Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 21(24): 10292-10300, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34846904

RESUMEN

Biomineralization generates hierarchically structured minerals with vital biological functions in organisms. This strategy has been adopted to construct complex architectures to achieve similar functionalities, mostly under chemical environments mimicking biological components. The molecular origin of the biofacilitated mineralization process is elusive. Herein, we describe the mineralization of hydroxyapatite (HAp) accompanying the biological secretion of nanocellulose by Acetobacter xylinum. In comparison with mature cellulose, the newly biosynthesized cellulose molecules greatly accelerate the nucleation rate and facilitate the uniform distribution of HAp crystals, thereby generating composites with a higher Young modulus. Both simulations and experiments indicate that the biological metabolism condition allows the easier capture of calcium ions by the more abundant hydroxyl groups on the glucan chain before the formation of hydrogen bonding, for the subsequent growth of HAp crystals. Our work provides more insights into the biologically accelerated mineralization process and presents a different methodology for the generation of biomimetic nanocomposites.


Asunto(s)
Durapatita , Nanocompuestos , Biomimética/métodos , Biomineralización , Celulosa/química , Durapatita/química , Nanocompuestos/química
2.
Ecotoxicol Environ Saf ; 211: 111948, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33486380

RESUMEN

This study aims to assess the toxicity of the commonly-spread titanium dioxide nanoparticles (TiO2 NPs) by evaluating the exposure impact of the particles on both freshwater algae Chlorella pyrenoidosa and zebrafish liver cell line (ZFL), the two common in vitro models in toxicological studies. To compare the toxic effects of TiO2 NPs with different physiochemical properties, three types of manufactured TiO2 were used: bulk TiO2, Degussa P25 TiO2, and ultrafine TiO2 NPs. Both short and long-term biological responses of green algae, such as the effect on the cell growth rate, pigment autofluorescence, and esterase activity were investigated. The dosage, physical property of TiO2 particles, and their interactions with algal cells affect cellular growth, especially after short-term exposure. The hydrodynamic size plays a critical role in determining the acute toxicity to C. pyrenoidosa in terms of autofluorescence and esterase activity, while all types of TiO2 NPs show toxic effects after exposure for 14 days. However, this observation is not seen when studying the effect of introduced particles in ZFL, for the precipitated Degussa P25 TiO2 showed the highest cellular inhibition. Interestingly, despite the obvious overall toxicity toward C. pyrenoidosa, the photocatalytical properties of TiO2 NPs may contribute to the enhanced photosynthesis in the low concentration range (<40 µg mL-1). Overall, we found that the physical interactions between TiO2 particles and the cells, particles' size and dispersibility play critical role in the cytotoxic effect for both algal and ZFL cells, while the photocatalytical properties of TiO2 particles may produce mixed effects on the cytotoxicity of green algae.


Asunto(s)
Chlorella/efectos de los fármacos , Titanio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Línea Celular , Chlorella/metabolismo , Agua Dulce , Hígado/metabolismo , Nanopartículas/toxicidad , Tamaño de la Partícula , Fotosíntesis , Pez Cebra
3.
Chemistry ; 24(54): 14554-14559, 2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-30047182

RESUMEN

The accelerating research interest in graphene involving the use of Hummers method has generated non-negligible amount of wastewater containing residual graphite as well as Mn2+ . In this paper, we report the first example of using this wastewater as precursor to prepare Mn3 O4 /N-doped graphite (NG) composites through a facile solvothermal process. The mass fraction of Mn3 O4 in the composites was manipulated by adding various amounts of extra Mn2+ . The conversion of Mn2+ to Mn3 O4 nanoparticles and the N atoms doping were achieved by adding hydrazine hydrate and ammonia into the system. The as-obtained Mn3 O4 /NG composites were well characterized by SEM, TEM, EDS, Raman, XPS, TGA, XRD and N2 adsorption-desorption experiments and showed excellent catalytic performances as well as stability in the degradation of a model organic pollutant methylene blue (MB). Theoretical simulation was also carried out to illustrate the structural features of the Mn3 O4 /NG composite. This work presents a novel idea of designing functional materials from waste precursors.

4.
Chemistry ; 24(8): 1844-1852, 2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29027721

RESUMEN

The large-scale, low-cost preparation of Pt-based catalysts with high activity and durability for the methanol oxidation reaction is still challenging. The key to achieving this aim is finding suitable supporting materials. In this paper, N-doped carbon nanofibrous networks are prepared by annealing a gel containing two inexpensive and ecofriendly precursors, that is, bacterial cellulose and urea, for the loading of Pt nanoparticles. An undoped analogue is also prepared for comparison. Meanwhile, the effect of the annealing temperature on the performance of the catalysts is evaluated. The results show that the N doping and higher annealing temperature can improve the electron conductivity of the catalyst and provide more active sites for the loading of ultrafine Pt nanoparticles with a narrow size distribution. The best catalyst exhibits a remarkably high electrocatalytic activity (627 mA mg-1 ), excellent poison tolerance, and high durability. This work demonstrates an ideal Pt supporting material for the methanol oxidation reaction.


Asunto(s)
Celulosa/química , Nanopartículas del Metal/química , Metanol/química , Nanofibras/química , Platino (Metal)/química , Carbono/química , Catálisis , Microscopía Electrónica de Rastreo , Nitrógeno/química , Oxidación-Reducción , Espectroscopía de Fotoelectrones
5.
Polymers (Basel) ; 16(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38256985

RESUMEN

The utilization of titanium dioxide (TiO2) as a photocatalyst for the treatment of wastewater has attracted significant attention in the environmental field. Herein, we prepared an NH2-MIL-125-derived N-doped TiO2@C Visible Light Catalyst through an in situ calcination method. The nitrogen element in the organic connector was released through calcination, simultaneously doping into the sample, thereby enhancing its spectral response to cover the visible region. The as-prepared N-doped TiO2@C catalyst exhibited a preserved cage structure even after calcination, thereby alleviating the optical shielding effect and further augmenting its photocatalytic performance by increasing the reaction sites between the catalyst and pollutants. The calcination time of the N-doped TiO2@C-450 °C catalyst was optimized to achieve a balance between the TiO2 content and nitrogen doping level, ensuring efficient degradation rates for basic fuchsin (99.7%), Rhodamine B (89.9%) and tetracycline hydrochloride (93%) within 90 min. Thus, this study presents a feasible strategy for the efficient degradation of pollutants under visible light.

6.
Int J Biol Macromol ; 269(Pt 2): 132124, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723802

RESUMEN

Bacterial cellulose (BC) hydrogel is renowned in the field of tissue engineering for its high biocompatibility, excellent mechanical strength, and eco-friendliness. Herein, we present a biomimetic mineralization method for preparing BC/hydroxyapatite (HAP) composite hydrogel scaffolds with different mineralization time and ion concentration of the mineralized solution. Spherical HAP reinforcement enhanced bone mineralization, thereby imparting increased bioactivity to BC matrix materials. Subsequently, platelet-rich plasma (PRP) was introduced into the scaffold. The PRP-loaded hydrogel enhanced the release of growth factors, which promoted cell adhesion, growth, and bone healing. After 3 weeks of MC3T3-E1 cell-induced osteogenesis, PRP positively affected cell differentiation in BC/HAP@PRP scaffolds. Overall, these scaffolds exhibited excellent biocompatibility, mineralized nodule formation, and controlled release in vitro, demonstrating great potential for application in bone tissue repair.


Asunto(s)
Celulosa , Durapatita , Hidrogeles , Osteogénesis , Plasma Rico en Plaquetas , Ingeniería de Tejidos , Andamios del Tejido , Plasma Rico en Plaquetas/química , Ingeniería de Tejidos/métodos , Durapatita/química , Durapatita/farmacología , Celulosa/química , Celulosa/farmacología , Animales , Ratones , Andamios del Tejido/química , Hidrogeles/química , Osteogénesis/efectos de los fármacos , Huesos/efectos de los fármacos , Huesos/metabolismo , Preparaciones de Acción Retardada/farmacología , Diferenciación Celular/efectos de los fármacos , Biomimética/métodos , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Línea Celular , Regeneración Ósea/efectos de los fármacos
7.
J Colloid Interface Sci ; 659: 364-373, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38181700

RESUMEN

Metal-organic framework (MOF) derived transition metal-based electrocatalysts have received great attention as substitutes for noble metal-based hydrogen evolution catalysts. However, the low conductivity and easy detachments from electrodes of raw MOF have seriously hindered their applications in hydrogen evolution reaction. Herein, we report the facile preparation of Co-NSC@CBC84, a porous carbon-based and self-supported catalyst containing Co9S8 active species, by pyrolysis and sulfidation of in-situ grown ZIF-67 on polydopamine-modified biomass bacterial cellulose (PDA/BC). As a binder-free and self-supported electrocatalyst, Co-NSC@CBC84 exhibits superior electrocatalytic properties to other reported cobalt-based sulfide catalytic materials and has good stability in 0.5 M H2SO4 electrolyte. At the current density of 10 mA cm-2, only an overpotential of 138 mV was required, corresponding to a Tafel slope of 123 mV dec-1, owing to the strong synergy effect between Co-NSC nanoparticles and CBC substrate. This work therefore provides a feasible approach to prepare self-supported transition metal sulfides as HER catalysts, which is helpful for the development of noble metal-free catalysts and biomass carbon materials.

8.
Int J Biol Macromol ; 267(Pt 1): 131445, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588839

RESUMEN

Carbonized bacterial cellulose embedded with highly dispersed nano zero-valent iron (nZVI), denoted as nZVI@CBC, was prepared through one-step in situ carbothermal treatment of bacterial cellulose adsorbing iron(III) nitrate. The structure characteristics of nZVI@CBC and its performance in removing hexavalent chromium Cr(VI) were investigated. Results showed the formation of nZVI@CBC with a surface area of 409.61 m2/g at 800 °C, with nZVI particles of mean size 28.2 nm well distributed within the fibrous network of CBC. The stability of nZVI was enhanced by its carbon coating, despite some inevitable oxidation of exposed nZVI. Batch experiments demonstrated that nZVI@CBC exhibited superior removal efficiency compared to bare nZVI and CBC. Under optimal conditions, nZVI@CBC exhibited a high Cr(VI) adsorption capacity of up to 372.42 mg/g. Therefore, nZVI@CBC shows promise as an effective adsorbent for remediating Cr(VI) pollution in water.


Asunto(s)
Celulosa , Cromo , Hierro , Contaminantes Químicos del Agua , Purificación del Agua , Cromo/química , Cromo/aislamiento & purificación , Celulosa/química , Adsorción , Hierro/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Carbono/química , Bacterias
9.
Int J Biol Macromol ; 254(Pt 3): 127990, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37949266

RESUMEN

Bacterial cellulose has garnered remarkable interest from researchers, particularly those working in the biomedical field. In this work, BC microfibers were fabricated via green dissolution (ZnCl2) and regeneration (ethanol). The orientation of cellulose chains was investigated during extrusion and simple post-processing via polarized optical microscopy and small-angle X-ray scattering. The results implied that the mechanical properties of BC microfibers can be tuned by rational pre-stretching. The BC microfibers can be programmable, and be used to suture hard or soft tissues. The as-designed paralleled BC microfibers have good biocompatibility and can regulate the directional growth of cells on their surface. The as-obtained BC microfiber with a high tensile strength of up to ∼115 MPa is suitable for surgical sutures. The tunable BC microfibers may be utilized as an adequate fiber-derived biomedical material product.


Asunto(s)
Materiales Biocompatibles , Celulosa , Materiales Biocompatibles/farmacología , Resistencia a la Tracción , Bacterias , Microscopía
10.
Carbohydr Polym ; 327: 121679, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171689

RESUMEN

Management of noncompressible torso hemorrhage is an urgent clinical requirement, desiring biomaterials with rapid hemostasis, anti-infection and excellent resilient properties. In this research, we have prepared a highly resilient cryogel with both hemostatic and antibacterial effects by chemical crosslinking and electrostatic interaction. The network structure crosslinked by quaternized chitosan and genipin was interspersed with oxidized bacterial cellulose after lyophilization. The as-prepared cryogel can quickly return to the original volume when soaking in water or blood. The appropriately sized pores in the cryogel help to absorb blood cells and further activate coagulation, while the quaternary ammonium salt groups on quaternized chitosan inhibit bacterial infections. Both cell and animal experiments showed that the cryogel was hypotoxic and could promote the regeneration of wound tissue. This research provides a new pathway for the preparation of double crosslinking cryogels and offers effective and safe biomaterials for the emergent bleeding management of incompressible wounds.


Asunto(s)
Celulosa Oxidada , Quitosano , Hemostáticos , Animales , Criogeles/química , Quitosano/farmacología , Quitosano/química , Celulosa Oxidada/farmacología , Cicatrización de Heridas , Hemostáticos/farmacología , Hemostáticos/química , Hemorragia/tratamiento farmacológico , Materiales Biocompatibles/farmacología , Antibacterianos/farmacología , Antibacterianos/química
11.
Adv Mater ; 36(26): e2401110, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38549546

RESUMEN

Manipulating the structural and kinetic dissociation processes of water at the catalyst-electrolyte interface is vital for alkaline hydrogen evolution reactions (HER) at industrial current density. This is seldom actualized due to the intricacies of the electrochemical reaction interface. Herein, this work introduces a rapid, nonequilibrium cooling technique for synthesizing ternary Turing catalysts with short-range ordered structures (denoted as FeNiRu/C). These advanced structures empower the FeNiRu/C to exhibit excellent HER performance in 1 m KOH with an ultralow overpotential of 6.5 and 166.2 mV at 10 and 1000 mA cm-2, respectively, and a specific activity 7.3 times higher than that of Pt/C. Comprehensive mechanistic analyses reveal that abundant atomic species form asymmetric atomic electric fields on the catalyst surface inducing a directed evolution and the dissociation process of interfacial H2O molecules. In addition, the locally topologized structure effectively mitigates the high hydrogen coverage of the active site induced by the high current density. The establishment of the relationship between free water population and HER activity provides a new paradigm for the design of industrially relevant high performance alkaline HER catalysts.

12.
ACS Appl Mater Interfaces ; 15(8): 10506-10519, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36800308

RESUMEN

A structurally stable and antibacterial biomaterial used for temporary cranioplasty with guided bone regeneration (GBR) effects is an urgent clinical requirement. Herein, we reported the design of a biomimetic Ag/bacterial cellulose/hydroxyapatite (Ag/BC@HAp) hydrogel mesh with a double-sided functionalized structure, in which one layer was dense and covered with Ag nanoparticles and the other layer was porous and anchored with hydroxyapatite (HAp) via mineralization for different durations. Such a double-sided functionalized design endowed the hydrogel with distinguished antibacterial activities for inhibiting potential infections and GBR effects that could prevent endothelial cells and fibroblasts from migrating to a defected area and meanwhile show biocompatibility to MC3T3-E1 preosteoblasts. Furthermore, it was found from in vivo experimental results that the Ag/BC@HAp hydrogel with 7-day mineralization achieved optimal GBR effects by improving barrier functions toward these undesired cells. Moreover, this BC-based hydrogel mesh showed an extremely low swelling ratio and strong mechanical strength, which facilitated the protection of soft brain tissues without gaining the risk of intracranial pressure increase. In a word, this study offers a new approach to double-sided functionalized hydrogels and provides effective and safe biomaterials used for temporary cranioplasty with antibacterial abilities and GBR effects.


Asunto(s)
Durapatita , Nanopartículas del Metal , Durapatita/química , Plata , Hidrogeles/química , Celulosa/química , Biomimética , Células Endoteliales , Mallas Quirúrgicas , Materiales Biocompatibles , Antibacterianos
13.
Int J Biol Macromol ; 242(Pt 3): 125173, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37268083

RESUMEN

Incorporating heteroatoms into carbon structure has been demonstrated to be efficient for hydrogen evolution reaction (HER). However, the preparation complexity and poor durability are insufficient for the future hydrogen economy. In this work, the preparation of ZIF-67/BC precursor with BC as the template was done for the in-situ growth of MOFs (ZIF-67) crystals, followed by the carbonization and phosphating of ZIF-67/BC to prepare the CoP-NC/CBC N-doped composite carbon material with CoP as the primary active material. The results show that as an HER catalyst, CoP-NC/CBC can provide a current density of 10 mA cm-2 at an overpotential of 182 mV in the acidic electrolyte of 0.5 M H2SO4 or the same current density at an overpotential of 151 mV in the alkaline electrolyte of 1.0 M KOH. The work validates a design idea for advanced non-precious metal-based HER catalysts with high activity and stability.


Asunto(s)
Carbono , Celulosa , Hidrógeno
14.
Dalton Trans ; 52(35): 12253-12263, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37602366

RESUMEN

Carbon-based materials have received wide attention as electrodes for energy storage and conversion owing to their rapid mass transfer processes, outstanding electronic conductivities, and high stabilities. Here, sulfur-doped carbonized bacterial cellulose (S-CBC) was prepared as a high-performance anode for sodium-ion batteries (SIBs) by simultaneous carbonization and sulfidation using the bacterial cellulose membrane produced by microbial fermentation as the precursor. Doping sublimed sulfur powder into CBC results in a greater degree of disorder and defects, buffering the volume expansion during the cycle. Significantly, the three-dimensional (3D) network structure of bacterial cellulose endows S-CBC with flexible self-support. As an anode for sodium ion batteries, S-CBC exhibits a high specific capacity of 302.9 mA h g-1 at 100 mA g-1 after 50 cycles and 177.6 mA h g-1 at 2 A g-1 after 1000 cycles. Compared with the CBC electrode, the S-CBC electrode also exhibits enhanced rate performance in sodium storage. Moreover, theoretical simulations reveal that Na+ has good adsorption stability and a faster diffusion rate in S-CBC. The doping of the S element introduces defects that enlarge the interlayer distance, and the synergies of adsorption and bonding are the main reasons for its high performance. These results indicate the potential application prospects of S-CBC as a flexible binder-free electrode for high-performance SIBs.

15.
Int J Biol Macromol ; 242(Pt 3): 124831, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37245762

RESUMEN

Bacterial cellulose, as a kind of natural biopolymer produced by bacterial fermentation, has attracted wide attention owing its unique physical and chemical properties. Nevertheless, the single functional group on the surface of BC greatly hinders its wider application. The functionalization of BC is of great significance to broaden the application of BC. In this work, N-acetylated bacterial cellulose (ABC) was successfully prepared using K. nataicola RZS01-based direct synthetic method. FT-IR, NMR and XPS confirmed the in-situ modification of BC by acetylation. The SEM and XRD results demonstrated that ABC has a lower crystallinity and higher fiber width compare with pristine 88 BCE % cell viability on NIH-3 T3 cell and near zero hemolysis ratio indicate its good biocompatibility. In addition, the as-prepared acetyl amine modified BC was further treated by nitrifying bacteria to enrich its functionalized diversity. This study provides a mild in-situ pathway to construct BC derivatives in an environmentally friendly way during its metabolism.


Asunto(s)
Bacterias , Celulosa , Espectroscopía Infrarroja por Transformada de Fourier , Bacterias/metabolismo , Fermentación , Celulosa/química
16.
Carbohydr Polym ; 311: 120749, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37028876

RESUMEN

The damage or degeneration of spiral ganglion neurons (SGNs) can impair the auditory signals transduction from hair cells to the central auditory system, and cause significant hearing loss. Herein, a new form of bioactive hydrogel incorporating topological graphene oxide (GO) and TEMPO-oxidized bacterial cellulose (GO/TOBC hydrogel) was developed to provide a favorable microenvironment for SGN neurite outgrowth. As the network structure of lamellar interspersed fiber cross-linked by GO/TOBC hydrogels well simulated the structure and morphology of ECM, with the controllable hydrophilic property and appropriate Young's modulus well met those requirements of SGNs microenvironment, the GO/TOBC hybrid matrix exhibited great potential to promote the growth of SGNs. The quantitative real-time PCR result confirmed that the GO/TOBC hydrogel can significantly accelerate the development of growth cones and filopodia, by increasing the mRNA expression levels of diap3, fscn2, and integrin ß1. These results suggest that GO/TOBC hydrogel scaffolds have the potential to be used to construct biomimetic nerve grafts for repairing or replacing nerve defects.


Asunto(s)
Celulosa Oxidada , Ganglio Espiral de la Cóclea , Ganglio Espiral de la Cóclea/metabolismo , Hidrogeles/química , Neuronas/metabolismo
17.
J Colloid Interface Sci ; 652(Pt A): 653-662, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37543477

RESUMEN

Ensuring the consumption rate of noble metals while guaranteeing satisfactory hydrogen evolution reaction (HER) performance at different pH values is imperative to the development of Ru-based catalysts. Herein, we design a Mott-Schottky electrocatalyst (Ru/CeO2) with a built-in electric field (BEF) based on density functional theory (DFT). The Ru/CeO2 achieves the criterion current density of 10 mA cm-2 at overpotentials of 55 mV, 80 mV, and 120 mV in alkaline, acidic and neutral media, respectively. Both theoretical calculations and experimental analysis confirm that the improved HER activity in the Ru/CeO2 catalyst could be due to the successful construction of BEF at the interface between the prepared Ru clusters and CeO2. Under the action of BEF, the electron-deficient Ru atoms can optimize the adsorption energy of H* and H2O and thus promote HER kinetics. Furthermore, the Ru/CeO2 catalyst delivers a power density of approximately 94.5 mW cm-2 in alkaline-acidic Zn-H2O cell applications while maintaining good H2 production stability. In this work, we optimize the electrocatalytic performance of the Ru/CeO2 catalyst through examination of the interfacial BEF electrical charge, which combines hydrogen production with power generation and provides a promising method for sustainable energy conversion.

18.
J Colloid Interface Sci ; 630(Pt A): 940-950, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36327710

RESUMEN

Designing transition metal-oxide-based bifunctional electrocatalysts with excellent activity and stability for OER/HER to achieve efficient water splitting is of great importance for renewable energy technologies. Herein, a highly efficient bifunctional catalysts with oxygen-rich vacancies of nickel-decorated RuO2 (NiRuO2-x) prepared by a unique one-pot glucose-blowing approach were investigated. Remarkably, the NiRuO2-x catalysts exhibited excellent HER and OER activity at 10 mA cm-2 in alkaline solution with only a minimum overpotential of 51 mV and 245 mV, respectively. Furthermore, the NiRuO2-x overall water splitting exhibited an ultra-low voltage of 1.6 V to obtain 10 mA cm-2 and stability for more than 10 h. XPS measurement and theoretical calculations demonstrated that the introduction of Ni-dopant and oxygen vacancies make the d-band center to lie close to the Fermi energy level, the chemical bonds between the active site and the adsorbed oxygen intermediate state are enhanced, thereby lowering the reaction activation barriers of HER and OER. The assembly of solar-driven alkaline electrolyzers facilitate the application of the NiRuO2-x bifunctional catalysts.

19.
Carbohydr Polym ; 309: 120664, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36906357

RESUMEN

Air pollution has become a major public health concern, attracting considerable attention from researchers working on environmentally friendly and sustainable materials. In this work, bacterial cellulose (BC) derived aerogels were fabricated by the directional ice-templated method and used as filters to remove PM particles. We modified the surface functional groups of BC aerogel with reactive silane precursors, and investigated the interfacial and structural properties of those aerogels. The results show that BC-derived aerogels have excellent compressive elasticity, and their directional growth orientation inside the structure significantly reduced pressure drop. Moreover, the BC-derived filters exhibit an exceptional quantitative removal effect on fine particulate matter, which, in the presence of high concentrations of fine particulate matter, they can achieve a high-efficiency removal standard of 95 %. Meanwhile, the BC-derived aerogels showed superior biodegradation performance in the soil burial test. These results paved the way for BC-derived aerogels development as a great sustainable alternative to treat air pollution.


Asunto(s)
Bacterias , Celulosa , Geles/química , Celulosa/química , Bacterias/química , Elasticidad
20.
Chemosphere ; 291(Pt 2): 132976, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34808202

RESUMEN

The effects of pyrolysis temperature on properties and adsorption performance of carbonized bacterial cellulose (CBC) produced from bacterial cellulose at 300, 400, 600 and 800 °C were investigated. As pyrolysis temperature increased, the BET surface area, C and ash contents of CBC increased while its mass yield and the contents of H, N and O decreased. Higher pyrolysis temperature resulted in CBC having more aromatic structure and less hydrophilic. The impacts of pyrolysis temperature, solution pH, contact time and initial concentration on the absorption of Cr(VI) onto CBC were systematically studied as well. The results showed that CBC400 prepared at 400 °C exhibited the highest Cr(VI) adsorption capacity for Cr(VI) up to 250.0 mg/g. The equilibrium adsorption and adsorption kinetics fitted the Langmuir isotherm and pseudo-second-order kinetic models well. The mechanisms of adsorption of Cr(VI) on CBC included electrostatic interaction, π-π interaction and functional groups complexation.


Asunto(s)
Nanofibras , Contaminantes Químicos del Agua , Adsorción , Celulosa , Cromo/análisis , Concentración de Iones de Hidrógeno , Cinética , Pirólisis , Temperatura , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA