Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 595(7868): 600-605, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34262173

RESUMEN

G-protein-coupled receptor (GPCR) kinases (GRKs) selectively phosphorylate activated GPCRs, thereby priming them for desensitization1. Although it is unclear how GRKs recognize these receptors2-4, a conserved region at the GRK N terminus is essential for this process5-8. Here we report a series of cryo-electron microscopy single-particle reconstructions of light-activated rhodopsin (Rho*) bound to rhodopsin kinase (GRK1), wherein the N terminus of GRK1 forms a helix that docks into the open cytoplasmic cleft of Rho*. The helix also packs against the GRK1 kinase domain and stabilizes it in an active configuration. The complex is further stabilized by electrostatic interactions between basic residues that are conserved in most GPCRs and acidic residues that are conserved in GRKs. We did not observe any density for the regulator of G-protein signalling homology domain of GRK1 or the C terminus of rhodopsin. Crosslinking with mass spectrometry analysis confirmed these results and revealed dynamic behaviour in receptor-bound GRK1 that would allow the phosphorylation of multiple sites in the receptor tail. We have identified GRK1 residues whose mutation augments kinase activity and crosslinking with Rho*, as well as residues that are involved in activation by acidic phospholipids. From these data, we present a general model for how a small family of protein kinases can recognize and be activated by hundreds of different GPCRs.


Asunto(s)
Quinasa 1 del Receptor Acoplado a Proteína-G/química , Rodopsina/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Bovinos , Microscopía por Crioelectrón , Estructura Terciaria de Proteína , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 119(30): e2114119119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35867819

RESUMEN

Alphaviruses can cause severe human arthritis and encephalitis. During virus infection, structural changes of viral glycoproteins in the acidified endosome trigger virus-host membrane fusion for delivery of the capsid core and RNA genome into the cytosol to initiate virus translation and replication. However, mechanisms by which E1 and E2 glycoproteins rearrange in this process remain unknown. Here, we investigate prefusion cryoelectron microscopy (cryo-EM) structures of eastern equine encephalitis virus (EEEV) under acidic conditions. With models fitted into the low-pH cryo-EM maps, we suggest that E2 dissociates from E1, accompanied by a rotation (∼60°) of the E2-B domain (E2-B) to expose E1 fusion loops. Cryo-EM reconstructions of EEEV bound to a protective antibody at acidic and neutral pH suggest that stabilization of E2-B prevents dissociation of E2 from E1. These findings reveal conformational changes of the glycoprotein spikes in the acidified host endosome. Stabilization of E2-B may provide a strategy for antiviral agent development.


Asunto(s)
Virus de la Encefalitis Equina del Este , Proteínas del Envoltorio Viral , Antivirales/química , Antivirales/farmacología , Microscopía por Crioelectrón , Virus de la Encefalitis Equina del Este/química , Concentración de Iones de Hidrógeno , Conformación Proteica , Estabilidad Proteica/efectos de los fármacos , Proteínas del Envoltorio Viral/química
3.
J Biol Chem ; 298(8): 102209, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35779635

RESUMEN

Trio is a large and highly conserved metazoan signaling scaffold that contains two Dbl family guanine nucleotide exchange factor (GEF) modules, TrioN and TrioC, selective for Rac and RhoA GTPases, respectively. The GEF activities of TrioN and TrioC are implicated in several cancers, especially uveal melanoma. However, little is known about how these modules operate in the context of larger fragments of Trio. Here we show via negative stain electron microscopy that the N-terminal region of Trio is extended and could thus serve as a rigid spacer between the N-terminal putative lipid-binding domain and TrioN, whereas the C-terminal half of Trio seems globular. We found that regions C-terminal to TrioN enhance its Rac1 GEF activity and thus could play a regulatory role. We went on to characterize a minimal, well-behaved Trio fragment with enhanced activity, Trio1284-1959, in complex with Rac1 using cryo-electron microscopy and hydrogen-deuterium exchange mass spectrometry and found that the region conferring enhanced activity is disordered. Deletion of two different strongly conserved motifs in this region eliminated this enhancement, suggesting that they form transient intramolecular interactions that promote GEF activity. Because Dbl family RhoGEF modules have been challenging to directly target with small molecules, characterization of accessory Trio domains such as these may provide alternate routes for the development of therapeutics that inhibit Trio activity in human cancer.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/química , Proteínas Serina-Treonina Quinasas/química , Factores de Intercambio de Guanina Nucleótido Rho/química , Animales , Microscopía por Crioelectrón , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal , Neoplasias de la Úvea , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(16): 8890-8899, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32245806

RESUMEN

Eastern equine encephalitis virus (EEEV), a mosquito-borne icosahedral alphavirus found mainly in North America, causes human and equine neurotropic infections. EEEV neurovirulence is influenced by the interaction of the viral envelope protein E2 with heparan sulfate (HS) proteoglycans from the host's plasma membrane during virus entry. Here, we present a 5.8-Å cryoelectron microscopy (cryo-EM) structure of EEEV complexed with the HS analog heparin. "Peripheral" HS binding sites were found to be associated with the base of each of the E2 glycoproteins that form the 60 quasi-threefold spikes (q3) and the 20 sites associated with the icosahedral threefold axes (i3). In addition, there is one HS site at the vertex of each q3 and i3 spike (the "axial" sites). Both the axial and peripheral sites are surrounded by basic residues, suggesting an electrostatic mechanism for HS binding. These residues are highly conserved among EEEV strains, and therefore a change in these residues might be linked to EEEV neurovirulence.


Asunto(s)
Diseño de Fármacos , Virus de la Encefalitis Equina del Este/ultraestructura , Encefalomielitis Equina/tratamiento farmacológico , Proteoglicanos de Heparán Sulfato/metabolismo , Heparina/ultraestructura , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Sitios de Unión/efectos de los fármacos , Línea Celular , Sulfatos de Condroitina/farmacología , Microscopía por Crioelectrón , Virus de la Encefalitis Equina del Este/metabolismo , Encefalomielitis Equina/virología , Proteoglicanos de Heparán Sulfato/análogos & derivados , Heparina/metabolismo , Humanos , Mesocricetus , Estructura Molecular , Relación Estructura-Actividad , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/ultraestructura , Acoplamiento Viral/efectos de los fármacos
5.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077452

RESUMEN

Metabolic associated fatty liver disease (MAFLD) is one of the most common causes of chronic liver disease worldwide. To date, there is no FDA-approved treatment, so there is an urgent need to determine its pathophysiology and underlying molecular mechanisms. Autophagy is a lysosomal degradation pathway that removes damaged organelles and misfolded proteins after cell injury through endoplasmic reticulum stress or starvation, which inhibits apoptosis and promotes cell survival. Recent studies have shown that autophagy plays an important role in removing lipid droplets from hepatocytes. Autophagy has also been reported to inhibit the production of pro-inflammatory cytokines and provide energy for the hepatic stellate cells activation during liver fibrosis. Thyroid hormone, irisin, melatonin, hydrogen sulfide, sulforaphane, DA-1241, vacuole membrane protein 1, nuclear factor erythroid 2-related factor 2, sodium-glucose co-transporter type-2 inhibitors, immunity-related GTPase M, and autophagy-related gene 7 have been reported to ameliorate MAFLD via autophagic induction. Lipid receptor CD36, SARS-CoV-2 Spike protein and leucine aminopeptidase 3 play a negative role in the autophagic function. This review summarizes recent advances in the role of autophagy in MAFLD. Autophagy modulates major pathological changes, including hepatic lipid metabolism, inflammation, and fibrosis, suggesting the potential of modulating autophagy for the treatment of MAFLD.


Asunto(s)
Autofagia , Hepatopatías , Enfermedad del Hígado Graso no Alcohólico , Humanos , Hígado/metabolismo , Hepatopatías/metabolismo , Hepatopatías/fisiopatología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/fisiopatología
6.
Int J Med Sci ; 17(17): 2622-2634, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33162790

RESUMEN

Background: Hypoxia-inducible factor-1α (HIF-1α), heat shock protein-72 (HSP-72), hemeoxygenase-1 (HO-1), and matrix metalloproteinase-9 (MMP-9) have been identified as potential therapeutic targets in the brain for cerebral ischemia. To elucidate their underlying mechanisms, we first aimed to ascertain whether these proteins participate in the pathogenesis of heat-induced ischemic damage to the hypothalamus of rats. Second, we investigated whether hypobaric hypoxia preconditioning (HHP) attenuates heat-induced hypothalamic ischemic/hypoxic injury by modulating these proteins in situ. Methods: Anesthetized rats treated with or without HHP were subjected to heat stress. Hypothalamic ischemic/hypoxic damage was evaluated by measuring hypothalamic levels of cerebral blood flow (CBF), partial oxygen pressure (PO2), and hypothalamic temperature via an implanted probe. Hypothalamic apoptotic neurons were counted by measuring the number of NeuN/caspase-3/DAPI triple-stained cells. Hypothalamic protein expression of HIF-1α, HSP-72, HO-1, and MMP-9 was determined biochemically. Results: Before the start of the thermal experiments, rats were subjected to 5 hours of HHP (0.66 ATA or 18.3% O2) daily for 5 consecutive days per week for 2 weeks, which led to significant loss of body weight, reduced brown adipose tissue (BAT) wet weight and decreased body temperature. The animals were then subjected to thermal studies. Twenty minutes after heat stress, heat-exposed rats not treated with HHP displayed significantly higher core and hypothalamic temperatures, hypothalamic MMP-9 levels, and numbers of hypothalamic apoptotic neurons but significantly lower mean blood pressure, hypothalamic blood flow, and PO2 values than control rats not exposed to heat. In heat-exposed rats, HHP significantly increased the hypothalamic levels of HIF-1α, HSP-72, and HO-1 but significantly alleviated body and hypothalamic hyperthermia, hypotension, hypothalamic ischemia, hypoxia, neuronal apoptosis and degeneration. Conclusions: HHP may protect against hypothalamic ischemic/hypoxic injury and overexpression of MMP-9 by upregulating the hypothalamic expression of HIF-1α, HSP-72, and HO-1 in rats subjected to heatstroke.


Asunto(s)
Isquemia Encefálica/terapia , Golpe de Calor/terapia , Hipotálamo/patología , Hipoxia/fisiopatología , Metaloproteinasa 9 de la Matriz/metabolismo , Animales , Apoptosis , Isquemia Encefálica/etiología , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Modelos Animales de Enfermedad , Golpe de Calor/complicaciones , Golpe de Calor/patología , Golpe de Calor/fisiopatología , Humanos , Hipotálamo/citología , Hipotálamo/fisiopatología , Masculino , Neuronas/patología , Ratas
7.
Genomics ; 111(1): 17-23, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-27453286

RESUMEN

To develop accurate prognostic models is one of the biggest challenges in "omics"-based cancer research. Here, we propose a novel computational method for identifying dysregulated gene subnetworks as biomarkers to predict cancer recurrence. Applying our method to the DNA methylome of endometrial cancer patients, we identified a subnetwork consisting of differentially methylated (DM) genes, and non-differentially methylated genes, termed Epigenetic Connectors (EC), that are topologically important for connecting the DM genes in a protein-protein interaction network. The ECs are statistically significantly enriched in well-known tumorgenesis and metastasis pathways, and include known epigenetic regulators. Importantly, combining the DMs and ECs as features using a novel random walk procedure, we constructed a support vector machine classifier that significantly improved the prediction accuracy of cancer recurrence and outperformed several alternative methods, demonstrating the effectiveness of our network-based approach.


Asunto(s)
Algoritmos , Biomarcadores de Tumor , Metilación de ADN , Neoplasias Endometriales , Recurrencia Local de Neoplasia , Islas de CpG , ADN de Neoplasias , Neoplasias Endometriales/diagnóstico , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Epigenómica , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Modelos Genéticos , Pronóstico , Dominios y Motivos de Interacción de Proteínas , Análisis de Secuencia de ADN
8.
J Biol Chem ; 292(52): 21340-21351, 2017 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-29025876

RESUMEN

The mevalonate pathway produces isopentenyl diphosphate (IPP), a building block for polyisoprenoid synthesis, and is a crucial pathway for growth of the human bacterial pathogen Enterococcus faecalis The final enzyme in this pathway, mevalonate diphosphate decarboxylase (MDD), acts on mevalonate diphosphate (MVAPP) to produce IPP while consuming ATP. This essential enzyme has been suggested as a therapeutic target for the treatment of drug-resistant bacterial infections. Here, we report functional and structural studies on the mevalonate diphosphate decarboxylase from E. faecalis (MDDEF). The MDDEF crystal structure in complex with ATP (MDDEF-ATP) revealed that the phosphate-binding loop (amino acids 97-105) is not involved in ATP binding and that the phosphate tail of ATP in this structure is in an outward-facing position pointing away from the active site. This suggested that binding of MDDEF to MVAPP is necessary to guide ATP into a catalytically favorable position. Enzymology experiments show that the MDDEF performs a sequential ordered bi-substrate reaction with MVAPP as the first substrate, consistent with the isothermal titration calorimetry (ITC) experiments. On the basis of ITC results, we propose that this initial prerequisite binding of MVAPP enhances ATP binding. In summary, our findings reveal a substrate-induced substrate-binding event that occurs during the MDDEF-catalyzed reaction. The disengagement of the phosphate-binding loop concomitant with the alternative ATP-binding configuration may provide the structural basis for antimicrobial design against these pathogenic enterococci.


Asunto(s)
Carboxiliasas/metabolismo , Ácido Mevalónico/análogos & derivados , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Sitios de Unión , Carboxiliasas/fisiología , Cristalografía por Rayos X/métodos , Enterococcus faecalis/enzimología , Enterococcus faecalis/metabolismo , Hemiterpenos/biosíntesis , Cinética , Ácido Mevalónico/metabolismo , Compuestos Organofosforados , Especificidad por Sustrato
9.
Surg Endosc ; 32(1): 517-525, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28643050

RESUMEN

BACKGROUND: The novel concept of continuous intraoperative neuromonitoring (Cont-IONM) through stimulation of the vagal nerve has been used in thyroidectomies to prevent imminent injury of the recurrent laryngeal nerve (RLN). This article reports on this technology and the results of using transoral Cont-IONM in natural orifice transluminal endoscopic surgery for thyroid disease. METHODS: Cont-IONM of the RLN was achieved through automatic cyclical stimulation of the vagal nerve using a C2 monitor and delta stimulating electrode. During the operation, three vestibular incisions were made, and the stimulating electrode was transorally inserted, with its cable line lying outside the trocar. The vagal nerve was gently dissected, looped, and then enveloped by the electrode cuff. Electromyography (EMG) of the vocalis muscle was performed, and the alarm was set to activate when the EMG amplitude reduced by 50% and latency was prolonged by 10%. Demographic data and outcome variables, including incremental time required to achieve Cont-IONM, were obtained. RESULTS: A total of 20 patients (28 nerves at risk) undergoing a transoral endoscopic thyroidectomy vestibular approach were enrolled in this study. All Cont-IONM procedures were successfully completed. In all patients, the stimulation was set at 0.7 milliamps every 1 s, and Cont-IONM use was unassociated with any untoward neural, cardiovascular, or gastrointestinal sequelae. On average, the ipsilateral Cont-IONM procedure required 10.33 ± 2.57 min to complete. Except for one instance, no significant problems occurred with electrode displacement. In one patient, a combined EMG event occurred, which improved after releasing the thyroid retractor, and the patient had no vocal cord paralysis postoperatively. CONCLUSION: Cont-IONM is feasible and safe to use during transoral endoscopic thyroidectomies and may assist in the early detection of adverse EMG changes, thereby preventing paralysis of the RLNs.


Asunto(s)
Monitorización Neurofisiológica Intraoperatoria , Cirugía Endoscópica por Orificios Naturales , Traumatismos del Nervio Laríngeo Recurrente/prevención & control , Tiroidectomía/métodos , Parálisis de los Pliegues Vocales/prevención & control , Adulto , Electromiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias/prevención & control , Enfermedades de la Tiroides/cirugía , Adulto Joven
10.
Nucleic Acids Res ; 44(9): 4105-22, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-26743006

RESUMEN

Identifying prostate cancer-driving transcription factors (TFs) in addition to the androgen receptor promises to improve our ability to effectively diagnose and treat this disease. We employed an integrative genomics analysis of master TFs CREB1 and FoxA1 in androgen-dependent prostate cancer (ADPC) and castration-resistant prostate cancer (CRPC) cell lines, primary prostate cancer tissues and circulating tumor cells (CTCs) to investigate their role in defining prostate cancer gene expression profiles. Combining genome-wide binding site and gene expression profiles we define CREB1 as a critical driver of pro-survival, cell cycle and metabolic transcription programs. We show that CREB1 and FoxA1 co-localize and mutually influence each other's binding to define disease-driving transcription profiles associated with advanced prostate cancer. Gene expression analysis in human prostate cancer samples found that CREB1/FoxA1 target gene panels predict prostate cancer recurrence. Finally, we showed that this signaling pathway is sensitive to compounds that inhibit the transcription co-regulatory factor MED1. These findings not only reveal a novel, global transcriptional co-regulatory function of CREB1 and FoxA1, but also suggest CREB1/FoxA1 signaling is a targetable driver of prostate cancer progression and serves as a biomarker of poor clinical outcomes.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Factor Nuclear 3-alfa del Hepatocito/fisiología , Recurrencia Local de Neoplasia/metabolismo , Neoplasias de la Próstata/metabolismo , Anciano , Anciano de 80 o más Años , Secuencia de Bases , Sitios de Unión , Biomarcadores de Tumor , Línea Celular Tumoral , Secuencia de Consenso , Supervivencia sin Enfermedad , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Humanos , Estimación de Kaplan-Meier , Masculino , Subunidad 1 del Complejo Mediador/metabolismo , Persona de Mediana Edad , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/mortalidad , Pronóstico , Modelos de Riesgos Proporcionales , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/mortalidad , Neoplasias de la Próstata/patología , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Transcripción Genética
11.
Genes Chromosomes Cancer ; 56(9): 663-667, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28510278

RESUMEN

An increasing number of congenital and infantile sarcomas displaying a primitive, monomorphic spindle cell phenotype have been characterized to harbor recurrent gene fusions, including infantile fibrosarcoma and congenital spindle cell rhabdomyosarcoma. Here, we report an unusual spindle cell sarcoma presenting as a large and infiltrative pelvic soft tissue mass in a 4-month-old girl, which revealed a novel TFG-MET gene fusion by whole transcriptome RNA sequencing. The tumor resembled the morphology of an infantile fibrosarcoma with both fascicular and patternless growth, however, it expressed strong S100 protein immunoreactivity, while lacking SOX10 staining and retaining H3K27me3 expression. Although this immunoprofile suggested partial neural/neuroectodermal differentiation, overall features were unusual and did not fit into any known tumor types (cellular schwannoma, MPNST), raising the possibility of a novel pathologic entity. The TFG-MET gene fusion expands the genetic spectrum implicated in the pathogenesis of congenital spindle cell sarcomas, with yet another example of kinase oncogenic activation through chromosomal translocation. The discovery of this new fusion is significant since the resulting MET activation can potentially be inhibited by targeted therapy, as MET inhibitors are presently available in clinical trials.


Asunto(s)
Proteínas de Fusión Oncogénica/genética , Proteínas/genética , Proteínas Proto-Oncogénicas c-met/genética , Sarcoma/genética , Neoplasias de los Tejidos Blandos/genética , Femenino , Histonas/genética , Histonas/metabolismo , Humanos , Lactante , Proteínas de Fusión Oncogénica/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Sarcoma/diagnóstico por imagen , Sarcoma/patología , Neoplasias de los Tejidos Blandos/diagnóstico por imagen , Neoplasias de los Tejidos Blandos/patología
12.
Genes Chromosomes Cancer ; 56(1): 42-50, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27537276

RESUMEN

Ossifying fibromyxoid tumor (OFMT) is an uncommon mesenchymal neoplasm of uncertain differentiation and intermediate malignant potential. Recurrent gene fusions involving either PHF1 or BCOR have been found in 85% of OFMT, including typical and malignant examples. As a subset of OFMT still lack known genetic abnormalities, we identified two OFMTs negative for PHF1 and BCOR rearrangements, which were subjected to transcriptome analysis for fusion discovery. The RNA sequencing found a novel CREBBP-BCORL1 fusion candidate in an axillary mass of a 51 year-old male and a KDM2A-WWTR1 in a thigh mass of a 36 year-old male. The gene fusions were validated by RT-PCR and FISH in the index cases and then screened by FISH on 4 additional OFMTs lacking known fusions. An identical CREBBP-BCORL1 fusion was found in an elbow tumor from a 30 year-old male. Both OFMTs with CREBBP-BCORL1 fusions had areas of typical OFMT morphology, exhibiting uniform round to epithelioid cells arranged in cords or nesting pattern in a fibromyxoid stroma. The OFMT with KDM2A-WWTR1 fusion involved dermis and superficial subcutis, being composed of ovoid cells in a fibromyxoid background with hyalinized giant rosettes. The S100 immunoreactivity ranged from very focal to absent. Similar to other known fusion genes in OFMT, BCORL1, CREBBP and KDM2A are also involved in histone modification. In summary, we expand the spectrum of molecular abnormalities in OFMT with 2 novel fusions, CREBBP-BCORL1 and KDM2A-WWTR1, further implicating the epigenetic deregulation as the leading pathogenetic mechanism in OFMT. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Biomarcadores de Tumor/genética , Fibroma Osificante/genética , Fibroma/genética , Proteínas de Fusión Oncogénica/genética , Neoplasias de los Tejidos Blandos/genética , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Proteína de Unión a CREB/genética , Proteínas F-Box/genética , Fibroma/patología , Fibroma Osificante/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Histona Demetilasas con Dominio de Jumonji/genética , Masculino , Persona de Mediana Edad , Pronóstico , Proteínas Represoras/genética , Neoplasias de los Tejidos Blandos/patología , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ
13.
Genes Chromosomes Cancer ; 56(6): 501-510, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28233365

RESUMEN

CIC rearrangements have been reported in two-thirds of EWSR1-negative small blue round cell tumors (SBRCTs). However, a number of SBRCTs remain unclassified despite exhaustive analysis. Fourteen SBRCTs lacking driver genetic events by RNA sequencing (RNAseq) analysis were collected. Unsupervised hierarchical clustering was performed using samples from our RNAseq database, including 13 SBRCTs with non-CIC genetic abnormalities and 2 CIC-rearranged angiosarcomas among others. Remarkably, all 14 study cases showed high mRNA levels of ETV1/4/5, and by unsupervised clustering most grouped into a distinct cluster, separate from other tumors. Based on these results indicating a close relationship with CIC-rearranged tumors, we manually inspected CIC reads in RNAseq data. FISH for CIC and DUX4 abnormalities and immunohistochemical stains for ETV4 were also performed. In the control group, only 2 CIC-rearranged angiosarcomas had high ETV1/4/5 expression. Upon manual inspection of CIC traces, 7 of 14 cases showed CIC-DUX4 fusion reads, 2 cases had DUX4-CIC reads, while the remaining 5 were negative. FISH showed CIC break-apart in 7 cases, including 5 cases lacking CIC-DUX4 or DUX4-CIC fusion reads on RNAseq manual inspection. However, no CIC abnormalities were detected by FISH in 6 cases with CIC-DUX4 or DUX4-CIC reads. ETV4 immunoreactivity was positive in 7 of 11 cases. Our results highlight the underperformance of FISH and RNAseq methods in diagnosing SBRCTs with CIC gene abnormalities. The downstream ETV1/4/5 transcriptional up-regulation appears highly sensitive and specific and can be used as a reliable molecular signature and diagnostic method for CIC fusion positive SBRCTs.


Asunto(s)
Algoritmos , Proteínas de Unión al ADN/genética , Reordenamiento Génico , Hibridación Fluorescente in Situ , Proteínas Represoras/genética , Sarcoma de Ewing/diagnóstico , Análisis de Secuencia de ARN , Factores de Transcripción/genética , Transcripción Genética , Regulación hacia Arriba , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sarcoma de Ewing/genética , Adulto Joven
14.
J Biomed Sci ; 24(1): 58, 2017 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-28822352

RESUMEN

BACKGROUND: Vibrio vulnificus is a marine bacterial species that causes opportunistic infections manifested by serious skin lesions and fulminant septicemia in humans. We have previously shown that the multifunctional autoprocessing repeats in toxin (MARTXVv1) of a biotype 1 V. vulnificus strain promotes survival of this organism in the host by preventing it from engulfment by the phagocytes. The purpose of this study was to further explore how MARTXVv1 inhibits phagocytosis of this microorganism by the macrophage. METHODS: We compared between a wild-type V. vulnificus strain and its MARTXVv1-deficient mutant for a variety of phagocytosis-related responses, including morphological change and activation of signaling molecules, they induced in the macrophage. We also characterized a set of MARTXVv1 domain-deletion mutants to define the regions associated with antiphagocytosis activity. RESULTS: The RAW 264.7 cells and mouse peritoneal exudate macrophages underwent cell rounding accompanied by F-actin disorganization in the presence of MARTXVv1. In addition, phosphorylation of some F-actin rearrangement-associated signaling molecules, including Lyn, Fgr and Hck of the Src family kinases (SFKs), focal adhesion kinase (FAK), proline-rich tyrosine kinase 2 (Pyk2), phosphoinositide 3-kinase (PI3K) and Akt, but not p38, was decreased. By using specific inhibitors, we found that these kinases were all involved in the phagocytosis of MARTXVv1-deficient mutant in an order of SFKs-FAK/Pyk2-PI3K-Akt. Deletion of the effector domains in the central region of MARTXVv1 could lead to reduced cytotoxicity, depending on the region and size of deletion, but did not affect the antiphagocytosis activity and ability to cause rounding of macrophage. Reduced phosphorylation of Akt was closely associated with inhibition of phagocytosis by the wild-type strain and MARTXVv1 domain-deletion mutants, and expression of the constitutively active Akt, myr-Akt, enhanced the engulfment of these strains by macrophage. CONCLUSIONS: MARTXVv1 could inactivate the SFKs-FAK/Pyk2-PI3K-Akt signaling pathway in the macrophages. This might lead to impaired phagocytosis of the V. vulnificus-infected macrophage. The majority of the central region of MARTXVv1 is not associated with the antiphagocytosis activity.


Asunto(s)
Toxinas Bacterianas/inmunología , Fagocitosis/inmunología , Vibriosis/microbiología , Vibrio vulnificus/inmunología , Vibrio vulnificus/patogenicidad , Animales , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Citotoxinas/inmunología , Citotoxinas/metabolismo , Macrófagos/inmunología , Masculino , Ratones Endogámicos BALB C , Vibriosis/patología , Vibrio vulnificus/genética
15.
J Biomed Sci ; 24(1): 54, 2017 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-28800764

RESUMEN

BACKGROUND: An attenuated mutant (designated NY303) of Vibrio vulnificus, which causes serious wound infection and septicemia in humans, was isolated fortuitously from a clinical strain YJ016. This mutant was defective in cytotoxicity, migration on soft agar and virulence in the mouse. The purpose of this study was to map the mutation in this attenuated mutant and further explore how the gene thus identified is involved in virulence. METHODS: The whole genome sequence of mutant NY303 determined by next-generation sequencing was compared with that of strain YJ016 to map the mutations. By isolating and characterizing the specific gene-knockout mutants, the gene associated with the phenotype of mutant NY303 was identified. This gene encodes a global regulator, Lrp. A mutant, YH01, deficient in Lrp was isolated and examined in vitro, in vivo and ex vivo to find the affected virulence mechanisms. The target genes of Lrp were further identified by comparing the transcriptomes, which were determined by RNA-seq, of strain YJ016 and mutant YH01. The promoters bound by Lrp were identified by genome footprinting-sequencing, and those related with virulence were further examined by electrophoretic mobility shift assay. RESULTS: A mutation in lrp was shown to be associated with the reduced cytotoxicity, chemotaxis and virulence of mutant NY303. Mutant YH01 exhibited a phenotype resembling that of mutant NY303, and was defective in colonization in the mouse and growth in mouse serum, but not the antiphagocytosis ability. 596 and 95 genes were down- and up-regulated, respectively, in mutant YH01. Many of the genes involved in secretion of the MARTX cytotoxin, chemotaxis and iron-acquisition were down-regulated in mutant YH01. The lrp gene, which was shown to be negatively autoregulated, and 7 down-regulated virulence-associated genes were bound by Lrp in their promoters. A 14-bp consensus sequence, mkCrTTkwAyTsTG, putatively recognized by Lrp was identified in the promoters of these genes. CONCLUSIONS: Lrp is a global regulator involved in regulation of cytotoxicity, chemotaxis and iron-acquisition in V. vulnificus. Down-regulation of many of the genes associated with these properties may be responsible, at least partly, for loss of virulence in mutant NY303.


Asunto(s)
Proteínas Bacterianas/genética , Regulación hacia Abajo , Proteína Reguladora de Respuesta a la Leucina/genética , Mutación , Vibrio vulnificus/genética , Vibrio vulnificus/patogenicidad , Virulencia/genética , Animales , Proteínas Bacterianas/metabolismo , Proteína Reguladora de Respuesta a la Leucina/metabolismo , Ratones , Ratones Endogámicos C3H , Enfermedades de los Roedores/microbiología , Vibriosis/microbiología , Vibrio vulnificus/fisiología
16.
Int J Med Sci ; 14(9): 840-852, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28824321

RESUMEN

The bone destruction disease including osteoporosis and rheumatoid arthritis are caused by the imbalance between osteoblastogenesis and osteoclastogenesis. Inhibition of the NF-κB pathway was responsible for decreased osteoclastogenesis. Recently many studies indicated that niclosamide, the FDA approved an antihelminth drug, inhibits prostate and breast cancer cells growth by targeting NF-κB signaling pathways. This study evaluated the effects of niclosamide on osteoclast and osteoblast differentiation and function in vitro. In RANKL-induced murine osteoclast precursor cell RAW264.7 and M-CSF/RANKL-stimulated primary murine bone marrow-derived macrophages (BMM), niclosamide dose-dependently inhibited the formation of TRAP-positive multinucleated osteoclasts and resorption pits formation between 0.5uM and 1uM. In addition, niclosamide suppressed the expression of nuclear factor of activated T cells c1 (NFATc1) and osteoclast differentiated-related genes in M-CSF/ RANKL-stimulated BMM by interference with TRAF-6, Erk1/2, JNK and NF-κB activation pathways. However, the cytotoxic effects of niclosamide obviously appeared at the effective concentrations for inhibiting osteoclastogenesis (0.5-1uM) with increase of apoptosis through caspase-3 activation in osteoblast precursor cell line, MC3T3-E1. Niclosamide also inhibited ALP activity, bone mineralization and osteoblast differentiation-related genes expression in MC3T3-E1. Therefore, our findings suggest the new standpoint that niclosamide's effects on bones must be considered before applying it in any therapeutic treatment.


Asunto(s)
Células de la Médula Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Niclosamida/efectos adversos , Osteogénesis/efectos de los fármacos , Animales , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Niclosamida/farmacología , Niclosamida/uso terapéutico , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteogénesis/genética , Ligando RANK/genética , Ligando RANK/metabolismo , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos
17.
Genes Chromosomes Cancer ; 55(10): 767-76, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27218413

RESUMEN

SMARCB1 inactivation occurs in a variety of tumors, being caused by various genetic mechanisms. Since SMARCB1 and EWSR1 genes are located close to each other on chromosome 22, larger SMARCB1 deletions may encompass the EWSR1 locus. Herein, we report four cases with SMARCB1-deletions showing concurrent EWSR1 gene abnormalities by FISH, which lead initially to misinterpretations as EWSR1-rearranged tumors. Our study group included various morphologies: a poorly differentiated chordoma, an extrarenal rhabdoid tumor, a myoepithelial carcinoma, and a proximal-type epithelioid sarcoma. All cases showed loss of SMARCB1 (INI1) by immunohistochemistry (IHC) and displayed characteristic histologic features for the diagnoses. The SMARCB1 FISH revealed homozygous or heterozygous deletions in three and one case, respectively. The co-hybridized EWSR1 probes demonstrated either unbalanced split signals or heterozygous deletion in two cases each. The former suggested bona fide rearrangement, while the latter resembled an unbalanced translocation. However, all the FISH patterns were quite complex and distinct from the simple and uniform split signals seen in typical EWSR1 rearrangements. We conclude that in the context of 22q11-12 regional alterations present in SMARCB1-deleted tumors, simultaneous EWSR1 involvement may be misinterpreted as equivalent to EWSR1 rearrangement. A detailed clinicopathologic correlation and supplementing the EWSR1 FISH assay with complementary methodology is mandatory for correct diagnosis. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas de Unión a Calmodulina/genética , Cordoma/genética , Mioepitelioma/genética , Proteínas de Unión al ARN/genética , Tumor Rabdoide/genética , Proteína SMARCB1/genética , Sarcoma/genética , Adolescente , Adulto , Proteínas de Unión a Calmodulina/aislamiento & purificación , Preescolar , Cordoma/diagnóstico , Cordoma/patología , Cromosomas Humanos Par 22/genética , Femenino , Humanos , Hibridación Fluorescente in Situ , Masculino , Mioepitelioma/diagnóstico , Mioepitelioma/patología , Proteína EWS de Unión a ARN , Proteínas de Unión al ARN/aislamiento & purificación , Tumor Rabdoide/diagnóstico , Tumor Rabdoide/patología , Proteína SMARCB1/aislamiento & purificación , Sarcoma/diagnóstico , Sarcoma/patología
18.
Arch Pharm (Weinheim) ; 349(5): 342-55, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27071332

RESUMEN

A series of 1-amino-4-(phenylamino)anthraquinone-2-sulfonate sodium derivatives was synthesized and evaluated for osteoclast inhibition using a TRAP-staining assay. Among them, two compounds, LCCY-13 and LCCY-15, dose-dependently suppressed receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. Moreover, the cytotoxicity assay on RAW264.7 cells suggested that the inhibition of osteoclastic bone resorption by these compounds was not a result of their cytotoxicity. Further, the inhibitory activities of compounds LCCY-13 and LCCY-15 were further confirmed by including specific inhibition of NFATc1 expression levels in nuclei using an immunofluorescent analysis. In addition, LCCY-13 and LCCY-15 also significantly attenuated the bone resorption activity of osteoclasts according to a pit formation assay. Thus, a new class of 1-amino-4-(phenylamino)anthraquinone-2-sulfonate sodium compounds might be considered as an essential lead structure for the further development of anti-resorptive agents.


Asunto(s)
Antraquinonas/síntesis química , Antraquinonas/farmacología , Osteogénesis/efectos de los fármacos , Ligando RANK/antagonistas & inhibidores , Animales , Resorción Ósea , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ratones , Factores de Transcripción NFATC/biosíntesis , Osteoclastos/efectos de los fármacos , Ligando RANK/metabolismo
19.
Prostate ; 75(15): 1790-801, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26332453

RESUMEN

BACKGROUND: Altered DNA methylation in CpG islands of gene promoters has been implicated in prostate cancer (PCa) progression and can be used to predict disease outcome. In this study, we determine whether methylation changes of androgen biosynthesis pathway (ABP)-related genes in patients' plasma cell-free DNA (cfDNA) can serve as prognostic markers for biochemical recurrence (BCR). METHODS: Methyl-binding domain capture sequencing (MBDCap-seq) was used to identify differentially methylated regions (DMRs) in primary tumors of patients who subsequently developed BCR or not, respectively. Methylation pyrosequencing of candidate loci was validated in cfDNA samples of 86 PCa patients taken at and/or post-radical prostatectomy (RP) using univariate and multivariate prediction analyses. RESULTS: Putative DMRs in 13 of 30 ABP-related genes were found between tumors of BCR (n = 12) versus no evidence of disease (NED) (n = 15). In silico analysis of The Cancer Genome Atlas data confirmed increased DNA methylation of two loci-SRD5A2 and CYP11A1, which also correlated with their decreased expression, in tumors with subsequent BCR development. Their aberrant cfDNA methylation was also associated with detectable levels of PSA taken after patients' post-RP. Multivariate analysis of the change in cfDNA methylation at all of CpG sites measured along with patient's treatment history predicted if a patient will develop BCR with 77.5% overall accuracy. CONCLUSIONS: Overall, increased DNA methylation of SRD5A2 and CYP11A1 related to androgen biosynthesis functions may play a role in BCR after patients' RP. The correlation between aberrant cfDNA methylation and detectable PSA in post-RP further suggests their utility as predictive markers for PCa recurrence. .


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Metilación de ADN , Proteínas de la Membrana/genética , Recurrencia Local de Neoplasia/genética , Neoplasias de la Próstata/genética , Anciano , Biomarcadores de Tumor/genética , Islas de CpG , Supervivencia sin Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/patología , Regiones Promotoras Genéticas , Próstata/patología , Próstata/cirugía , Prostatectomía , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Factores de Riesgo
20.
Stem Cells ; 32(9): 2309-23, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24809620

RESUMEN

Triple negative breast cancer (TNBC) is known to contain a high percentage of CD44(+) /CD24(-/low) cancer stem cells (CSCs), corresponding with a poor prognosis despite systemic chemotherapy. Chloroquine (CQ), an antimalarial drug, is a lysotropic reagent which inhibits autophagy. CQ was identified as a potential CSC inhibitor through in silico gene expression signature analysis of the CD44(+) /CD24(-/low) CSC population. Autophagy plays a critical role in adaptation to stress conditions in cancer cells, and is related with drug resistance and CSC maintenance. Thus, the objectives of this study were to examine the potential enhanced efficacy arising from addition of CQ to standard chemotherapy (paclitaxel) in TNBC and to identify the mechanism by which CQ eliminates CSCs in TNBCs. Herein, we report that CQ sensitizes TNBC cells to paclitaxel through inhibition of autophagy and reduces the CD44(+) /CD24(-/low) CSC population in both preclinical and clinical settings. Also, we are the first to report a mechanism by which CQ regulates the CSCs in TNBC through inhibition of the Janus-activated kinase 2 (Jak2)-signal transducer and activator of transcription 3 signaling pathway by reducing the expression of Jak2 and DNA methyltransferase 1.


Asunto(s)
Cloroquina/farmacología , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Janus Quinasa 2/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Animales , Autofagia/efectos de los fármacos , Línea Celular Tumoral , ADN (Citosina-5-)-Metiltransferasa 1 , Femenino , Humanos , Ratones , Ratones Desnudos , Células Madre Neoplásicas/patología , Transducción de Señal/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA