las Neoplasias/genética , Genoma , Neoplasias Hepáticas/genética , Mutación , Polimorfismo de Nucleótido Simple , Animales , Carcinoma Hepatocelular/patología , División Celular , Línea Celular Tumoral , Aberraciones Cromosómicas , Ensayo de Unidades Formadoras de Colonias , Técnicas de Silenciamiento del Gen , Genotipo , Humanos , Inmunohistoquímica , Neoplasias Hepáticas/patología , Ratones , Ratones Desnudos , Recurrencia Local de Neoplasia/genética , Interferencia de ARN
16.
Artículo en Inglés | MEDLINE | ID: mdl-34200176

RESUMEN

Prenatal exposure to bisphenol A (BPA) may increase the risk of abnormal birth outcomes, and DNA methylation might mediate these adverse effects. This study aimed to investigate the effects of maternal BPA exposure on maternal and fetal DNA methylation levels and explore whether epigenetic changes are related to the associations between BPA and low birth weight. We collected urine and blood samples originating from 162 mother-infant pairs in a Taiwanese cohort study. We measured DNA methylation using the Illumina Infinium HumanMethylation 450 BeadChip in 34 maternal blood samples with high and low BPA levels based on the 75th percentile level (9.5 µg/g creatinine). Eighty-seven CpGs with the most differentially methylated probes possibly interacting with BPA exposure or birth weight were selected using two multiple regression models. Ingenuity pathway analysis (IPA) was utilized to narrow down 18 candidate CpGs related to disease categories, including developmental disorders, skeletal and muscular disorders, skeletal and muscular system development, metabolic diseases, and lipid metabolism. We then validated these genes by pyrosequencing, and 8 CpGs met the primer design score requirements in 82 cord blood samples. The associations among low birth weight, BPA exposure, and DNA methylation were analyzed. Exposure to BPA was associated with low birth weight. Analysis of the epigenome-wide findings did not show significant associations between BPA and DNA methylation in cord blood of the 8 CpGs. However, the adjusted odds ratio for the dehydrogenase/reductase member 9 (DHRS9) gene, at the 2nd CG site, in the hypermethylated group was significantly associated with low birth weight. These results support a role of BPA, and possibly DHRS9 methylation, in fetal growth. However, additional studies with larger sample sizes are warranted.


Asunto(s)
Metilación de ADN , Efectos Tardíos de la Exposición Prenatal , Compuestos de Bencidrilo/toxicidad , Peso al Nacer , Estudios de Cohortes , Femenino , Humanos , Recién Nacido de Bajo Peso , Recién Nacido , Exposición Materna/efectos adversos , Fenoles , Proyectos Piloto , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Taiwán/epidemiología
17.
Sci Total Environ ; 773: 145604, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33592467

RESUMEN

This study will help to clarify the relationship between organophosphate pesticides (OPs) and attention deficit/hyperactivity disorder (ADHD) related to oxidative stress and paraoxonases (PON) polymorphisms to further characterize the gene-environment interaction. This case-control study enrolled 85 children with ADHD and 96 control subjects. Urinary OP levels were analyzed by using gas chromatography-mass spectrometry (GC-MS). Oxidative stress biomarkers, such as 8-hydroxy-2-deoxyguanosine (8-OHdG), 8-nitroguanine (8-NO2-Gua), 8-iso-prostaglandin F2α (8-iso-PGF2α), and 4-hydroxy-2-nonenoic acid-mercapturic acid (HNE-MA), were analyzed by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The relative excess risk due to interaction (RERI), attributable proportion due to interaction (AP), and synergy index (S) were calculated to evaluate the additive interactions between OP exposure and PON genetic polymorphism on ADHD. A causal mediation analysis was conducted to clarify the mediation effects of oxidative stress due to OP exposure on ADHD. Children with ADHD had significantly higher DMP (238.95 nmol/g cre. vs. 164.83 nmol/g cre., p value = 0.01) and HNE-MA (30.75 µg/g cre. vs. 18.41 µg/g cre., p value<0.01) concentrations than control children. Children who carried the PON1 GG genotype (rs705379) had low urinary DMP levels, and the level increased with increasing numbers of allele variants. The risk for developing ADHD reached 2.06-fold (OR = 2.06, 95% CI:1.23-3.44) and 1.43-fold (OR = 1.45, 95% CI:1.04-2.03) when the DMP and HNE-MA levels increased by 1 natural log of the concentration, respectively. The estimated AP value was 0.66 (95% CI: 0.17-1.15), indicating that 66% of ADHD cases in DMP-exposed children with the PON1 CT/TT (rs705381) genotype were due to gene-environment interactions. No significant mediation of HNE-MA was observed between DMP exposure and the risk of ADHD. The estimated proportion mediated was only 7.0% (95% CI: -0.08-0.46). This research suggests the role of OP exposure in the occurrence of ADHD after adjusting for covariates.


Asunto(s)
Arildialquilfosfatasa , Trastorno por Déficit de Atención con Hiperactividad , Arildialquilfosfatasa/genética , Trastorno por Déficit de Atención con Hiperactividad/inducido químicamente , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/genética , Estudios de Casos y Controles , Niño , Cromatografía Liquida , Humanos , Organofosfatos/efectos adversos , Estrés Oxidativo , Polimorfismo Genético , Espectrometría de Masas en Tándem
18.
Sci Total Environ ; 737: 139833, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32526583

RESUMEN

The present study assessed the association between phthalate exposure and mitochondrial DNA (mtDNA) polymerase γ (POLG) methylation along with the potential effect on the characteristics of body fat in children. A total of 152 children were enrolled. The urinary concentrations of phthalate metabolites were measured using ultraperformance liquid chromatography-tandem mass spectrometry. Genomic DNA was extracted from the buffy coat, and bisulfite-treated DNA was subjected to a pyrosequencing assay. In total, 17 CpG sites in the exon 2 region of POLG were included in the analysis. A multivariable regression model was applied to determine whether characteristics of body fat were associated with phthalate exposure and methylation of POLG. After adjustment for covariates, male children with a ten-fold increase in mono-methyl phthalate (MMP) or mono-benzyl phthalate (MBzP) concentrations had significantly higher measurements for total body fat (MMP: ß = 6.47%; MBzP: ß = 3.54%), and trunk fat (MMP: ß = 6.67%; MBzP: ß = 3.90%). Male children who had hypermethylation at the 2nd CpG site in exon 2 of POLG also had high measurements for BMI (ß = 1.66 kg/m2), waist (ß = 4.49 cm) and hip (ß = 4.81 cm) circumference, total body fat (ß = 5.48%), and trunk fat (ß = 6.21%). A dose-response relationship existed between methylation at the 2nd CpG site in exon 2 of POLG and characteristics of body fat (p for trend<0.01). This study suggested that male children who are exposed to phthalic acid esters have high body weight, BMI, and body and trunk fat percentages. Methylation of the exon 2 region of POLG is a possible mechanism behind the causal effect of endocrine-disrupting substances.


Asunto(s)
Contaminantes Ambientales , Ácidos Ftálicos , Tejido Adiposo , Niño , Cromatografía Liquida , Metilación de ADN , Exposición a Riesgos Ambientales/análisis , Femenino , Humanos , Masculino
19.
Cancers (Basel) ; 12(11)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233689

RESUMEN

BACKGROUND: Gastric cancer is a common health issue. Deregulated cellular energetics is regarded as a cancer hallmark and mitochondrial dysfunction might contribute to cancer progression. Tid1, a mitochondrial co-chaperone, may play a role as a tumor suppressor in various cancers, but the role of Tid1 in gastric cancers remains under investigated. METHODS: The clinical TCGA online database and immunohistochemical staining for Tid1 expression in tumor samples of gastric cancer patients were analyzed. Tid1 knockdown by siRNA was applied to investigate the role of Tid1 in gastric cancer cells. RESULTS: Low Tid1 protein-expressing gastric cancer patients had a poorer prognosis and higher lymph node invasion than high Tid1-expressing patients. Knockdown of Tid1 did not increase cell proliferation, colony/tumor sphere formation, or chemotherapy resistance in gastric cancer cells. However, Tid1 knockdown increased cell migration and invasion. Moreover, Tid1 knockdown reduced the mtDNA copy number of gastric cancer cells. In addition, the Tid1-galectin-7-MMP-9 axis might be associated with Tid1 knockdown-induced cell migration and invasion of gastric cancer cells. CONCLUSIONS: Tid1 is required for mtDNA maintenance and regulates migration and invasion of gastric cancer cells. Tid1 deletion may be a poor prognostic factor in gastric cancers and could be further investigated for development of gastric cancer treatments.

20.
Cancers (Basel) ; 12(5)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349352

RESUMEN

The 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) is a potential regulatory node in the mevalonate pathway that is frequently dysregulated in tumors. This study found that HMGCS1 expression is upregulated in stomach adenocarcinoma samples of patients and tumorspheres of gastric cancer cells. HMGCS1 elevates the expression levels of the pluripotency genes Oct4 and SOX-2 and contributes to tumorsphere formation ability in gastric cancer cells. HMGCS1 also promotes in vitro cell growth and progression and the in vivo tumor growth and lung metastasis of gastric cancer cells. After blocking the mevalonate pathway by statin and dipyridamole, HMGCS1 exerts nonmetabolic functions in enhancing gastric cancer progression. Furthermore, the level and nuclear translocation of HMGCS1 in gastric cancer cells are induced by serum deprivation. HMGCS1 binds to and activates Oct4 and SOX-2 promoters. HMGCS1 also enhances the integrated stress response (ISR) and interacts with the endoplasmic reticulum (ER) stress transducer protein kinase RNA-like endoplasmic reticulum kinase (PERK). Our results reveal that HMGCS1 contributes to gastric cancer progression in both metabolic and nonmetabolic manners.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA