Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 365
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Calcif Tissue Int ; 113(6): 618-629, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37878026

RESUMEN

Osteoporosis disproportionately affects older women, yet gender differences in human osteoblasts remain unexplored. Identifying mechanisms and biomarkers of osteoporosis will enable the development of preventative and therapeutic approaches. Transcriptome data of 187 osteoblast samples from men and women were compared. Differentially expressed genes (DEGs) were identified, and weighted gene co-expression network analysis (WGCNA) was used to discover co-expressed modules. Enrichment analysis was performed to annotate DEGs. Preservation analysis determined whether modules and pathways were similar between genders. Blood methylation, transcriptome data, mouse phenotype data, and drug treatment data were utilized to identify key osteoporosis genes. We identified 1460 DEGs enriched in immune response, neurogenesis, and GWAS osteoporosis-related genes. WGCNA uncovered 8 modules associated with immune response, development, collagen metabolism, mitochondrion, and amino acid synthesis. Preservation analysis indicated modules and pathways were generally similar between genders. Incorporating GWAS and mouse phenotype data revealed 9 key genes, including GMDS, SMOC2, SASH1, MMP2, AHCYL1, ARRDC2, IGHMBP2, ATP6V1A, and CTSK. These genes were differentially methylated in patient blood and differentiated high and low bone mineral density patients in pre- and postmenopausal women. Denosumab treatment in postmenopausal women down-regulated 6 key genes, up-regulated T cell proportions, and down-regulated fibroblast proportion. qRT-PCR was used to confirm the genes in postmenopausal women. We identified 9 key osteoporosis genes by comparing the transcriptome of osteoblasts in women and men. Our findings' clinical implications were confirmed by multi-omics data and qRT-PCR, and our study provides novel biomarkers and therapeutic targets for osteoporosis diagnosis and treatment.


Asunto(s)
Osteoporosis , Transcriptoma , Humanos , Femenino , Masculino , Animales , Ratones , Anciano , Osteoporosis/genética , Osteoporosis/metabolismo , Perfilación de la Expresión Génica , Biomarcadores , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
2.
J Cardiothorac Vasc Anesth ; 37(9): 1609-1617, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37263806

RESUMEN

OBJECTIVES: The development of new human leukocyte antigens (HLAs) and donor-specific antibodies (DSAs) in patients are associated with worse outcomes following lung transplantation. The authors aimed to examine the relationship between blood product transfusion in the first 72 hours after lung transplantation and the development of HLA antibodies, including DSAs. DESIGN: A retrospective observational study. SETTING: At a single academic tertiary center. PARTICIPANTS: Adult lung transplant recipients who underwent transplantation between September 2014 and June 2019. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A total of 380 patients were included in this study, and 87 (23%) developed de novo donor-specific antibodies in the first year after transplantation. Eighty-five patients (22%) developed new HLA antibodies that were not donor-specific, and 208 patients (55%) did not develop new HLA antibodies in the first year after transplantation. Factors associated with increased HLA and DSA development included donor pulmonary infection, non-infectious indication for transplant, increased recipient body mass index, and a preoperative calculated panel reactive antibody value above 0. Multivariate analysis identified platelet transfusion associated with an increased risk of de novo HLA antibody development compared to the negative group (odds ratio [OR; 95% CI] 1.18 [1.02-1.36]; p = 0.025). Cryoprecipitate transfusion was associated with de novo DSA development compared to the negative group (OR [95% CI] 2.21 [1.32-3.69] for 1 v 0 units; p = 0.002). CONCLUSIONS: Increased perioperative transfusion of platelets and cryoprecipitate are associated with de novo HLA and DSA development, respectively, in lung transplant recipients during the first year after transplantation.


Asunto(s)
Isoanticuerpos , Trasplante de Pulmón , Humanos , Adulto , Rechazo de Injerto , Donantes de Tejidos , Trasplante de Pulmón/efectos adversos , Estudios Retrospectivos , Antígenos HLA
3.
Ecotoxicol Environ Saf ; 259: 115017, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37196523

RESUMEN

Environmental and occupational exposure to cadmium (Cd) poses a serious threat to human health. Recent studies indicate that Cd perturbs the immune system and increases the risk of pathogenicity and mortality of bacterial or virus infection. However, the underlying mechanism of Cd-modulated immune responses remains unclear. In this study, we aim to investigate the role of Cd in the immune function of mouse spleen tissues and its primary T cells with Concanavalin A (ConA, a well-known T cell mitogen) activation condition, and elucidate the molecular mechanism. The results showed that Cd exposure inhibited ConA-induced the expressions of tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) in mouse spleen tissues. Furthermore, the transcriptomic profile by RNA-sequence reveals that: (1) Cd exposure can alter immune system process; (2) Cd may affect the NFκB signaling pathway. Both in vitro and in vivo results showed that Cd exposure reduced ConA-activated toll-like receptor 9 (TLR9)-IκBα-NFκB signaling, and the expressions of TLR9, TNF-α and IFN-γ, which were effectively reversed by autophagy-lysosomal inhibitors. All these results confirmedly demonstrated that, by promoting the autophagy-lysosomal degradation of TLR9, Cd suppressed immune response under ConA activation condition. This study provides insight on the mechanism of Cd immunnotoxicity, which might contribute to the prevention of Cd toxicity in the future.


Asunto(s)
Cadmio , Receptor Toll-Like 9 , Ratones , Animales , Humanos , Cadmio/toxicidad , Receptor Toll-Like 9/metabolismo , Factor de Necrosis Tumoral alfa/genética , Inhibidor NF-kappaB alfa/metabolismo , Transducción de Señal , FN-kappa B/metabolismo , Terapia de Inmunosupresión , Autofagia
4.
Phytother Res ; 37(10): 4607-4620, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37380363

RESUMEN

Atractylenolide-III (AT-III) is well known as its role in antioxidant and anti-inflammatory. Present study was aimed to figure out its effects on osteoarthritis and potential mechanisms. Rat model, human osteoarthritis cartilage explants as well as rat/human chondrocyte cultures were prepared to test AT-III's effects on osteoarthritis progression and chondrocyte senescence. Potential targeted molecules of AT-III were predicted using network pharmacology and molecular docking, assessed by Western blotting and then verified with rescue experiments. AT-III treatment alleviated osteoarthritis severity (shown by OARSI grading score and micro-CT) and chondrocyte senescence (indexed by levels of SA-ß-gal, P16, P53, MMP13, ROS and ratio of healthy/collapsed mitochondrial membrane potentials). Network pharmacology and molecular docking suggested that AT-III might play role through NF-κB pathway. Further experiments revealed that AT-III reduced phosphorylation of IKKα/ß, IκBα and P65 in NF-κB pathway. As well as nuclear translocation of p65. Both in vivo and in vitro experiments indicated that AT-III's effects on osteoarthritis and anti-senescence were reversed by an NF-κB agonist. AT-III could alleviate osteoarthritis by inhibiting chondrocyte senescence through NF-κB pathway, which indicated that AT-III is a prospective drug for osteoarthritis treatment.

5.
Semin Liver Dis ; 42(3): 271-282, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35672015

RESUMEN

During biliary tree homeostasis, BECs are largely in a quiescent state and their turnover is slow for maintaining normal tissue homeostasis. BTSCs continually replenish new BECs in the luminal surface of EHBDs. In response to various types of biliary injuries, distinct cellular sources, including HPCs, BTSCs, hepatocytes, and BECs, repair or regenerate the injured bile duct. BEC, biliary epithelial cell; BTSC, biliary tree stem/progenitor cell; EHBD, extrahepatic bile ducts; HPC, hepatic progenitor cell.The biliary tree comprises intrahepatic bile ducts and extrahepatic bile ducts lined with epithelial cells known as biliary epithelial cells (BECs). BECs are a common target of various cholangiopathies for which there is an unmet therapeutic need in clinical hepatology. The repair and regeneration of biliary tissue may potentially restore the normal architecture and function of the biliary tree. Hence, the repair and regeneration process in detail, including the replication of existing BECs, expansion and differentiation of the hepatic progenitor cells and biliary tree stem/progenitor cells, and transdifferentiation of the hepatocytes, should be understood. In this paper, we review biliary tree homeostasis, repair, and regeneration and discuss the feasibility of regenerative therapy strategies for cholangiopathy treatment.


Asunto(s)
Sistema Biliar , Sistema Biliar/fisiología , Células Epiteliales , Hepatocitos , Homeostasis , Humanos , Regeneración
6.
Molecules ; 27(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35956790

RESUMEN

Phytophenol dimerization, which is a radical-mediated coupling reaction, plays a critical role in many fields, including lignin biosynthesis. To understand the reaction, 2,2-diphenyl-1-picrylhydrazyl radical was used to initiate a series of phytophenol dimerization reactions in methanol. The products were identified using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC-ESI-Q-TOF-MS/MS) analysis in situ. The identified products mainly included biphenols, magnolol, honokiol, gingerol 6,6'-dimers, 3,6-dimethoxylcatechol ß,ß' dimer, euphorbetin, bis-eugenol, dehydrodiisoeugenol, trans-ε-viniferin, (+) pinoresinol, and (-) pinoresinol. Structure-function relationship analysis allowed four basic rules to be defined: meta-excluded, C-C bonding domination, ortho-diOH co-activation, and exocyclic C=C involvement. The exocyclic C=C involvement, however, required conjugation with the phenolic core and the para-site of the -OH group, to yield a furan-fused dimer with two chiral centers. Computational chemistry indicated that the entire process was completed via a radical coupling reaction and an intramolecular conjugate addition reaction. Similar results were also found for the horseradish peroxidase (HRP)-catalyzed coniferyl alcohol dimerization, which produced (+) and (-) pinoresinols (but no (-) epipinoresinol), suggesting that the HRP-catalyzed process was essentially an exocyclic C=C-involved phytophenol dimerization reaction. The reaction was highly diastereoselective. This was attributed to the intramolecular reaction, which prohibited Re-attack. The four basic rules and diastereoselectivity can explain and even predict the main products in various chemical and biological events, especially oxidase-catalyzed lignin cyclization.


Asunto(s)
Lignina , Espectrometría de Masas en Tándem , Antioxidantes/química , Cromatografía Líquida de Alta Presión/métodos , Dimerización , Espectrometría de Masa por Ionización de Electrospray/métodos
7.
Biochem Biophys Res Commun ; 567: 35-41, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34134000

RESUMEN

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide. Recent studies revealed that the ferroptosis pathway is involved in the death process of dopaminergic neurons in PD. The aberrant endosomal sorting pathway, which results in aberrant iron level in eukaryotic cells, may serve a role in the ferroptosis pathway in PD condition. However, its specific molecular mechanisms remained unclear. In the present study, we performed chromatin immunoprecipitation (ChIP) assay, the rank ordering of super-enhancers (ROSE) algorithm, and RNA interference (RNAi) to explore the regulatory mechanism of PD-specific super-enhancer (SE) in the endosomal sorting pathway and ferroptosis pathway of 6-OHDA-lesioned rats and cells. The ChIP assay and ROSE algorithm results showed that there are specific SEs expression in 6-OHDA-lesioned SNc of PD rats, and the most significant expression gene is Sorting Nexin 5 (SNX5). SNX5 silencing by RNAi experiments significantly decreased the level of ferroptosis in 6-OHDA-lesioned PC12 cells, suggesting the correlation between the SNX5, ferroptosis, and PD. In conclusion, this study investigated the mechanism by which PD-specific SE driven SNX5 promoted the ferroptosis level in PD models. This study further improved the understanding of the mechanism of ferroptosis during PD injury and provided potential therapeutic targets and clinical diagnostic markers in PD condition.


Asunto(s)
Neuronas Dopaminérgicas/patología , Ferroptosis , Enfermedad de Parkinson/patología , Nexinas de Clasificación/genética , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Expresión Génica , Masculino , Células PC12 , Enfermedad de Parkinson/genética , Ratas , Ratas Sprague-Dawley
8.
Cancer Cell Int ; 21(1): 336, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215252

RESUMEN

BACKGROUND: Osteosarcoma (OS) is a common type of bone malignancy that often occurs in children and adolescents. Chemoresistance is a huge barrier to cancer therapy. This study aimed to investigate the role and potential mechanism of circ_0001721 in doxorubicin (DXR) resistance and OS development. METHODS: The levels of circ_0001721, miR-758 and transcription factor 4 (TCF4) were detected by quantitative real-time polymerase chain reaction or western blot assay. Cell Counting Kit-8 (CCK-8) assay was used to calculate the half inhibition concentration (IC50) of DXR and assess cell viability. Cell migration and invasion were evaluated by transwell assay. Cell apoptosis was monitored by flow cytometry. The levels of multidrug resistance-related and Wnt/ß-catenin pathway-related proteins were measured by western blot assay. The interaction among circ_0001721, miR-758 and TCF4 were confirmed by dual-luciferase reporter assay, RNA immunoprecipitation assay or RNA pull-down assay. The xenograft model was established to analyze tumor growth in vivo. RESULTS: Circ_0001721 and TCF4 were upregulated, whereas miR-758 was down-regulated in DXR-resistant OS tissues and cells. Circ_0001721 silence reduced DXR resistance of KHOS/DXR and MG63/DXR cells. Circ_0001721 regulated DXR resistance via sponging miR-758. Moreover, miR-758 modulated DXR resistance by targeting TCF4. Besides, circ_0001721 knockdown inhibited tumor growth in vivo. CONCLUSION: Circ_0001721 potentiated DXR resistance and facilitated the progression of OS by regulating miR-758/TCF4 axis, which provides promising therapeutic targets for OS treatment.

9.
Phys Rev Lett ; 126(3): 037201, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33543946

RESUMEN

Sr_{2}CuTeO_{6} is a square-lattice Néel antiferromagnet with superexchange between first-neighbor S=1/2 Cu spins mediated by plaquette centered Te ions. Substituting Te by W, the affected impurity plaquettes have predominantly second-neighbor interactions, thus causing local magnetic frustration. Here we report a study of Sr_{2}CuTe_{1-x}W_{x}O_{6} using neutron diffraction and µSR techniques, showing that the Néel order vanishes already at x=0.025±0.005. We explain this extreme order suppression using a two-dimensional Heisenberg spin model, demonstrating that a W-type impurity induces a deformation of the order parameter that decays with distance as 1/r^{2} at temperature T=0. The associated logarithmic singularity leads to loss of order for any x>0. Order for small x>0 and T>0 is induced by weak interplane couplings. In the nonmagnetic phase of Sr_{2}CuTe_{1-x}W_{x}O_{6}, the µSR relaxation rate exhibits quantum critical scaling with a large dynamic exponent, z≈3, consistent with a random-singlet state.

10.
BMC Gastroenterol ; 21(1): 54, 2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33549047

RESUMEN

BACKGROUND: Small intestinal bacterial overgrowth (SIBO) is characterized by the condition that bacteria overgrowth in the small intestine. Fecal microbiota transplantation (FMT) has been applied as an effective tool for reestablishing the structure of gut microbiota. However, whether FMT could be applied as a routine SIBO treatment has not been investigated. METHODS: In this trial, 55 SIBO patients were enrolled. All participants were randomized in two groups, and were given FMT capsule or placebo capsules once a week for 4 consecutive weeks. Measurements including the lactulose hydrogen breath test gastrointestinal symptoms, as well as fecal microbiota diversity were assessed before and after FMT therapy. RESULTS: Gastrointestinal symptoms significantly improved in SIBO patients after treatment with FMT compared to participants in placebo group. The gut microbiota diversity of FMT group had a significant increase, while placebo group showed none. CONCLUSIONS: This study suggests that applying FMT for patients with SIBO can alleviate gastrointestinal symptoms, indicating that FMT may be a promising and novel therapeutic regimen for SIBO. Trial registry This study was retrospectively registered with the Chinese Clinical Trial registry on 2019.7.10 (ID: ChiCTR1900024409, http://www.chictr.org.cn ).


Asunto(s)
Infecciones Bacterianas , Microbioma Gastrointestinal , Trasplante de Microbiota Fecal , Humanos , Lactulosa , Resultado del Tratamiento
11.
Gastric Cancer ; 24(2): 402-416, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33159601

RESUMEN

BACKGROUND: Aberrant activation of Wnt/ß-catenin signaling by dysregulated post-translational protein modifications, especially ubiquitination is causally linked to cancer development and progression. Although Lys48-linked ubiquitination is known to regulate Wnt/ß-catenin signaling, it remains largely obscure how other types of ubiquitination, such as linear ubiquitination governs its signaling activity. METHODS: The expression and regulatory mechanism of linear ubiquitin chain assembly complex (LUBAC) on Wnt/ß-catenin signaling was examined by immunoprecipitation, western blot and immunohistochemical staining. The ubiquitination status of ß-catenin was detected by ubiquitination assay. The impacts of SHARPIN, a core component of LUBAC on malignant behaviors of gastric cancer cells were determined by various functional assays in vitro and in vivo. RESULTS: Unlike a canonical role in promoting linear ubiquitination, SHARPIN specifically interacts with ß-catenin to maintain its protein stability. Mechanistically, SHARPIN competes with the E3 ubiquitin ligase ß-Trcp1 for ß-catenin binding, thereby decreasing ß-catenin ubiquitination levels to abolish its proteasomal degradation. Importantly, SHARPIN is required for invasiveness and malignant growth of gastric cancer cells in vitro and in vivo, a function that is largely dependent on its binding partner ß-catenin. In line with these findings, elevated expression of SHARPIN in gastric cancer tissues is associated with disease malignancy and correlates with ß-catenin expression levels. CONCLUSIONS: Our findings reveal a novel molecular link connecting linear ubiquitination machinery and Wnt/ß-catenin signaling via SHARPIN-mediated stabilization of ß-catenin. Targeting the linear ubiquitination-independent function of SHARPIN could be exploited to inhibit the hyperactive ß-catenin signaling in a subset of human gastric cancers.


Asunto(s)
Carcinogénesis/genética , Neoplasias Gástricas/genética , Ubiquitinación/genética , Ubiquitinas/genética , beta Catenina/genética , Humanos , Vía de Señalización Wnt/genética
12.
Mediators Inflamm ; 2021: 5525118, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054342

RESUMEN

BACKGROUND: Multiple organ failure (MOF) may lead to an increased mortality rate of moderately severe (MSAP) or severe acute pancreatitis (SAP). This study is aimed to use machine learning to predict the risk of MOF in the course of disease. METHODS: Clinical and laboratory features with significant differences between patients with and without MOF were screened out by univariate analysis. Prediction models were developed for selected features through six machine learning methods. The models were internally validated with a five-fold cross-validation, and a series of optimal feature subsets were generated in corresponding models. A test set was used to evaluate the predictive performance of the six models. RESULTS: 305 (68%) of 455 patients with MSAP or SAP developed MOF. Eighteen features with significant differences between the group with MOF and without it in the training and validation set were used for modeling. Interleukin-6 levels, creatinine levels, and the kinetic time were the three most important features in the optimal feature subsets selected by K-fold cross-validation. The adaptive boosting algorithm (AdaBoost) showed the best predictive performance with the highest AUC value (0.826; 95% confidence interval: 0.740 to 0.888). The sensitivity of AdaBoost (80.49%) and specificity of logistic regression analysis (93.33%) were the best scores among the six models in the test set. CONCLUSIONS: A predictive model of MOF complicated by MSAP or SAP was successfully developed based on machine learning. The predictive performance was evaluated by a test set, for which AdaBoost showed a satisfactory predictive performance. The study is registered with the China Clinical Trial Registry (Identifier: ChiCTR1800016079).


Asunto(s)
Insuficiencia Multiorgánica , Pancreatitis , Enfermedad Aguda , Estudios de Cohortes , Humanos , Aprendizaje Automático , Insuficiencia Multiorgánica/etiología
13.
Ecotoxicol Environ Saf ; 217: 112256, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33901779

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) has been the most common chronic liver disease in the world, including the developing countries. NAFLD is metabolic disease with significant lipid deposition in the hepatocytes of the liver, which is usually associated with oxidative stress, inflammation and fibrogenesis, and insulin resistance. Progressive NAFLD can develop into non-alcoholic steatohepatitis (NASH) or hepatocellular carcinoma. The current evidence proposes that environmental pollutants promote development and progression of NAFLD, and autophagy plays a vital role but is multifactorial affected in NAFLD. In this review, we analyzed on the regulations of common environmental pollutants on autophagy in NAFLD. To clarify the involved roles of autophagy, we discussed the dysregulation of autophagy by environmental pollutants in adipose tissue and gut, and their interactions with liver, as well as epigenetic regulation on autophagy by environmental pollutants. Furthermore, protective roles of potential therapeutic treatments on the multiple-hits of autophagy in NAFLD were descripted.


Asunto(s)
Autofagia/fisiología , Contaminantes Ambientales/toxicidad , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Tejido Adiposo/metabolismo , Carcinoma Hepatocelular/metabolismo , Contaminantes Ambientales/metabolismo , Epigénesis Genética , Hepatocitos/metabolismo , Humanos , Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Neoplasias Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Estrés Oxidativo
14.
Molecules ; 26(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669598

RESUMEN

Synthetic arylamines and dietary phytophenolics could inhibit ferroptosis, a recently discovered regulated cell death process. However, no study indicates whether their inhibitory mechanisms are inherently different. Herein, the ferroptosis-inhibitory mechanisms of selected ferrostatin-1 (Fer-1) and two dietary stilbenes (piceatannol and astringin) were compared. Cellular assays suggested that the ferroptosis-inhibitory and electron-transfer potential levels decreased as follows: Fer-1 >> piceatannol > astringin; however, the hydrogen-donating potential had an order different from that observed by the antioxidant experiments and quantum chemistry calculations. Quantum calculations suggested that Fer-1 has a much lower ionization potential than the two stilbenes, and the aromatic N-atoms were surrounded by the largest electron clouds. By comparison, the C4'O-H groups in the two stilbenes exhibited the lowest bond disassociation enthalpies. Finally, the three were found to produce corresponding dimer peaks through ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry analysis. In conclusion, Fer-1 mainly depends on the electron transfer of aromatic N-atoms to construct a redox recycle. However, piceatannol and astringin preferentially donate hydrogen atoms at the 4'-OH position to mediate the conventional antioxidant mechanism that inhibits ferroptosis, and to ultimately form dimers. These results suggest that dietary phytophenols may be safer ferroptosis inhibitors for balancing normal and ferroptotic cells than arylamines with high electron-transfer potential.


Asunto(s)
Ciclohexilaminas/farmacología , Dieta , Ferroptosis/efectos de los fármacos , Glucósidos/farmacología , Fenilendiaminas/farmacología , Estilbenos/farmacología , Animales , Antioxidantes/análisis , Óxidos N-Cíclicos/química , Ciclohexilaminas/química , Glucósidos/química , Imidazoles/química , Concentración 50 Inhibidora , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Modelos Moleculares , Fenilendiaminas/química , Piperazinas/farmacología , Ratas Sprague-Dawley , Electricidad Estática , Estilbenos/química
15.
Molecules ; 26(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34299576

RESUMEN

The search for a safe and effective inhibitor of ferroptosis, a recently described cell death pathway, has attracted increasing interest from scientists. Two hydrolyzable tannins, chebulagic acid and chebulinic acid, were selected for the study. Their optimized conformations were calculated using computational chemistry at the B3LYP-D3(BJ)/6-31G and B3LYP-D3(BJ)/6-311 + G(d,p) levels. The results suggested that (1) chebulagic acid presented a chair conformation, while chebulinic acid presented a skew-boat conformation; (2) the formation of chebulagic acid requires 762.1729 kcal/mol more molecular energy than chebulinic acid; and (3) the 3,6-HHDP (hexahydroxydiphenoyl) moiety was shown to be in an (R)- absolute stereoconfiguration. Subsequently, the ferroptosis inhibition of both tannins was determined using a erastin-treated bone marrow-derived mesenchymal stem cells (bmMSCs) model and compared to that of ferrostatin-1 (Fer-1). The relative inhibitory levels decreased in the following order: Fer-1 > chebulagic acid > chebulinic acid, as also revealed by the in vitro antioxidant assays. The UHPLC-ESI-Q-TOF-MS analysis suggested that, when treated with 16-(2-(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxazolidinyloxy free radicals, Fer-1 generated dimeric products, whereas the two acids did not. In conclusion, two hydrolyzable tannins, chebulagic acid and chebulinic acid, can act as natural ferroptosis inhibitors. Their ferroptosis inhibition is mediated by regular antioxidant pathways (ROS scavenging and iron chelation), rather than the redox-based catalytic recycling pathway exhibited by Fer-1. Through antioxidant pathways, the HHDP moiety in chebulagic acid enables ferroptosis-inhibitory action of hydrolyzable tannins.


Asunto(s)
Benzopiranos/farmacología , Ferroptosis/efectos de los fármacos , Glucósidos/farmacología , Taninos Hidrolizables/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Animales , Antioxidantes/química , Antioxidantes/farmacología , Benzopiranos/química , Células Cultivadas , Glucósidos/química , Taninos Hidrolizables/química , Células Madre Mesenquimatosas/citología , Modelos Moleculares , Ratas Sprague-Dawley
16.
Am J Transplant ; 20(2): 573-581, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31452332

RESUMEN

Recent evidence suggests that belatacept reduces the durability of preexisting antibodies to class I and class II human leukocyte antigens (HLAs). In this case series of 163 highly sensitized kidney transplant candidates whose calculated panel-reactive antibody (cPRA) activity was ≥98% to 100%, the impact of belatacept on preexisting HLA antibodies was assessed. Of the 163 candidates, 72 underwent transplantation between December 4, 2014 and April 15, 2017; 60 of these transplanted patients remained on belatacept consecutively for at least 6 months. We observed a decrease in the breadth and/or strength of HLA class I antibodies as assessed by FlowPRA in belatacept-treated patients compared to controls who did not receive belatacept. Specifically, significant HLA antibody reduction was evident for class I (P < .0009). Posttransplant belatacept-treated patients also had a clinically significant reduction in their cPRA compared to controls (P < .01). Collectively, these findings suggest belatacept can reduce HLA class I antibodies in a significant proportion of highly sensitized recipients and could be an option to improve pretransplant compatibility with organ donors.


Asunto(s)
Abatacept/uso terapéutico , Antígenos HLA/efectos de los fármacos , Inmunosupresores/uso terapéutico , Trasplante de Riñón , Adulto , Femenino , Humanos , Terapia de Inmunosupresión/métodos , Masculino , Persona de Mediana Edad , Receptores de Trasplantes
17.
Anticancer Drugs ; 31(9): 908-917, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32097138

RESUMEN

Hepatocellular carcinoma is the second leading cause of cancer-related death worldwide. Neural regulation plays an important role in the development of hepatocellular carcinoma, and activation of sympathetic nervous system can promote the migration and invasion of cancer cells. However, little research has been conducted on how the vagus nerve influences hepatocellular carcinoma. In this study, we found that the expression of vesicular acetylcholine transporter, a biomarker of vagus nerve, was associated with hepatocellular carcinoma patients' clinicopathological characteristics by immunohistochemistry. Further, activation of muscarinic acetylcholine receptor 1 (M1R) promoted HepG2 and SMMC-7721 cells migration and invasion and epithelial-mesenchymal transition via PI3K/Akt pathway. Moreover, inhibition of M1R by antagonist or shRNA suppressed hepatocellular carcinoma cells migration and invasion in vitro and in vivo, inhibited epithelial-mesenchymal transition and PI3K/Akt pathway. Therefore, these results indicate that activation of M1R promotes invasion of hepatocellular carcinoma through epithelial-mesenchymal transition and PI3K/Akt pathway.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Receptor Muscarínico M1/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Transición Epitelial-Mesenquimal , Femenino , Células Hep G2 , Xenoinjertos , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Invasividad Neoplásica , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Nervio Vago/patología
18.
Inorg Chem ; 59(12): 8603-8608, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32462872

RESUMEN

A large linear negative thermal expansion (NTE) and expanded NTE temperature range (ΔTNTE) were obtained in magnetoelastic CrTe1-xSex (0 ≤ x ≤ 0.15) compounds. For CrTe compound, its thermal expansion coefficient of volume (αV) was calculated to be -28.8 ppm K-1 with the temperature ranging from 280 to 340 K. Substituting Te with Se atoms, the NTE behavior and magnetic properties can be well manipulated. With increasing Se in CrTe1-xSex (0 ≤ x ≤ 0.15) compounds, the ΔTNTE increases from 60 K (280-340 K for x = 0), to 80 K (240-320 K for x = 0.05), to 95 K (200-295 K for x = 0.1), and finally to 100 K (170-270 K for x = 0.15). Furthermore, a linear NTE remains independent of temperature for samples with x ≤ 0.1. The relationship between tunable NTE and magnetic properties was analyzed in detail, indicating that the NTE in CrTe1-xSex compounds originates from the magnetovolume effect (MVE).

19.
J Gastroenterol Hepatol ; 35(1): 157-164, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31222831

RESUMEN

BACKGROUND AND AIM: Hepatocellular carcinoma (HCC) is the most common types of hepatic malignancies. This study aimed to better understand the pathogenesis of HCC and may help facilitate the improvement of the diagnostic of HCC. METHODS: The mRNA and miRNA expression profiles of HCC, which was retrieved from The Cancer Genome Atlas database, and the circRNA expression profiles of HCC, which was retrieved from Gene Expression Omnibus database, were included in this study to perform an integrated analysis. The differentially expressed mRNAs (DEmRNAs), differentially expressed miRNAs (DEmiRNAs), and differentially expressed circRNAs (DEcircRNAs) were identified, and competing endogenous RNA (ceRNA) (DEcircRNA-DEmiRNA-DEmRNA) regulatory network was conducted. Functional annotation of host gene of DEcircRNAs and DEmRNAs in ceRNA regulatory network was performed. Quantitative real-time polymerase chain reaction validation of the expression of the selected DEmRNAs, DEmiRNAs, and DEcircRNAs was performed. RESULTS: A total of 2982 DEmRNAs, 144 DEmiRNAs, and 264 DEcircRNAs were obtained. The ceRNA network contained 61 circRNA-miRNA pairs and 1149 miRNA-mRNA pairs, including 48 circRNAs, 30 miRNAs, and 1149 mRNAs. Functional annotation of DEmRNAs in ceRNA regulatory network revealed that these DEmRNAs were significantly enriched in tryptophan metabolism, fatty acid metabolism, and pathways in cancer. Except for ARNT2 and hsa-miR-214-3p, expression of the others in the quantitative real-time polymerase chain reaction results was consistent with that in our integrated analysis, generally. CONCLUSION: We speculate that hsa_circRNA_104268/hsa-miR-214-3p/E2F2, hsa_circRNA_104168/hsa-miR-139-5p/HRAS, and hsa_circRNA_104769/hsa-miR-93-5p/JUN interaction pairs may play a vital role in HCC. This study expected to provide a novel insight into the pathogenesis and therapy of HCC from the circRNA-miRNA-mRNA network view.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroARNs/genética , ARN Circular/genética , ARN Mensajero/genética , Humanos
20.
Can J Physiol Pharmacol ; 98(6): 357-365, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31846359

RESUMEN

Inflammation is a common inducer of numerous severe diseases such as sepsis. The NF-κB signaling pathway plays a key role in the inflammatory process. Its activation promotes the release of pro-inflammatory mediators like inducible nitric oxide synthase and tumor necrosis factor alpha. Peroxisome proliferator-activated receptor gamma (PPAR-γ) inactivates nuclear factor kappa B (NF-κB) and subsequently attenuates inflammation. Rhein, an agent isolated from rhubarb, has been known to have anti-inflammatory effects. However, its influence on PPAR-γ remains largely unknown. In this study, an inflammation model was constructed by stimulating RAW264.7 cells with lipopolysaccharide. Rhein was used as a therapeutic agent, while rosiglitazone (PPAR-γ activator) and GW9662 (PPAR-γ inhibitor) were used as disrupters for in depth studies. The results demonstrated that rhein inhibits NF-κB activation and inflammatory factor release. However, GW9662 significantly reduced this effect, indicating that PPAR-γ is a critical mediator in the rhein-mediated anti-inflammatory process. Additionally, positive modulation of PPAR-γ expression and activity by rosiglitazone correspondingly influenced the effects of rhein on inflammatory factors and NF-κB expression. We also found that rhein could enhance PPAR-γ, NF-κB, and histone deacetylase 3 (HDAC3) binding. These results indicate that rhein exerts its anti-inflammation function by regulating the PPAR-γ-NF-κB-HDAC3 axis.


Asunto(s)
Antraquinonas/farmacología , Antiinflamatorios/farmacología , Lipopolisacáridos/farmacología , FN-kappa B/antagonistas & inhibidores , PPAR gamma/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Antraquinonas/uso terapéutico , Antiinflamatorios/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Ratones , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA