Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; : 119553, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964573

RESUMEN

Evidence regarding the link between long-term ambient ozone (O3) exposure and childhood sleep disorders is little. This study aims to examine the associations between long-term exposure to O3 and sleep disorders in children. We conducted a population-based cross-sectional survey, including 185,428 children aged 6 to 18 years in 173 schools across 14 Chinese cities during 2012 and 2018. Parents or guardians completed a checklist using Sleep Disturbance Scale for Children, and O3 exposure at residential and school addresses was estimated using a satellite-based spatiotemporal model. We used generalized linear mixed models to test the associations with adjustment for factors including socio-demographic variables, lifestyle, meteorology and multiple pollutants. Mean concentrations of O3, particulate matter with diameters ≤2.5 mm (PM2.5) and nitrogen dioxide (NO2) were 88.9 µg/m3, 42.5 µg/m3 and 34.4 µg/m3, respectively. O3 and NO2 concentrations were similar among provinces, while PM2.5 concentration varied significantly among provinces. Overall, 19.4% of children had at least one sleep disorder. Long-term exposure to O3 was positively associated with odds of sleep disorders for all subtypes. For example, each interquartile increment in home-school O3 concentrations was associated with a higher odds ratio for global sleep disorder, at 1.22 (95% confidence interval: 1.18, 1.26). Similar associations were observed for sleep disorder subtypes. The associations remained similar after adjustment for PM2.5 and NO2. Moreover, these associations were heterogeneous regionally, with more prominent associations among children residing in southeast region than in northeast and northwest regions in China. We concluded that long-term exposure to O3 is positively associated with risks of childhood sleep disorders. These associations varied by geographical region of China.

2.
Environ Res ; 241: 117635, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37972813

RESUMEN

Information on the spatio-temporal patterns of the burden of ischemic heart disease (IHD) caused by ambient ambient fine particulate matter (PM2.5) in the global level is needed to prioritize the control of ambient air pollution and prevent the burden of IHD. The Global Burden of Disease Study (GBD) 2019 provides data on IHD attributable to ambient PM2.5. The IHD burden and mortality attributable to ambient PM2.5 were analyzed by year, age, gender, socio-demographic index (SDI) level, geographical region and country. Estimated annual percentage change (EAPC) was calculated to estimate the temporal trends of age-standardized mortality rate (ASMR) and age-standardized disability-adjusted life years rate (ASDR) from 1990 to 2019. Globally, the ASMR and ASDR for ambient PM2.5-related IHD tended to level off generally, with EAPC of -0.03 (95% CI: -0.06, 0.12) and 0.3 (95% CI: 0.22, 0.37), respectively. In the past 30 years, there were obvious differences in the trend of burden change among different regions. A highest increased burden was estimated in low-middle SDI region (EAPC of ASMR: 3.73 [95% CI: 3.56, 3.9], EAPC of ASDR: 3.83 [95% CI: 3.64, 4.02]). In contrast, the burden in high SDI region (EAPC of ASMR: -4.48 [95% CI: -4.6, -4.35], EAPC of ASDR: -3.98 [95% CI: -4.12, -3.85]) has declined most significantly. Moreover, this burden was higher among men and older populations. EAPCs of the ASMR (R = -0.776, p < 0.001) and ASDR (R = -0.781, p < 0.001) of this burden had significant negative correlations with the countries' SDI level. In summary, although trends in the global burden of IHD attributable to ambient PM2.5 are stabilizing, but this burden has shifted from high SDI countries to middle and low SDI countries, especially among men and elderly populations. To reduce this burden, the air pollution management prevention need to be further strengthened, especially among males, older populations, and middle and low SDI countries.


Asunto(s)
Contaminación del Aire , Isquemia Miocárdica , Anciano , Masculino , Humanos , Carga Global de Enfermedades , Contaminación del Aire/efectos adversos , Contaminación Ambiental , Isquemia Miocárdica/epidemiología , Años de Vida Ajustados por Calidad de Vida , Salud Global
3.
Environ Sci Technol ; 57(51): 21570-21580, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-37989488

RESUMEN

The limited characterization and detection capacity of unknown compounds hinder our understanding of the molecular composition of toxic compounds in PM2.5. The present study applied Fourier transform ion cyclotron resonance mass spectrometry coupled with negative and positive electrospray ionization sources (ESI-/ESI+ FT-ICR-MS) to probe the molecular characteristics and dynamic formation processes of the effective proinflammatory components in organic aerosols (OAs) of PM2.5 in Guangzhou for one year. We detected abundant proinflammatory molecules in OAs, mainly classified as CHON compounds (compounds composed of C, H, O, and N atoms) in elemental and nitroaromatic compounds (NACs) in structures. From the perspective of the formation process, we discovered that these proinflammatory molecules, especially toxic NACs, were largely driven by secondary nitrate formation and biomass burning (in emission source), as well as SO2 (in atmospheric evolution). In addition, our results indicated that the secondary processes had replaced the primary emission as the main contributing source of the toxic proinflammatory compounds in OAs. This study highlights the importance of community measures to control the production of nitroaromatic compounds derived from secondary nitrate formation and biomass burning in urban areas.


Asunto(s)
Nitratos , Compuestos Orgánicos , Nitratos/análisis , Biomasa , Espectrometría de Masas , Compuestos Orgánicos/análisis , Material Particulado/análisis , Aerosoles/análisis , Bioensayo
4.
Environ Res ; 204(Pt D): 112397, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34798120

RESUMEN

BACKGROUND: The widely used Air Quality Index (AQI) has been criticized due to its inaccuracy, leading to the development of the air quality health index (AQHI), an improvement on the AQI. However, there is currently no consensus on the most appropriate construction strategy for the AQHI. OBJECTIVES: In this study, we aimed to evaluate the utility of AQHIs constructed by different models and health outcomes, and determine a better strategy. METHODS: Based on the daily time-series outpatient visits and hospital admissions from 299 hospitals (January 2016-December 2018), and mortality (January 2017-December 2019) in Guangzhou, China, we utilized cumulative risk index (CRI) method, Bayesian multi-pollutant weighted (BMW) model and standard method to construct AQHIs for different health outcomes. The effectiveness of AQHIs constructed by different strategies was evaluated by a two-stage validation analysis and examined their exposure-response relationships with the cause-specific morbidity and mortality. RESULTS: Validation by different models showed that AQHI constructed with the BMW model (BMW-AQHI) had the strongest association with the health outcome either in the total population or subpopulation among air quality indexes, followed by AQHI constructed with the CRI method (CRI-AQHI), then common AQHI and AQI. Further validation by different health outcomes showed that AQHI constructed with the risk of outpatient visits generally exhibited the highest utility in presenting mortality and morbidity, followed by AQHI constructed with the risk of hospitalizations, then mortality-based AQHI and AQI. The contributions of NO2 and O3 to the final AQHI were prominent, while the contribution of SO2 and PM2.5 were relatively small. CONCLUSIONS: The BMW model is likely to be more effective for AQHI construction than CRI and standard methods. Based on the BMW model, the AQHI constructed with the outpatient data may be more effective in presenting short-term health risks associated with the co-exposure to air pollutants than the mortality-based AQHI and existing AQIs.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Teorema de Bayes , China , Humanos , Morbilidad , Material Particulado/análisis
5.
J Environ Sci (China) ; 114: 233-248, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35459489

RESUMEN

The conventional Ensemble Kalman filter (EnKF), which is now widely used to calibrate emission inventories and to improve air quality simulations, is susceptible to simulation errors of meteorological inputs, making accurate updates of high temporal-resolution emission inventories challenging. In this study, we developed a novel meteorologically adjusted inversion method (MAEInv) based on the EnKF to improve daily emission estimations. The new method combines sensitivity analysis and bias correction to alleviate the inversion biases caused by errors of meteorological inputs. For demonstration, we used the MAEInv to inverse daily carbon monoxide (CO) emissions in the Pearl River Delta (PRD) region, China. In the case study, 60% of the total CO simulation biases were associated with sensitive meteorological inputs, which would lead to the overestimation of daily variations of posterior emissions. Using the new inversion method, daily variations of emissions shrank dramatically, with the percentage change decreased by 30%. Also, the total amount of posterior CO emissions estimated by the MAEInv decreased by 14%, indicating that posterior CO emissions might be overestimated using the conventional EnKF. Model evaluations using independent observations revealed that daily CO emissions estimated by MAEInv better reproduce the magnitude and temporal patterns of ambient CO concentration, with a higher correlation coefficient (R, +37.0%) and lower normalized mean bias (NMB, -17.9%). Since errors of meteorological inputs are major sources of simulation biases for both low-reactive and reactive pollutants, the MAEInv is also applicable to improve the daily emission inversions of reactive pollutants.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Monóxido de Carbono/análisis , China , Monitoreo del Ambiente/métodos , Ríos
6.
Environ Sci Technol ; 55(14): 9740-9749, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34213322

RESUMEN

Although organochlorine pesticides (OCPs) have been banned for more than three decades, their concentrations have only decreased gradually. This may be largely attributable to their environmental persistence, illegal application, and exemption usage. This study assessed the historic and current regional context for dichlorodiphenyltrichloroethane (DDT), chlordane, and hexachlorobenzene (HCB), which were added to the Stockholm Convention in 2001. An air sampling campaign was carried out in 2018 in nine cities of the Pearl River Delta (PRD), where the historical OCP application was the most intensive in China. Different seasonalities were observed: DDT exhibited higher concentrations in summer than in winter; chlordane showed less seasonal variation, whereas HCB was higher in winter. The unique coupling of summer monsoon with DDT-infused paint usage, winter monsoon with HCB-combustion emission, and local chlordane emission jointly presents a dynamic picture of these OCPs in the PRD air. We used the BETR Global model to back-calculate annual local emissions, which accounted for insignificant contributions to the nationally documented production (<1‰). Local emissions were the main sources of p,p'-DDT and chlordane, while ocean sources were limited (<4%). This study shows that geographic-anthropogenic factors, including source, history, and air circulation pattern, combine to affect the regional fate of OCP compounds.


Asunto(s)
Hidrocarburos Clorados , Plaguicidas , China , Clordano/análisis , DDT/análisis , Monitoreo del Ambiente , Hexaclorobenceno/análisis , Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Ríos
7.
Environ Sci Technol ; 55(23): 15616-15624, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34756032

RESUMEN

Nitrous acid (HONO) is an important photochemical precursor to hydroxyl radicals particularly in an urban atmosphere, yet its primary emission and secondary production are often poorly constrained. Here, we measured HONO and nitrogen oxides (NOx) at both the inlet and the outlet in a busy urban tunnel (>30 000 vehicles per day) in south China. Multiple linear regression revealed that 73.9% of the inlet-outlet incremental HONO concentration was explained by NO2 surface conversion, while the rest was directly emitted from vehicles with an average HONO/NOx ratio of 1.31 ± 0.87%, which was higher than that from previous tunnel studies. The uptake coefficient of NO2, γ(NO2), on the tunnel surfaces was calculated to be (7.01 ± 0.02) × 10-5, much higher than that widely used in models. As tunnel surfaces are typical of urban surfaces in the wall and road materials, the dominance of HONO from surface reactions in the poorly lit urban tunnel demonstrated the importance of NO2 conversion on urban surfaces, instead of NO2 conversion on the aerosol surface, for both daytime and night-time HONO even in polluted ambient air. The higher γ(NO2) on urban surfaces and the elevated HONO/NOx ratio from this study can help explain the missing HONO sources in urban areas.


Asunto(s)
Ácido Nitroso , Emisiones de Vehículos , Aerosoles , Atmósfera , Dióxido de Nitrógeno
8.
Environ Health ; 20(1): 127, 2021 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-34920730

RESUMEN

BACKGROUND: Previous studies have revealed that current secondhand smoke exposure showed highly suggestive evidence for increased risk of simultaneous sleep problems in children. Data on the associations between early-life exposure to SHS with subsequent sleep problems in children were scarce. We aimed to evaluate the associations of early-life SHS exposure with sleep problems in children. METHODS: In this cross-sectional study, children were recruited from elementary and middle schools in Liaoning Province, China between April 2012 and January 2013. We assessed early-life SHS exposure (pregnancy and the first 2 years of life) via questionnaires. Sleep problems and different types of sleep-related symptoms were measured based on the validated tool of the Sleep Disturbance Scale for Children (SDSC). Generalized linear mixed models were applied to estimate the associations of early-life SHS exposure with sleep problems. RESULTS: We included a total of 45,562 children (22,657 [49.7%] males; mean [SD] age, 11.0 [2.6] years) and 6167 of them (13.5%) were exposed to early-life SHS during both pregnancy and the first 2 years of life. Compared with unexposed counterparts, children exposed to early-life SHS had higher total T-scores of SDSC (ß = 4.32; 95%CI: 4.06, 4.58) and higher odds of increased sleep problems (OR = 2.14; 95%CI: 1.89, 2.42). When considering different sleep-related symptoms, the associations between early-life SHS exposure and symptom of sleep-wake transition disorders (i.e., bruxism) were the strongest in all analyses. CONCLUSIONS: Early-life SHS exposure was associated with higher odds of global sleep problems and different sleep-related symptoms in children aged 6-18 years. Our findings highlight the importance to strengthen efforts to support the critical importance of maintaining a smoke-free environment especially in early life.


Asunto(s)
Trastornos del Sueño-Vigilia , Contaminación por Humo de Tabaco , Niño , Estudios Transversales , Exposición a Riesgos Ambientales/análisis , Femenino , Humanos , Masculino , Embarazo , Trastornos del Sueño-Vigilia/epidemiología , Encuestas y Cuestionarios , Contaminación por Humo de Tabaco/efectos adversos
9.
Ecotoxicol Environ Saf ; 208: 111590, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396113

RESUMEN

AIMS: To assess possible effect of air quality improvements, we investigated the temporal change in hospital admissions for acute exacerbations of chronic obstructive pulmonary disease (AECOPD) associated with pollutant concentrations. METHODS: We collected daily concentrations of particulate matter (i.e., PM2.5, PM10 and PMcoarse), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), and admissions for AECOPD for 21 cities in Guangdong from 2013 to 2017. We examined the association of air pollution with AECOPD admissions using two-stage time-series analysis, and estimated the annual attributable fractions, numbers, and direct hospitalization costs of AECOPD admissions with principal component analysis. RESULTS: From 2013-2017, mean daily concentrations of SO2, PM10 and PM2.5 declined by nearly 40%, 30%, and 26% respectively. As the average daily 8 h O3 concentration increased considerably, the number of days exceeding WHO target (i.e.,100 µg/m³) increased from 103 in 2015-152 in 2017. For each interquartile range increase in pollutant concentration, the relative risks of AECOPD admission at lag 0-3 were 1.093 (95% CI 1.06-1.13) for PM2.5, 1.092 (95% CI 1.08-1.11) for O3, and 1.092 (95% CI 1.05-1.14) for SO2. Attributable fractions of AECOPD admission advanced by air pollution declined from 9.5% in 2013 to 4.9% in 2016, then increased to 6.0% in 2017. A similar declining trend was observed for direct AECOPD hospitalization costs. CONCLUSION: Declined attributable hospital admissions for AECOPD may be associated with the reduction in concentrations of PM2.5, PM10 and SO2 in Guangdong, while O3 has emerged as an important risk factor. Summarizes the main finding of the work: Reduction in PM may result in declined attributable hospitalizations for AECOPD, while O3 has emerged as an important risk factor following an intervention.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/estadística & datos numéricos , Hospitalización/estadística & datos numéricos , Contaminación del Aire/análisis , Monóxido de Carbono/análisis , China , Hospitales , Humanos , Dióxido de Nitrógeno/análisis , Ozono/análisis , Material Particulado/análisis , Enfermedad Pulmonar Obstructiva Crónica/etiología , Factores de Riesgo , Dióxido de Azufre/análisis
10.
Environ Sci Technol ; 53(3): 1269-1277, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30354091

RESUMEN

We used a single particle mass spectrometry to online detect chemical compositions of individual particles over four seasons in Guangzhou. Number fractions (Nfs) of all the measured particles that contained oxalate were 1.9%, 5.2%, 25.1%, and 15.5%, whereas the Nfs of Fe-containing particles that were internally mixed with oxalate were 8.7%, 23.1%, 45.2%, and 31.2% from spring to winter, respectively. The results provided the first direct field measurements for the enhanced formation of oxalate associated with Fe-containing particles. Other oxidized organic compounds including formate, acetate, methylglyoxal, glyoxylate, purivate, malonate, and succinate were also detected in the Fe-containing particles. It is likely that reactive oxidant species (ROS) via Fenton reactions enhanced the formation of these organic compounds and their oxidation product oxalate. Gas-particle partitioning of oxalic acid followed by coordination with Fe might also partly contribute to the enhanced oxalate. Aerosol water content likely played an important role in the enhanced oxalate formation when the relative humidity is >60%. Interactions with Fe drove the diurnal variation of oxalate in the Fe-containing particles. The study could provide a reference for model simulation to improve understanding on the formation and fate of oxalate, and the evolution and climate impacts of particulate Fe.


Asunto(s)
Polvo , Compuestos Orgánicos , Aerosoles , Carbón Mineral , Estaciones del Año
11.
Environ Res ; 170: 252-259, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30597289

RESUMEN

No evidence exists concerning the association between blood pressure and ambient particles with aerodynamic diameter ≤ 1.0 µm (PM1), a major component of PM2.5 (≤ 2.5 µm) particles, and potentially causing more hazardous health effects than PM2.5. We aimed to examine the associations of blood pressure in adults with both PM1 and PM2.5 in China. In 2009, we randomly selected 24,845 participants aged 18-74 years from 33 communities in China. Using a standardized mercuric-column sphygmomanometer, we measured blood pressure. Long-term exposure (2006-08) to PM1 and PM2.5 were estimated using a spatial statistical model. Generalized linear mixed models were used to evaluate the associations between air pollutants and blood pressure and hypertension prevalence, controlling for multiple covariates. A 10-µg/m3 increase in PM1 was significantly associated with an increase of 0.57 (95% CI 0.31-0.83) mmHg in systolic blood pressure (SBP), 0.19 (95% CI 0.03-0.35) mmHg increase in diastolic blood pressure (DBP), and a 5% (OR=1.05; 95% CI 1.01-1.10) increase in odds for hypertension. Similar associations were detected for PM2.5. Furthermore, PM1-2.5 showed no association with blood pressure or hypertension. In summary, both PM1 and PM2.5 exposures were associated with elevated blood pressure levels and hypertension prevalence in Chinese adults. In addition, most of the pro-hypertensive effects of PM2.5 may come from PM1. Further longitudinal designed studies are warranted to validate our findings.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire/estadística & datos numéricos , Presión Sanguínea , Hipertensión/epidemiología , Material Particulado , Adolescente , Adulto , Anciano , Pueblo Asiatico , China/epidemiología , Exposición a Riesgos Ambientales , Humanos , Persona de Mediana Edad , Características de la Residencia , Adulto Joven
12.
Environ Res ; 164: 204-211, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29501830

RESUMEN

Little evidence exists about the effects of long-term exposure to ambient air pollution on metabolic syndrome (MetS). This study aimed to determine the association between long-term ambient air pollution and MetS in China. A total of 15,477 adults who participated in the 33 Communities Chinese Health Study (33CCHS) in 2009 were evaluated. MetS was defined based on the recommendation by the Joint Interim Societies. Exposure to air pollutants was assessed using data from monitoring stations and a spatial statistical model (including particles with diameters ≤ 1.0 µm (PM1), ≤ 2.5 µm (PM2.5), and ≤ 10 µm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3)). Two-level logistic regression analyses were utilized to assess the associations between air pollutants and MetS. The prevalence of MetS was 30.37%. The adjusted odds ratio of MetS per 10 µg/m3 increase in PM1, PM2.5, PM10, SO2, NO2, and O3 were 1.12 (95% CI = 1.00-1.24), 1.09 (95% CI = 1.00-1.18), 1.13 (95% CI = 1.08-1.19), 1.10 (95% CI = 1.02-1.18), 1.33 (95% CI = 1.12-1.57), and 1.10 (95% CI = 1.01-1.18), respectively. Stratified analyses indicated that the above associations were stronger in participants with the demographic variables of males, < 50 years of age, and higher income, as well as with the behavioral characteristics of smoking, drinking, and consuming sugar-sweetened soft drinks frequently. This study indicates that long-term exposure to ambient air pollutants may increase the risk of MetS, especially among males, the young to middle aged, those of low income, and those with unhealthy lifestyles.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Exposición a Riesgos Ambientales , Síndrome Metabólico , Adulto , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , China , Humanos , Masculino , Síndrome Metabólico/epidemiología , Persona de Mediana Edad , Dióxido de Nitrógeno , Material Particulado
13.
Environ Health ; 17(1): 57, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29954383

RESUMEN

BACKGROUND: Research regarding the interaction of ambient air pollution and overweight on prehypertension is scarce. We aimed to test whether overweight modifies the association between long-term exposure to ambient air pollution and prehypertension in Chinese adults. METHODS: A total of 16,188 Chinese adults, aged 18-74 years old, from 33 communities in 3 Northeastern Chinese cities were evaluated. Three-year average levels of particles with an aerodynamic diameter ≤ 10 µm (PM10), sulfur dioxides (SO2), nitrogen dioxides (NO2), and ozone (O3) were calculated at monitoring stations. Generalized additive models and 2-level regression analyses were applied. RESULTS: We observed significant interactions between air pollutants and overweight on prehypertension and blood pressure. The associations of PM10, SO2, NO2, and O3 with prehypertension were significant among overweight participants (Prevalence Rate Ratios (PRRs) per interquartile range (IQR) of air pollutants: 1.14-1.20), but not among normal weight participants (PRRs: 0.98-1.04). PM10, SO2, and O3 were significantly associated with systolic blood pressure (SBP), and the magnitudes of these associations were higher among overweight adults (increases in SBP per IQR of air pollutants: 1.82-4.53 mmHg) than those among normal weight adults (increases in SBP: 0.42-0.61 mmHg). For diastolic blood pressure (DBP), significant associations were mainly observed in overweight participants (increases in DBP: 0.80-1.63 mmHg). Further stratified analyses showed that all these interactions were stronger in women, the older, and participants living in areas with lower income levels or higher population density. CONCLUSIONS: Being overweight may enhance the effects of ambient air pollution on prehypertension and blood pressure in Chinese adults.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/efectos adversos , Sobrepeso/fisiopatología , Prehipertensión/epidemiología , Adulto , Anciano , China/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sobrepeso/etiología , Prehipertensión/etiología , Adulto Joven
14.
Environ Sci Technol ; 48(20): 12002-11, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25264588

RESUMEN

We conducted a source apportionment and investigated the atmospheric behavior of carbonaceous aerosols during hazy and normal days using radiocarbon ((14)C) and biomass burning/secondary organic aerosol (SOA) tracers during winter in Guangzhou, China. Haze episodes were formed either abruptly by local emissions or through the accumulation of particles transported from other areas. The average contributions of fossil carbon to elemental carbon (EC), water-insoluble organic carbon, and water-soluble organic carbon were 71 ± 10%, 40 ± 6% and 33 ± 3%, respectively. High contributions of fossil carbon to EC (80-90%) were observed for haze samples that were substantially impacted by local emissions, as were the highest (lowest) ratios for NO3(-)/SO4(2-) (OC/EC), which indicates that these particles mainly came from local vehicle exhaust. Low contributions of fossil carbon to EC (60-70%) were found for haze particles impacted by regional transport. Secondary organic carbon (SOC) calculated using SOA tracers accounts for only ∼ 20% of the SOC estimated by (14)C, which is probably because some important volatile organic carbons are not taken into account in the SOA tracer calculation method and because of the large discrepancy in ambient conditions between the atmosphere and smog chambers. A total of 33 ± 11% of the SOC was of fossil origin, a portion of which could be influenced by humidity.


Asunto(s)
Aerosoles/análisis , Monitoreo del Ambiente/métodos , Aerosoles/química , Contaminantes Atmosféricos/análisis , Biomasa , Carbono/análisis , Carbono/química , Radioisótopos de Carbono , China , Humedad , Nitratos/análisis , Material Particulado/análisis , Estaciones del Año , Solubilidad , Sulfatos/análisis , Emisiones de Vehículos , Agua
15.
Environ Sci Technol ; 48(16): 9236-45, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25072510

RESUMEN

Biogenic organosulfates (OSs) are important markers of secondary organic aerosol (SOA) formation involving cross reactions of biogenic precursors (terpenoids) with anthropogenic pollutants. Until now, there has been rare information about biogenic OSs in the air of highly polluted areas. In this study, fine particle (PM2.5) samples were separately collected in daytime and nighttime from summer to fall 2010 at a site in the central Pearl River Delta (PRD), South China. Pinene-derived nitrooxy-organosulfates (pNOSs) and isoprene-derived OSs (iOSs) were quantified using a liquid chromatograph (LC) coupled with a tandem mass spectrometer (MS/MS) operated in negative electrospray ionization (ESI) mode. The pNOSs with MW 295 exhibited higher levels in fall (151 ± 86.9 ng m(-3)) than summer (52.4 ± 34.0 ng m(-3)), probably owing to the elevated levels of NOx and sulfate in fall when air masses mainly passed through city clusters in the PRD and biomass burning was enhanced. In contrast to observations elsewhere where higher levels occurred at nighttime, pNOS levels in the PRD were higher during the daytime in both seasons, indicating that pNOS formation was likely driven by photochemistry over the PRD. This conclusion is supported by several lines of evidence: the specific pNOS which could be formed through both daytime photochemistry and nighttime NO3 chemistry exhibited no day-night variation in abundance relative to other pNOS isomers; the production of the hydroxynitrate that is the key precursor for this specific pNOS was found to be significant through photochemistry but negligible through NO3 chemistry based on the mechanisms in the Master Chemical Mechanism (MCM). For iOSs, 2-methyltetrol sulfate ester which could be formed from isoprene-derived epoxydiols (IEPOX) under low-NOx conditions showed low concentrations (below the detection limit to 2.09 ng m(-3)), largely due to the depression of IEPOX formation by the high NOx levels over the PRD.


Asunto(s)
Butadienos/química , Hemiterpenos/química , Monoterpenos/química , Pentanos/química , Sulfatos/análisis , China , Ríos , Estaciones del Año , Sulfatos/química , Espectrometría de Masas en Tándem
16.
J Environ Sci (China) ; 26(1): 23-36, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24649688

RESUMEN

Based on the observation by a Regional Air Quality Monitoring Network including 16 monitoring stations, temporal and spatial variations of ozone (O3), NO2 and total oxidant (O(x)) were analyzed by both linear regression and cluster analysis. A fast increase of regional O3 concentrations of 0.86 ppbV/yr was found for the annual averaged values from 2006 to 2011 in Guangdong, China. Such fast O3 increase is accompanied by a correspondingly fast NO(x) reduction as indicated by a fast NO2 reduction rate of 0.61 ppbV/yr. Based on a cluster analysis, the monitoring stations were classified into two major categories--rural stations (non-urban) and suburban/urban stations. The O3 concentrations at rural stations were relatively conserved while those at suburban/urban stations showed a fast increase rate of 2.0 ppbV/yr accompanied by a NO2 reduction rate of 1.2 ppbV/yr. Moreover, a rapid increase of the averaged O3 concentrations in springtime (13%/yr referred to 2006 level) was observed, which may result from the increase of solar duration, reduction of precipitation in Guangdong and transport from Eastern Central China. Application of smog production algorithm showed that the photochemical O3 production is mainly volatile organic compounds (VOC)-controlled. However, the photochemical O3 production is sensitive to both NO(x) and VOC for O3 pollution episode. Accordingly, it is expected that a combined NO(x) and VOC reduction will be helpful for the reduction of the O3 pollution episodes in Pearl River Delta while stringent VOC emission control is in general required for the regional O3 pollution control.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Ozono/análisis , China , Análisis por Conglomerados , Óxidos de Nitrógeno/análisis , Análisis de Regresión , Ríos
17.
Sci Total Environ ; 873: 162432, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36841415

RESUMEN

Automobile exhaust is a major source of volatile organic compounds (VOCs) in metropolitan areas, yet it is difficult to accurately determine the contributions of different types of on-road vehicles. Tunnel tests are an effective way to measure real-world vehicle emissions, and the data collected are also suitable for receptor modeling to analyze the contributions of non-methane hydrocarbons (NMHCs) from different types of vehicles, as the closed environment ensures good mixing and minimal aging. In this study, tunnel tests were conducted inside a heavily trafficked city tunnel in Guangzhou in south China, and the positive matrix factorization (PMF) model was applied to the inlet-outlet incremental NMHC data. The results revealed that gasoline vehicles (GVs), Liquefied Petroleum Gas vehicles (LPGVs), and diesel vehicles (DVs) were responsible for 39 %, 45 % and 16 % of NMHCs, and 52 %, 23 %, and 24 % of the ozone formation potentials, respectively. LPGVs were the largest contributor of (56 %) alkanes, and GVs were the largest contributor of aromatics (61 %) and C2-C4 alkenes (55 %). With the video-recorded traffic counts the emissions of different fuel types are further compared on a per-vehicle-per-kilometer basis, and the results reveal that LPGVs and GVs were comparable in the OFPs of NMHCs emitted per kilometer, while on average a DV emitted 2.0 times more NMHCs than a GV with 2.4 times more OFPs. This study highlights substantial contribution of reactive alkenes and aromatics by DVs and the benefits of strengthening diesel exhaust control in terms of preventing ozone pollution.

18.
Environ Int ; 173: 107820, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36842384

RESUMEN

Identify risk drivers is the key condition in air pollution control, and biological effect-directed analysis is the most commented method for combing chemical identify and human health. The water-soluble organic matter contained in PM2.5 plays an important role in human health, while it is also the most difficult to identify its chemical information. Exploring the structural characteristics and pollution sources of its key toxic components is the optimized strategy to meet this question. In this study, the induction of apoptosis by the water-soluble fractions (WSF) of PM2.5 samples collected in 10 major cities in China over a period of 1 year was observed in vitro in Beas-2b cells. Organic carbon structures were examined using nuclear magnetic resonance; air potential sources were identified using δ13C and 14C isotopic markers. Apoptosis induction by WSF in PM2.5 was generally stronger in northern cities than in southern cities, and in winter than in summer. Organic compounds with aromatic and double-bond carbon structures from secondary products of motor vehicle exhausts, coal-derived emissions, and emissions derived from the burning of core residues may be primarily responsible for apoptosis induction by PM2.5. Our results will contribute to understanding the toxic substances contained in WSF and provide basic data for accurate pollution control.


Asunto(s)
Contaminantes Atmosféricos , Humanos , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Material Particulado/toxicidad , Material Particulado/análisis , Agua/análisis , Monitoreo del Ambiente/métodos , Emisiones de Vehículos/análisis , China , Apoptosis , Estaciones del Año , Carbono/análisis , Aerosoles/análisis
19.
Environ Pollut ; 325: 121430, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36924913

RESUMEN

Studies have shown that water-insoluble organic matter (WIOM) accounts for a large part of the organic components in cloud water and significantly contributes to brown carbon. However, the molecular characteristics of WIOM in cloud droplets remain unclear, hampering the understanding of their climate effects. In this study, cloud water was collected at a remote mountain site in South China during the winter of 2020, and WIOM was separated by membrane filtration, extracted by methanol, and characterized using Fourier transform ion cyclotron resonance mass spectrometry coupled with an electrospray ionization source. A total of 697-1637 molecules were identified in WIOM. WIOM is characterized by lower oxidation states of carbon atoms (-1.10 âˆ¼ -0.84 in WIOM vs. -0.58 âˆ¼ -0.51 in water-soluble organic matter (WSOM) on average), higher carbon number (14.12-20.59 vs. 9.87-10.56) and lower unsaturation (double-bond equivalent 4.55-4.95 vs. 4.84-5.23) relative to WSOM. More abundant lipid-like compounds (12.2-41.9% in WIOM vs. <2% in WSOM) but less highly oxygenated compounds (<7% vs. 28.6-35.3%) exist in WIOM. More than 30% of WIOM molecules in cloud water are common with interstitial particles, implying that WIOM in cloud water may originate from aerosol activation and/or collision. Some unique molecules in WIOM in cloud water are identified as aqueous-phase oligomerization products, indicating the aqueous-phase formation of WIOM. Further analysis of the intermolecular relationship shows that WIOM has the potential to transform into WSOM by partitioning into the dissolved phase, oxidation and functionalization by heteroatom-containing groups, representing a previously unidentified pathway for WSOM formation in cloud water. The results provide new insights into the in-cloud chemistry, which would assist in the understanding of the aqueous formation and evolution of WIOM.


Asunto(s)
Carbono , Agua , Agua/química , Espectrometría de Masas , Carbono/análisis , Estaciones del Año , Aerosoles/análisis
20.
Curr Environ Health Rep ; 10(4): 501-507, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38030873

RESUMEN

PURPOSE OF REVIEW: The increasing prevalence of cardiometabolic risk factors (CRFs) contributes to the rise in cardiovascular disease. Previous research has established a connection between air pollution and both the development and severity of CRFs. Given the ongoing impact of air pollution on human health, this review aims to summarize the latest research findings and provide an overview of the relationship between different types of air pollutants and CRFs. RECENT FINDINGS: CRFs include health conditions like diabetes, obesity, hypertension etc. Air pollution poses significant health risks and encompasses a wide range of pollutant types, air pollutants, such as particulate matter (PM), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O2). More and more population epidemiological studies have shown a positive correlation between air pollution and CRFs. Although various pollutants have diverse effects on specific cellular molecular pathways, their main influence is on oxidative stress, inflammation response, and impairment of endothelial function. More and more studies have proved that air pollution can promote the occurrence and development of cardiovascular and metabolic risk factors, and the research on the relationship between air pollution and CRFs has grown intensively. An increasing number of studies are using new biological monitoring indicators to assess the occurrence and development of CRFs resulting from exposure to air pollution. Abnormalities in some important biomarkers in the population (such as homocysteine, uric acid, and C-reactive protein) caused by air pollution deserve more attention. Further research is warranted to more fully understand the link between air pollution and novel CRF biomarkers and to investigate potential prevention and interventions that leverage the mechanistic link between air pollution and CRFs.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedades Cardiovasculares , Ozono , Humanos , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Ozono/análisis , Dióxido de Nitrógeno/análisis , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/inducido químicamente , Biomarcadores , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA