Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuroendocrinology ; 114(2): 179-191, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37729896

RESUMEN

INTRODUCTION: Suicide in bipolar disorder (BD) is a multifaceted behavior, involving specific neuroendocrine and psychological mechanisms. According to previous studies, we hypothesized that suicidal BD patients may exhibit impaired dynamic functional connectivity (dFC) variability of hippocampal subregions and hypothalamic-pituitary-adrenal (HPA) axis activity, which may be associated with suicide-related personality traits. The objective of our study was to clarify this. METHODS: Resting-state functional magnetic resonance imaging data were obtained from 79 patients with BD, 39 with suicidal attempt (SA), and 40 without SA, and 35 healthy controls (HCs). The activity of the HPA axis was assessed by measuring morning plasma adrenocorticotropic hormone (ACTH) and cortisol (CORT) levels. All participants underwent personality assessment using Minnesota Multiphasic Personality Inventory-2 (MMPI-2). RESULTS: BD patients with SA exhibited increased dFC variability between the right caudal hippocampus and the left superior temporal gyrus (STG) when compared with non-SA BD patients and HCs. BD with SA also showed significantly lower ACTH levels in comparison with HCs, which was positively correlated with increased dFC variability between the right caudal hippocampus and the left STG. BD with SA had significantly higher scores of Hypochondriasis, Depression, and Schizophrenia than non-SA BD. Additionally, multivariable regression analysis revealed the interaction of ACTH × dFC variability between the right caudal hippocampus and the left STG independently predicted MMPI-2 score (depression evaluation) in suicidal BD patients. CONCLUSION: These results suggested that suicidal BD exhibited increased dFC variability of hippocampal-temporal cortex and less HPA axis hyperactivity, which may affect their personality traits.


Asunto(s)
Trastorno Bipolar , Humanos , Ideación Suicida , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal , Hormona Adrenocorticotrópica/metabolismo , Hipocampo/metabolismo , Personalidad , Imagen por Resonancia Magnética
2.
Eur Arch Psychiatry Clin Neurosci ; 274(1): 165-180, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37000246

RESUMEN

Numerous neuroimaging studies of resting-state functional imaging and voxel-based morphometry (VBM) have revealed abnormalities in specific brain regions in obsessive-compulsive disorder (OCD), but results have been inconsistent. We conducted a whole-brain voxel-wise meta-analysis on resting-state functional imaging and VBM studies that investigated differences of functional activity and gray matter volume (GMV) between patients with OCD and healthy controls (HCs) using seed-based d mapping (SDM) software. A total of 41 independent studies (51 datasets) for resting-state functional imaging and 42 studies (46 datasets) for VBM were included by a systematic literature search. Overall, patients with OCD displayed increased spontaneous functional activity in the bilateral inferior frontal gyrus (IFG) (extending to the bilateral insula) and bilateral medial prefrontal cortex/anterior cingulate cortex (mPFC/ACC), as well as decreased spontaneous functional activity in the bilateral paracentral lobule, bilateral cerebellum, left caudate nucleus, left inferior parietal gyri, and right precuneus cortex. For the VBM meta-analysis, patients with OCD displayed increased GMV in the bilateral thalamus (extending to the bilateral cerebellum), right striatum, and decreased GMV in the bilateral mPFC/ACC and left IFG (extending to the left insula). The conjunction analyses found that the bilateral mPFC/ACC, left IFG (extending to the left insula) showed decreased GMV with increased intrinsic function in OCD patients compared to HCs. This meta-analysis demonstrated that OCD exhibits abnormalities in both function and structure in the bilateral mPFC/ACC, insula, and IFG. A few regions exhibited only functional or only structural abnormalities in OCD, such as the default mode network, striatum, sensorimotor areas, and cerebellum. It may provide useful insights for understanding the underlying pathophysiology of OCD and developing more targeted and efficacious treatment and intervention strategies.


Asunto(s)
Encéfalo , Trastorno Obsesivo Compulsivo , Humanos , Encéfalo/diagnóstico por imagen , Corteza Cerebral , Sustancia Gris , Imagen por Resonancia Magnética , Trastorno Obsesivo Compulsivo/diagnóstico por imagen
3.
Psychol Med ; 53(9): 3837-3848, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35257645

RESUMEN

BACKGROUND: Mounting evidence showed that insula contributed to the neurobiological mechanism of suicidal behaviors in bipolar disorder (BD). However, no studies have analyzed the dynamic functional connectivity (dFC) of insular Mubregions and its association with personality traits in BD with suicidal behaviors. Therefore, we investigated the alterations of dFC variability in insular subregions and personality characteristics in BD patients with a recent suicide attempt (SA). METHODS: Thirty unmedicated BD patients with SA, 38 patients without SA (NSA) and 35 demographically matched healthy controls (HCs) were included. The sliding-window analysis was used to evaluate whole-brain dFC for each insular subregion seed. We assessed between-group differences of psychological characteristics on the Minnesota Multiphasic Personality Inventory-2. Finally, a multivariate regression model was adopted to predict the severity of suicidality. RESULTS: Compared to NSA and HCs, the SA group exhibited decreased dFC variability values between the left dorsal anterior insula and the left anterior cerebellum. These dFC variability values could also be utilized to predict the severity of suicidality (r = 0.456, p = 0.031), while static functional connectivity values were not appropriate for this prediction. Besides, the SA group scored significantly higher on the schizophrenia clinical scales (p < 0.001) compared with the NSA group. CONCLUSIONS: Our findings indicated that the dysfunction of insula-cerebellum connectivity may underlie the neural basis of SA in BD patients, and highlighted the dFC variability values could be considered a neuromarker for predictive models of the severity of suicidality. Moreover, the psychiatric features may increase the vulnerability of suicidal behavior.


Asunto(s)
Trastorno Bipolar , Esquizofrenia , Humanos , Intento de Suicidio/psicología , Encéfalo , Ideación Suicida , Imagen por Resonancia Magnética
4.
Acta Psychiatr Scand ; 147(4): 345-359, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36807120

RESUMEN

INTRODUCTION: Numerous neuroimaging studies of resting-state functional imaging and voxel-based morphometry (VBM) have revealed that patients with substance use disorder (SUD) may present brain abnormalities, but their results were inconsistent. This multimodal neuroimaging meta-analysis aimed to estimate common and specific alterations in SUD patients by combining information from all available studies of spontaneous functional activity and gray matter volume (GMV). METHODS: A whole-brain meta-analysis on resting-state functional imaging and VBM studies was conducted using the Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) software, followed by multimodal overlapping to comprehensively investigate function and structure of the brain in SUD. RESULTS: In this meta-analysis, 39 independent studies with 47 datasets related to resting-state functional brain activity (1444 SUD patients; 1446 healthy controls [HCs]) were included, as well as 77 studies with 89 datasets for GMV (3457 SUD patients; 3774 HCs). Patients with SUD showed the decreased resting-state functional brain activity in the bilateral anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC). For the VBM meta-analysis, patients with SUD showed the reduced GMV in the bilateral ACC/mPFC, insula, thalamus extending to striatum, and left sensorimotor cortex. CONCLUSIONS: This multimodal meta-analysis exhibited that SUD shows common impairment in both function and structure in the ACC/mPFC, suggesting that the deficits in functional and structural domains could be correlated together. In addition, a few regions exhibited only structural impairment in SUD, including the insula, thalamus, striatum, and sensorimotor areas.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Corteza Cerebral , Neuroimagen
5.
Psychol Med ; 52(4): 747-756, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-32648539

RESUMEN

BACKGROUND: Accumulating studies have found structural and functional abnormalities of the striatum in bipolar disorder (BD) and major depressive disorder (MDD). However, changes in intrinsic brain functional connectivity dynamics of striato-cortical circuitry have not been investigated in BD and MDD. This study aimed to investigate the shared and specific patterns of dynamic functional connectivity (dFC) variability of striato-cortical circuitry in BD and MDD. METHODS: Brain resting-state functional magnetic resonance imaging data were acquired from 128 patients with unmedicated BD II (current episode depressed), 140 patients with unmedicated MDD, and 132 healthy controls (HCs). Six pairs of striatum seed regions were selected: the ventral striatum inferior (VSi) and the ventral striatum superior (VSs), the dorsal-caudal putamen (DCP), the dorsal-rostral putamen (DRP), and the dorsal caudate and the ventral-rostral putamen (VRP). The sliding-window analysis was used to evaluate dFC for each seed. RESULTS: Both BD II and MDD exhibited increased dFC variability between the left DRP and the left supplementary motor area, and between the right VRP and the right inferior parietal lobule. The BD II had specific increased dFC variability between the right DCP and the left precentral gyrus compared with MDD and HCs. The MDD had increased dFC variability between the left VSi and the left medial prefrontal cortex compared with BD II and HCs. CONCLUSIONS: The patients with BD and MDD shared common dFC alteration in the dorsal striatal-sensorimotor and ventral striatal-cognitive circuitries. The patients with MDD had specific dFC alteration in the ventral striatal-affective circuitry.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Trastorno Bipolar/diagnóstico por imagen , Encéfalo , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos
6.
Psychol Med ; 52(14): 2861-2873, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36093787

RESUMEN

BACKGROUND: Numerous studies of resting-state functional imaging and voxel-based morphometry (VBM) have revealed differences in specific brain regions of patients with bipolar disorder (BD), but the results have been inconsistent. METHODS: A whole-brain voxel-wise meta-analysis was conducted on resting-state functional imaging and VBM studies that compared differences between patients with BD and healthy controls using Seed-based d Mapping with Permutation of Subject Images software. RESULTS: A systematic literature search identified 51 functional imaging studies (1842 BD and 2190 controls) and 83 VBM studies (2790 BD and 3690 controls). Overall, patients with BD displayed increased resting-state functional activity in the left middle frontal gyrus, right inferior frontal gyrus (IFG) extending to the right insula, right superior frontal gyrus and bilateral striatum, as well as decreased resting-state functional activity in the left middle temporal gyrus extending to the left superior temporal gyrus and post-central gyrus, left cerebellum, and bilateral precuneus. The meta-analysis of VBM showed that patients with BD displayed decreased VBM in the right IFG extending to the right insula, temporal pole and superior temporal gyrus, left superior temporal gyrus extending to the left insula, temporal pole, and IFG, anterior cingulate cortex, left superior frontal gyrus (medial prefrontal cortex), left thalamus, and right fusiform gyrus. CONCLUSIONS: The multimodal meta-analyses suggested that BD showed similar patterns of aberrant brain activity and structure in the insula extending to the temporal cortex, fronto-striatal-thalamic, and default-mode network regions, which provide useful insights for understanding the underlying pathophysiology of BD.


Asunto(s)
Trastorno Bipolar , Humanos , Trastorno Bipolar/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Neuroimagen
7.
Mol Psychiatry ; 26(12): 7363-7371, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385597

RESUMEN

Aberrant topological organization of whole-brain networks has been inconsistently reported in studies of patients with major depressive disorder (MDD), reflecting limited sample sizes. To address this issue, we utilized a big data sample of MDD patients from the REST-meta-MDD Project, including 821 MDD patients and 765 normal controls (NCs) from 16 sites. Using the Dosenbach 160 node atlas, we examined whole-brain functional networks and extracted topological features (e.g., global and local efficiency, nodal efficiency, and degree) using graph theory-based methods. Linear mixed-effect models were used for group comparisons to control for site variability; robustness of results was confirmed (e.g., multiple topological parameters, different node definitions, and several head motion control strategies were applied). We found decreased global and local efficiency in patients with MDD compared to NCs. At the nodal level, patients with MDD were characterized by decreased nodal degrees in the somatomotor network (SMN), dorsal attention network (DAN) and visual network (VN) and decreased nodal efficiency in the default mode network (DMN), SMN, DAN, and VN. These topological differences were mostly driven by recurrent MDD patients, rather than first-episode drug naive (FEDN) patients with MDD. In this highly powered multisite study, we observed disrupted topological architecture of functional brain networks in MDD, suggesting both locally and globally decreased efficiency in brain networks.


Asunto(s)
Trastorno Depresivo Mayor , Encéfalo , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética/métodos , Vías Nerviosas , Tamaño de la Muestra
8.
Bipolar Disord ; 24(4): 400-411, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34606159

RESUMEN

BACKGROUND: Recently, functional homotopy (FH) architecture, defined as robust functional connectivity (FC) between homotopic regions, has been frequently reported to be altered in MDD patients (MDDs) but with divergent locations. METHODS: In this study, we obtained resting-state functional magnetic resonance imaging (R-fMRI) data from 1004 MDDs (mean age, 33.88 years; age range, 18-60 years) and 898 matched healthy controls (HCs) from an aggregated dataset from 20 centers in China. We focused on interhemispheric function integration in MDDs and its correlation with clinical characteristics using voxel-mirrored homotopic connectivity (VMHC) devised to inquire about FH patterns. RESULTS: As compared with HCs, MDDs showed decreased VMHC in visual, motor, somatosensory, limbic, angular gyrus, and cerebellum, particularly in posterior cingulate gyrus/precuneus (PCC/PCu) (false discovery rate [FDR] q < 0.002, z = -7.07). Further analysis observed that the reduction in SMG and insula was more prominent with age, of which SMG reflected such age-related change in males instead of females. Besides, the reduction in MTG was found to be a male-special abnormal pattern in MDDs. VMHC alterations were markedly related to episode type and illness severity. The higher Hamilton Depression Rating Scale score, the more apparent VMHC reduction in the primary visual cortex. First-episode MDDs revealed stronger VMHC reduction in PCu relative to recurrent MDDs. CONCLUSIONS: We confirmed a significant VMHC reduction in MDDs in broad areas, especially in PCC/PCu. This reduction was affected by gender, age, episode type, and illness severity. These findings suggest that the depressive brain tends to disconnect information exchange across hemispheres.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Adulto Joven
9.
Proc Natl Acad Sci U S A ; 116(18): 9078-9083, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30979801

RESUMEN

Major depressive disorder (MDD) is common and disabling, but its neuropathophysiology remains unclear. Most studies of functional brain networks in MDD have had limited statistical power and data analysis approaches have varied widely. The REST-meta-MDD Project of resting-state fMRI (R-fMRI) addresses these issues. Twenty-five research groups in China established the REST-meta-MDD Consortium by contributing R-fMRI data from 1,300 patients with MDD and 1,128 normal controls (NCs). Data were preprocessed locally with a standardized protocol before aggregated group analyses. We focused on functional connectivity (FC) within the default mode network (DMN), frequently reported to be increased in MDD. Instead, we found decreased DMN FC when we compared 848 patients with MDD to 794 NCs from 17 sites after data exclusion. We found FC reduction only in recurrent MDD, not in first-episode drug-naïve MDD. Decreased DMN FC was associated with medication usage but not with MDD duration. DMN FC was also positively related to symptom severity but only in recurrent MDD. Exploratory analyses also revealed alterations in FC of visual, sensory-motor, and dorsal attention networks in MDD. We confirmed the key role of DMN in MDD but found reduced rather than increased FC within the DMN. Future studies should test whether decreased DMN FC mediates response to treatment. All R-fMRI indices of data contributed by the REST-meta-MDD consortium are being shared publicly via the R-fMRI Maps Project.


Asunto(s)
Encéfalo/fisiopatología , Trastorno Depresivo Mayor/fisiopatología , Mapeo Encefálico/métodos , China , Conectoma/métodos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/metabolismo , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Vías Nerviosas/fisiopatología , Descanso/fisiología
10.
Hum Brain Mapp ; 42(15): 5154-5169, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34296492

RESUMEN

Anorexia nervosa (AN) is a complex psychiatric disorder with poorly understood etiology. Numerous voxel-based morphometry (VBM) and resting-state functional imaging studies have provided strong evidence of abnormal brain structure and intrinsic and functional activities in AN, but with inconsistent conclusions. Herein, a whole-brain meta-analysis was conducted on VBM (660 patients with AN, and 740 controls) and resting-state functional imaging (425 patients with AN, and 461 controls) studies that measured differences in the gray matter volume (GMV) and intrinsic functional activity between patients with AN and healthy controls (HCs). Overall, patients with AN displayed decreased GMV in the bilateral median cingulate cortex (extending to the bilateral anterior and posterior cingulate cortex), and left middle occipital gyrus (extending to the left inferior parietal lobe). In resting-state functional imaging studies, patients with AN displayed decreased resting-state functional activity in the bilateral anterior cingulate cortex and bilateral median cingulate cortex, and increased resting-state functional activity in the right parahippocampal gyrus. This multimodal meta-analysis identified reductions of gray matter and functional activity in the anterior and median cingulate in patients with AN, which contributes to further understanding of the pathophysiology of AN.


Asunto(s)
Anorexia Nerviosa , Corteza Cerebral , Neuroimagen , Anorexia Nerviosa/diagnóstico por imagen , Anorexia Nerviosa/patología , Anorexia Nerviosa/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Humanos
11.
Psychol Med ; : 1-11, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33602352

RESUMEN

BACKGROUND: Inflammation might play a role in bipolar disorder (BD), but it remains unclear the relationship between inflammation and brain structural and functional abnormalities in patients with BD. In this study, we focused on the alterations of functional connectivity (FC), peripheral pro-inflammatory cytokines and their correlations to investigate the role of inflammation in FC in BD depression. METHODS: In this study, 42 unmedicated patients with BD II depression and 62 healthy controls (HCs) were enrolled. Resting-state-functional magnetic resonance imaging was performed in all participants and independent component analysis was used. Serum levels of Interleukin-6 (IL-6) and Interleukin-8 (IL-8) were measured in all participants. Correlation between FC values and IL-6 and IL-8 levels in BD was calculated. RESULTS: Compared with the HCs, BD II patients showed decreased FC in the left orbitofrontal cortex (OFC) implicating the limbic network and the right precentral gyrus implicating the somatomotor network. BD II showed increased IL-6 (p = 0.039), IL-8 (p = 0.002) levels. Moreover, abnormal FC in the right precentral gyrus were inversely correlated with the IL-8 (r = -0.458, p = 0.004) levels in BD II. No significant correlation was found between FC in the left OFC and cytokines levels. CONCLUSIONS: Our findings that serum IL-8 levels are associated with impaired FC in the right precentral gyrus in BD II patients suggest that inflammation might play a crucial role in brain functional abnormalities in BD.

12.
Cereb Cortex ; 30(3): 1117-1128, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-31408101

RESUMEN

The aim of this study was to develop and validate a method of disease classification for bipolar disorder (BD) by functional activity and connectivity using radiomics analysis. Ninety patients with unmedicated BD II as well as 117 healthy controls underwent resting-state functional magnetic resonance imaging (rs-fMRI). A total of 4 types of 7018 features were extracted after preprocessing, including mean regional homogeneity (mReHo), mean amplitude of low-frequency fluctuation (mALFF), resting-state functional connectivity (RSFC), and voxel-mirrored homotopic connectivity (VMHC). Then, predictive features were selected by Mann-Whitney U test and removing variables with a high correlation. Least absolute shrinkage and selection operator (LASSO) method was further used to select features. At last, support vector machine (SVM) model was used to estimate the state of each subject based on the selected features after LASSO. Sixty-five features including 54 RSFCs, 7 mALFFs, 1 mReHo, and 3 VMHCs were selected. The accuracy and area under curve (AUC) of the SVM model built based on the 65 features is 87.3% and 0.919 in the training dataset, respectively, and the accuracy and AUC of this model validated in the validation dataset is 80.5% and 0.838, respectively. These findings demonstrate a valid radiomics approach by rs-fMRI can identify BD individuals from healthy controls with a high classification accuracy, providing the potential adjunctive approach to clinical diagnostic systems.


Asunto(s)
Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/fisiopatología , Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Imagen por Resonancia Magnética , Adolescente , Adulto , Área Bajo la Curva , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiopatología , Máquina de Vectores de Soporte , Adulto Joven
13.
Psychol Med ; 50(3): 465-474, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30868989

RESUMEN

BACKGROUND: Previous studies have analyzed brain functional connectivity to reveal the neural physiopathology of bipolar disorder (BD) and major depressive disorder (MDD) based on the triple-network model [involving the salience network, default mode network (DMN), and central executive network (CEN)]. However, most studies assumed that the brain intrinsic fluctuations throughout the entire scan are static. Thus, we aimed to reveal the dynamic functional network connectivity (dFNC) in the triple networks of BD and MDD. METHODS: We collected resting state fMRI data from 51 unmedicated depressed BD II patients, 51 unmedicated depressed MDD patients, and 52 healthy controls. We analyzed the dFNC by using an independent component analysis, sliding window correlation and k-means clustering, and used the parameters of dFNC state properties and dFNC variability for group comparisons. RESULTS: The dFNC within the triple networks could be clustered into four configuration states, three of them showing dense connections (States 1, 2, and 4) and the other one showing sparse connections (State 3). Both BD and MDD patients spent more time in State 3 and showed decreased dFNC variability between posterior DMN and right CEN (rCEN) compared with controls. The MDD patients showed specific decreased dFNC variability between anterior DMN and rCEN compared with controls. CONCLUSIONS: This study revealed more common but less specific dFNC alterations within the triple networks in unmedicated depressed BD II and MDD patients, which indicated their decreased information processing and communication ability and may help us to understand their abnormal affective and cognitive functions clinically.


Asunto(s)
Trastorno Bipolar/fisiopatología , Encéfalo/fisiopatología , Trastorno Depresivo Mayor/fisiopatología , Vías Nerviosas/fisiopatología , Adolescente , Adulto , Trastorno Bipolar/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Trastorno Depresivo Mayor/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
14.
Brain Behav Immun ; 89: 615-622, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32688026

RESUMEN

BACKGROUND: Systemic inflammation and immune dysregulation have been considered as risk factors in the pathophysiology of mood disorders including bipolar disorder (BD). Previous neuroimaging studies have demonstrated metabolic, structural and functional abnormalities in the insula in BD, proposed that the insula played an important role in BD. We herein aimed to explore neural mechanisms underlying inflammation-induced in the insular subregions functional connectivity (FC) in patients with BD. METHODS: Brain resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired from 41 patients with unmedicated BD II (current episode depressed), 68 healthy controls (HCs). Three pairs of insular seed regions were selected: the bilateral anterior insula (AI), the bilateral middle insula (MI) and the bilateral posterior insula (PI), and calculated the whole-brain FC for each subregion. Additionally, the serum levels of pro-inflammatory cytokines in patients and HCs, including IL-6 and TNF-α, were detected. Then the partial correlation coefficients between the abnormal insular subregions FC values and pro-inflammatory cytokines levels in patients with BD II depression were calculated. RESULTS: The BD II depression group exhibited decreased FC between the right PI and the left postcentral gyrus, and increased FC between the left AI and the bilateral insula (extended to the right putamen) when compared with the HC group. Moreover, the patients with BD II depression showed higher IL-6 and TNF-α levels than HCs, and IL-6 level was negatively correlated with FC of the right PI to the left postcentral gyrus. CONCLUSIONS: Our results demonstrated that abnormal FC between the bilateral insula, and between the insula and sensorimotor areas in BD. Moreover, disrupted FC between the insula and sensorimotor areas was associated with elevated pro-inflammatory cytokine levels of IL-6 in BD.


Asunto(s)
Trastorno Bipolar , Trastorno Bipolar/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Humanos , Inflamación/diagnóstico por imagen , Imagen por Resonancia Magnética , Neuroimagen
15.
J Psychiatry Neurosci ; 45(1): 55-68, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31580042

RESUMEN

Background: Resting-state functional MRI (fMRI) studies have provided much evidence for abnormal intrinsic brain activity in schizophrenia, but results have been inconsistent. Methods: We conducted a meta-analysis of whole-brain, resting-state fMRI studies that explored differences in amplitude of low-frequency fluctuation (ALFF) between people with schizophrenia (including first episode and chronic) and healthy controls. Results: A systematic literature search identified 24 studies comparing a total of 1249 people with schizophrenia and 1179 healthy controls. Overall, patients with schizophrenia displayed decreased ALFF in the bilateral postcentral gyrus, bilateral precuneus, left inferior parietal gyri and right occipital lobe, and increased ALFF in the right putamen, right inferior frontal gyrus, left inferior temporal gyrus and right anterior cingulate cortex. In the subgroup analysis, patients with first-episode schizophrenia demonstrated decreased ALFF in the bilateral inferior parietal gyri, right precuneus and left medial prefrontal cortex, and increased ALFF in the bilateral putamen and bilateral occipital gyrus. Patients with chronic schizophrenia showed decreased ALFF in the bilateral postcentral gyrus, left precuneus and right occipital gyrus, and increased ALFF in the bilateral inferior frontal gyri, bilateral superior frontal gyrus, left amygdala, left inferior temporal gyrus, right anterior cingulate cortex and left insula. Limitations: The small sample size of our subgroup analysis, predominantly Asian samples, processing steps and publication bias could have limited the accuracy of the results. Conclusion: Our comprehensive meta-analysis suggests that findings of aberrant regional intrinsic brain activity during the initial stages of schizophrenia, and much more widespread damage with the progression of disease, may contribute to our understanding of the progressive pathophysiology of schizophrenia.


Asunto(s)
Corteza Cerebral/fisiopatología , Neuroimagen Funcional , Imagen por Resonancia Magnética , Esquizofrenia/fisiopatología , Adulto , Corteza Cerebral/diagnóstico por imagen , Humanos , Persona de Mediana Edad , Esquizofrenia/diagnóstico por imagen , Adulto Joven
16.
Aust N Z J Psychiatry ; 54(11): 1115-1124, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32815392

RESUMEN

BACKGROUND: Bipolar disorder is associated with a high risk of suicide. Routine neuroimaging examination exhibited that bipolar disorder with suicidality was associated with brain structural and functional changes. However, the alterations of brain dynamics have still remained elusive. PURPOSE: To investigate the alterations of brain dynamics in unmedicated bipolar disorder II depression with suicidality and predict the severity of suicidality. MATERIALS AND METHODS: This prospective study included 106 bipolar disorder II participants (20 with suicidal attempt, 35 with suicidal ideation, 51 without suicidal ideation) and 50 healthy controls who underwent resting-state functional magnetic resonance imaging between February 2016 and December 2017. We first used sliding window analysis to evaluate the dynamic amplitude of low-frequency fluctuations. Then, we predicted the severity of suicidality using a multivariate regression model. RESULTS: One-way analysis of covariance revealed that the dynamic amplitude of low-frequency fluctuations in the right temporal pole, inferior temporal gyrus, superior temporal gyrus and the bilateral precuneus/posterior cingulate cortex was significantly different among the four groups. Post hoc pairwise comparisons revealed that dynamic amplitude of low-frequency fluctuations was remarkably decreased in the bilateral precuneus/posterior cingulate cortex in the three bipolar disorder II groups compared with that in healthy controls group. Increased dynamic amplitude of low-frequency fluctuations was found in the right superior temporal gyrus and inferior temporal gyrus in the suicidal attempt group compared with that in the other groups, and in the right temporal pole in the suicidal attempt group compared with that in the suicidal ideation and healthy controls groups. Importantly, these temporal variabilities could be used to predict the severity of suicidality (r = 0.330, p = 0.036), whereas static amplitude of low-frequency fluctuations couldn't (r = -0.050, p = 0.532). CONCLUSION: Our findings indicated that alterations of temporal variability in the precuneus/posterior cingulate cortex are such a common feature of bipolar disorder patients. Besides, the severity of suicidality could be predicted by the dynamic amplitude of low-frequency fluctuations abnormalities rather than static amplitude of low-frequency fluctuations abnormalities, which is the first evidence of dynamic brain alterations in bipolar disorder patients with suicidality. The proposed predictive model may be advantageous for clinical applications.


Asunto(s)
Trastorno Bipolar/complicaciones , Encéfalo/diagnóstico por imagen , Suicidio , Adulto , Trastorno Bipolar/psicología , China , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Estudios Prospectivos , Estudios Retrospectivos , Índice de Severidad de la Enfermedad
17.
Psychol Med ; 49(3): 510-518, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29734951

RESUMEN

BACKGROUND: Bipolar disorder (BD) has been associated with altered brain structural and functional connectivity. However, little is known regarding alterations of the structural brain connectome in BD. The present study aimed to use diffusion-tensor imaging (DTI) and graph theory approaches to investigate the rich club organization and white matter structural connectome in BD. METHODS: Forty-two patients with unmedicated BD depression and 59 age-, sex- and handedness-matched healthy control participants underwent DTI. The whole-brain structural connectome was constructed by a deterministic fiber tracking approach. Graph theory analysis was used to examine the group-specific global and nodal topological properties, and rich club organizations, and then nonparametric permutation tests were used for group comparisons of network parameters. RESULTS: Compared with healthy control participants, the patients with BD showed abnormal global properties, including increased characteristic path length, and decreased global efficiency and local efficiency. Locally, the patients with BD showed abnormal nodal parameters (nodal strength, nodal efficiency, and nodal betweenness) predominantly in the parietal, orbitofrontal, occipital, and cerebellar regions. Moreover, the patients with BD showed decreased rich club and feeder connectivity density. CONCLUSIONS: Our results may reflect the disrupted white matter topological organization in the whole-brain, and abnormal regional connectivity supporting cognitive and affective functioning in depressed BD, which, in part, be due to impaired rich club connectivity.


Asunto(s)
Trastorno Bipolar/fisiopatología , Encéfalo/fisiopatología , Vías Nerviosas/fisiopatología , Adolescente , Adulto , Trastorno Bipolar/diagnóstico por imagen , Estudios de Casos y Controles , China , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sustancia Blanca/fisiopatología , Adulto Joven
18.
Neuroendocrinology ; 108(3): 232-243, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30673659

RESUMEN

BACKGROUND/AIMS: Although abnormalities of amplitude of low-frequency fluctuations (ALFF) and hormone levels of hypothalamus-pituitary-thyroid axis have been reported in patients with bipolar disorder (BD), the association between abnormal ALFF and serum thyroid hormone levels remains unknown. METHOD: A total of 90 patients with unmedicated BD II depression and 100 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging, and then routine band (0.01-0.1 Hz), slow-5 band (0.01-0.027 Hz), and slow-4 band (0.027-0.073 Hz) ALFF analysis were performed. Additionally, serum thyroid hormone levels including free tri-iodothyronine (FT3), total tri-iodothyronine (TT3), free thyroxin (FT4), total thyroxin (TT4), and thyroid-stimulating hormone (TSH) were detected. The correlation between abnormal serum thyroid hormone levels and ALFF values in patients with BD II depression was calculated. RESULTS: Compared with the HCs, patients with BD II depression showed decreased ALFF in bilateral precuneus (PCu)/posterior cingulate cortex (PCC) in routine and slow-4 frequency bands, decreased ALFF in the right PCu, and increased ALFF in the right middle occipital gyrus (MOG) in the slow-5 frequency band. Additionally, patients with BD II depression showed lower TSH level than HCs, and TSH level was positively correlated with ALFF values in the bilateral PCu/PCC in the routine frequency band. CONCLUSIONS: These findings suggest that patients with BD II depression display intrinsic activity abnormalities, mainly in the PCu/PCC and MOG, which are associated with specific frequency bands. Moreover, altered intrinsic activity in the PCu/PCC may be related to TSH levels in bipolar II depression.


Asunto(s)
Trastorno Bipolar/fisiopatología , Giro del Cíngulo/fisiopatología , Lóbulo Occipital/fisiopatología , Lóbulo Parietal/fisiopatología , Tirotropina/sangre , Adolescente , Adulto , Trastorno Bipolar/sangre , Estudios de Casos y Controles , Femenino , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tiroxina/sangre , Triyodotironina/sangre , Adulto Joven
19.
Aust N Z J Psychiatry ; 52(10): 962-971, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29232968

RESUMEN

OBJECTIVES: Several recent studies have reported a strong association between the cerebellar structural and functional abnormalities and psychiatric disorders. However, there are no studies to investigate possible changes in cerebellar functional connectivity in bipolar disorder. This study aimed to examine the whole-brain functional connectivity pattern of patients with remitted bipolar disorder II, in particular in the cerebellum. METHODS: A total of 25 patients with remitted bipolar disorder II and 25 controls underwent resting-state functional magnetic resonance imaging and neuropsychological tests. Voxel-wise whole-brain connectivity was analyzed using a graph theory approach: functional connectivity strength. A seed-based resting-state functional connectivity analysis was further performed to investigate abnormal functional connectivity pattern of those regions with changed functional connectivity strength. RESULTS: Remitted bipolar disorder II patients had significantly decreased functional connectivity strength in the bilateral posterior lobes of cerebellum (mainly lobules VIIb/VIIIa). The seed-based functional connectivity analyses revealed decreased functional connectivity between the right posterior cerebellum and the default mode network (i.e. right posterior cingulate cortex/precuneus and right superior temporal gyrus), bilateral hippocampus, right putamen, left paracentral lobule and bilateral posterior cerebellum and decreased functional connectivity between the left posterior cerebellum and the right inferior parietal lobule and bilateral posterior cerebellum in patients with remitted bipolar disorder II. CONCLUSION: Our results suggest that cerebellar dysconnectivity, in particular distributed cerebellar-cerebral functional connectivity, might be associated with the pathogenesis of bipolar disorder.


Asunto(s)
Trastorno Bipolar/fisiopatología , Cerebelo/fisiopatología , Vías Nerviosas/fisiopatología , Adolescente , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Inducción de Remisión , Adulto Joven
20.
Neurosci Biobehav Rev ; 164: 105792, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969310

RESUMEN

The actual role of coronavirus disease 2019 (COVID-19) in brain damage has been increasingly reported, necessitating a meta-analysis to collate and summarize the inconsistent findings from functional imaging and voxel-based morphometry (VBM) studies. A comprehensive voxel-wise meta-analysis of the whole brain was conducted to identify alterations in functional activity and gray matter volume (GMV) between COVID-19 patients and healthy controls (HCs) by using Seed-based d Mapping software. We included 15 functional imaging studies (484 patients with COVID-19, 534 HCs) and 9 VBM studies (449 patients with COVID-19, 388 HCs) in the analysis. Overall, patients with COVID-19 exhibited decreased functional activity in the right superior temporal gyrus (STG) (extending to the right middle and inferior temporal gyrus, insula, and temporal pole [TP]), left insula, right orbitofrontal cortex (OFC) (extending to the right olfactory cortex), and left cerebellum compared to HCs. For VBM, patients with COVID-19, relative to HCs, showed decreased GMV in the bilateral anterior cingulate cortex/medial prefrontal cortex (extending to the bilateral OFC), and left cerebellum, and increased GMV in the bilateral amygdala (extending to the bilateral hippocampus, STG, TP, MTG, and right striatum). Moreover, overlapping analysis revealed that patients with COVID-19 exhibited both decreased functional activity and increased GMV in the right TP (extending to the right STG). The multimodal meta-analysis suggests that brain changes of function and structure in the temporal lobe, OFC and cerebellum, and functional or structural alterations in the insula and the limbic system in COVID-19. These findings contribute to a better understanding of the pathophysiology of brain alterations in COVID-19. SIGNIFICANCE STATEMENT: This first large-scale multimodal meta-analysis collates existing neuroimaging studies and provides voxel-wise functional and structural whole-brain abnormalities in COVID-19. Findings of this meta-analysis provide valuable insights into the dynamic brain changes (from infection to recovery) and offer further explanations for the pathophysiological basis of brain alterations in COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA