RESUMEN
Fumarate is an oncometabolite. However, the mechanism underlying fumarate-exerted tumorigenesis remains unclear. Here, utilizing human type2 papillary renal cell carcinoma (PRCC2) as a model, we show that fumarate accumulates in cells deficient in fumarate hydratase (FH) and inhibits PTEN to activate PI3K/AKT signaling. Mechanistically, fumarate directly reacts with PTEN at cysteine 211 (C211) to form S-(2-succino)-cysteine. Succinated C211 occludes tethering of PTEN with the cellular membrane, thereby diminishing its inhibitory effect on the PI3K/AKT pathway. Functionally, re-expressing wild-type FH or PTEN C211S phenocopies an AKT inhibitor in suppressing tumor growth and sensitizing PRCC2 to sunitinib. Analysis of clinical specimens indicates that PTEN C211 succination levels are positively correlated with AKT activation in PRCC2. Collectively, these findings elucidate a non-metabolic, oncogenic role of fumarate in PRCC2 via direct post-translational modification of PTEN and further reveal potential stratification strategies for patients with FH loss by combinatorial AKTi and sunitinib therapy.
Asunto(s)
Carcinoma Papilar , Carcinoma de Células Renales , Fumaratos , Neoplasias Renales , Fosfohidrolasa PTEN , Carcinogénesis , Carcinoma Papilar/tratamiento farmacológico , Carcinoma Papilar/enzimología , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/enzimología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Cisteína/metabolismo , Resistencia a Antineoplásicos , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Fumaratos/farmacología , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/enzimología , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Sunitinib/farmacologíaRESUMEN
BACKGROUND: The cardiac-protective role of GSNOR (S-nitrosoglutathione reductase) in the cytoplasm, as a denitrosylase enzyme of S-nitrosylation, has been reported in cardiac remodeling, but whether GSNOR is localized in other organelles and exerts novel effects remains unknown. We aimed to elucidate the effects of mitochondrial GSNOR, a novel subcellular localization of GSNOR, on cardiac remodeling and heart failure (HF). METHODS: GSNOR subcellular localization was observed by cellular fractionation assay, immunofluorescent staining, and colloidal gold particle staining. Overexpression of GSNOR in mitochondria was achieved by mitochondria-targeting sequence-directed adeno-associated virus 9. Cardiac-specific knockout of GSNOR mice was used to examine the role of GSNOR in HF. S-nitrosylation sites of ANT1 (adenine nucleotide translocase 1) were identified using biotin-switch and liquid chromatography-tandem mass spectrometry. RESULTS: GSNOR expression was suppressed in cardiac tissues of patients with HF. Consistently, cardiac-specific knockout mice showed aggravated pathological remodeling induced by transverse aortic constriction. We found that GSNOR is also localized in mitochondria. In the angiotensin II-induced hypertrophic cardiomyocytes, mitochondrial GSNOR levels significantly decreased along with mitochondrial functional impairment. Restoration of mitochondrial GSNOR levels in cardiac-specific knockout mice significantly improved mitochondrial function and cardiac performance in transverse aortic constriction-induced HF mice. Mechanistically, we identified ANT1 as a direct target of GSNOR. A decrease in mitochondrial GSNOR under HF leads to an elevation of S-nitrosylation ANT1 at cysteine 160 (C160). In accordance with these findings, overexpression of either mitochondrial GSNOR or ANT1 C160A, non-nitrosylated mutant, significantly improved mitochondrial function, maintained the mitochondrial membrane potential, and upregulated mitophagy. CONCLUSIONS: We identified a novel species of GSNOR localized in mitochondria and found mitochondrial GSNOR plays an essential role in maintaining mitochondrial homeostasis through ANT1 denitrosylation, which provides a potential novel therapeutic target for HF.
Asunto(s)
Insuficiencia Cardíaca , Remodelación Ventricular , Animales , Humanos , Ratones , Corazón , Insuficiencia Cardíaca/metabolismo , Ratones Noqueados , Mitocondrias/metabolismoRESUMEN
BACKGROUND: Senescence is a series of degenerative changes in the structure and physiological function of an organism. Whether JPX (just proximal to XIST)-a newly identified age-related noncoding RNA by us-is associated with atherosclerosis is still unknown. Our study was to investigate the role of JPX and provide insights into potential therapies targeting atherosclerosis. METHODS: We analyzed clinical data from multiple tissues including meniscus tissue, leukemia cells, and peripheral blood monocytes to identify age-related noncoding RNAs in senescent vascular smooth muscle cells (VSMCs). The molecular mechanism of JPX was investigated by capture hybridization analysis of RNA targets and chromatin immunoprecipitation. IGVTools and real-time quantitative polymerase chain reaction were used to evaluate the JPX expression during phenotype regulation in age-related disease models. The therapeutic potential of JPX was evaluated after establishing an atherosclerosis model in smooth muscle-specific Jpx knockout mice. RESULTS: JPX expression was upregulated in activated ras allele (H-rasV12)-induced senescent VSMCs and atherosclerotic arteries. JPX knockdown substantially reduced the elevation of senescence-associated secretory phenotype (SASP) genes in senescent VSMCs. Cytoplasmic DNA leaked from mitochondria via mitochondrial permeability transition pore formed by VDAC1 (voltage-dependent anion channel 1) oligomer activates the STING (stimulator of interferon gene) pathway. JPX could act as an enhancer for the SASP genes and functions as a scaffold molecule through interacting with phosphorylated p65/RelA and BRD4 (bromodomain-containing protein 4) in chromatin remodeling complex, promoting the transcription of SASP genes via epigenetic regulation. Smooth muscle knockout of Jpx in ApoeKO mice resulted in a decrease in plaque area, a reduction in SASP gene expression, and a decrease in senescence compared with controls. CONCLUSIONS: As an enhancer RNA, JPX can integrate p65 and BRD4 to form a chromatin remodeling complex, activating SASP gene transcription and promoting cellular senescence. These findings suggest that JPX is a potential therapeutic target for the treatment of age-related atherosclerosis.
Asunto(s)
Aterosclerosis , ARN Largo no Codificante , Ratones , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Músculo Liso Vascular/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cromatina , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Epigénesis Genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Senescencia Celular/genética , Ratones Noqueados , Miocitos del Músculo Liso/metabolismoRESUMEN
BACKGROUND AND AIMS: Vascular smooth muscle cell (VSMC) senescence is crucial for the development of atherosclerosis, characterized by metabolic abnormalities. Tumour necrosis factor receptor-associated protein 1 (TRAP1), a metabolic regulator associated with ageing, might be implicated in atherosclerosis. As the role of TRAP1 in atherosclerosis remains elusive, this study aimed to examine the function of TRAP1 in VSMC senescence and atherosclerosis. METHODS: TRAP1 expression was measured in the aortic tissues of patients and mice with atherosclerosis using western blot and RT-qPCR. Senescent VSMC models were established by oncogenic Ras, and cellular senescence was evaluated by measuring senescence-associated ß-galactosidase expression and other senescence markers. Chromatin immunoprecipitation (ChIP) analysis was performed to explore the potential role of TRAP1 in atherosclerosis. RESULTS: VSMC-specific TRAP1 deficiency mitigated VSMC senescence and atherosclerosis via metabolic reprogramming. Mechanistically, TRAP1 significantly increased aerobic glycolysis, leading to elevated lactate production. Accumulated lactate promoted histone H4 lysine 12 lactylation (H4K12la) by down-regulating the unique histone lysine delactylase HDAC3. H4K12la was enriched in the senescence-associated secretory phenotype (SASP) promoter, activating SASP transcription and exacerbating VSMC senescence. In VSMC-specific Trap1 knockout ApoeKO mice (ApoeKOTrap1SMCKO), the plaque area, senescence markers, H4K12la, and SASP were reduced. Additionally, pharmacological inhibition and proteolysis-targeting chimera (PROTAC)-mediated TRAP1 degradation effectively attenuated atherosclerosis in vivo. CONCLUSIONS: This study reveals a novel mechanism by which mitonuclear communication orchestrates gene expression in VSMC senescence and atherosclerosis. TRAP1-mediated metabolic reprogramming increases lactate-dependent H4K12la via HDAC3, promoting SASP expression and offering a new therapeutic direction for VSMC senescence and atherosclerosis.
Asunto(s)
Aterosclerosis , Senescencia Celular , Proteínas HSP90 de Choque Térmico , Histona Desacetilasas , Histonas , Músculo Liso Vascular , Animales , Humanos , Masculino , Ratones , Aterosclerosis/metabolismo , Aterosclerosis/patología , Senescencia Celular/fisiología , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismoRESUMEN
Endothelial dysfunction is an initiating factor in atherosclerosis. Endothelial cells (ECs) are constantly subject to blood flow shear stress, and atherosclerotic plaques tend to occur in aortic bends or bifurcations impaired by low oscillatory shear stress (OSS). However, the mechanism that how OSS affects the initiation and progression of atherosclerosis remains to be explored. Here, we first reported that OSS can promote endothelial dysfunction and atherogenesis in vivo and in vitro by activating STING pathway. Mechanistically, at atherosclerosis-prone areas, OSS caused mitochondria damage in ECs, leading to the leakage of mitochondrial DNA (mtDNA) into the cytoplasm. The cytoplasmic mtDNA was recognized by cGAS to produce cGAMP, activating the STING pathway and leading to endothelial senescence, which resulted in endothelial dysfunction and atherosclerosis. We found that STING was activated in plaques of atherosclerotic patients and in aortic arch ECs of high-fat diet (HFD)-fed ApoeKO mice, as well as in ECs exposed to OSS. STING-specific deficiency in ECs attenuates endothelial senescence and resulted in a significant reduction in aortic arch plaque area in HFD-fed ApoeKO mice. Consistently, specific deficiency or pharmacological inhibition of STING attenuated OSS-induced senescence and endothelial dysfunction. Pharmacological depletion of mtDNA ameliorated OSS-induced senescence and endothelial dysfunction. Taken together, our study linked hemodynamics and endothelial senescence, and revealed a novel mechanism by which OSS leads to endothelial dysfunction. Our study provided new insights into the development of therapeutic strategies for endothelial senescence and atherosclerosis.
Asunto(s)
Aterosclerosis , Senescencia Celular , Células Endoteliales , Proteínas de la Membrana , Estrés Mecánico , Animales , Humanos , Ratones , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Células Cultivadas , Senescencia Celular/genética , Dieta Alta en Grasa , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/patologíaRESUMEN
High-power femtosecond pulses delivered at a high-repetition rate will aid machining throughput and improve signal-to-noise ratios for sensitive measurements. Here we demonstrate a Kerr-lens mode-locked femtosecond Yb:YAG ring-cavity thin-disk oscillator with a multi-pass scheme for the laser beam. With four passes through the thin disk, 175-fs pulses were delivered from the oscillator at an average power of 71.5â W and a repetition rate of 65.3â MHz. The corresponding intra-cavity peak power of 110â MW is ample for intra-cavity nonlinear conversion into more exotic wavelength ranges. With six passes, the average output power reached 101.3â W. To the best of our knowledge, this is the highest average output power of any mode-locked ring laser. These results confirm the viability of using multi-pass configuration on a thin-disk ring oscillator for high-throughput femtosecond applications.
RESUMEN
INTRODUCTION: Worsening renal function poses a significant health risk to elderly individuals. This study aimed to construct a simple risk prediction model for new-onset chronic kidney disease (CKD) among elderly populations. METHODS: In this retrospective cohort study, 5,416 elderly residents (aged ≥65 years) who underwent physical examinations as part of the National Basic Public Health Service project at least twice between January 2017 and July 2021 were included. The endpoint was new-onset CKD, defined as an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 during the follow-up period. Predictors of new-onset CKD were selected using multivariable Cox regression and a stepwise approach. A risk prediction model based on the selected predictors was constructed and evaluated using the concordance index (C-index) and area under curve (AUC). External validation was conducted to verify the model's performance. RESULTS: During the median follow-up period of 2.3 years, the incident of new-onset CKD was 20.1% (n = 1,088). Age, female gender, diabetes, elevated triglyceride levels, and baseline eGFR were selected as predictors. The model demonstrated good predictive performance across the cohort, with a C-index of 0.802. The AUCs for 2-year, 3-year, and 4-year predictions were 0.831, 0.829, and 0.839, respectively. External validation confirmed the model's efficacy, with a 2-year AUC of 0.735. CONCLUSION: This study developed a simple yet effective risk prediction model for new-onset CKD among elderly populations. The model facilitates prompt identification of elderly individuals at risk of renal function decline in primary care, enabling timely interventions.
RESUMEN
INTRODUCTION: IgA nephropathy (IgAN) is a kidney disorder characterized by the deposition of circulating immune complexes of IgG bound to galactose-deficient IgA1 (Gd-IgA1) in the mesangial glomeruli. However, limited research has been conducted on the levels of IgA binding in relation to the various sialylation profiles of IgG in IgAN. MATERIALS AND METHODS: Sialylated IgG (SA-IgG) and desialylated IgG (DSA-IgG) were isolated from IgAN patients. The IgG-IgA immune complex (IgG-IgA-IC) was detected using two customized commercial ELISA kits. Additionally, IgG was enzymatically digested with neuraminidase to produce DSA-IgG. Subsequently, the binding capacities of both intact IgG and the neuraminidase-digested DSA-IgG with Gd-IgA1 were determined using ELISA kits. RESULTS: Our research revealed that SA-IgG levels were negatively correlated with Gd-IgA1 (R = -0.16, p = 0.03) in IgAN patients. The optical density (OD) levels of IgG-IgA complexes in SA-IgG samples were significantly lower (0.58 ± 0.09) compared to those in DSA-IgG samples (0.78 ± 0.12) when using the Gd-IgA1 assay kit. These results were confirmed using an IgG assay kit, which showed that the SA-IgG groups had significantly lower IgA indices (0.31 ± 0.12) compared to the DSA-IgG groups (0.57 ± 0.19). Furthermore, we investigated the binding capacity of IgG with different sialic acid levels to Gd-IgA1. The results revealed that neuraminidase digestion of IgG increased its propensity to bind to Gd-IgA1. Additionally, we examined the binding capacity of both intact IgG and DSA-IgG to Gd-IgA1 at different mix ratios (IgG 1.5 µg and Gd-IgA1 1.5 µg, IgG 1.5 µg and Gd-IgA1 3 µg, IgG 3 µg and Gd-IgA1 1.5 µg). Interestingly, DSA-IgG demonstrated significantly higher binding capacity to Gd-IgA1 compared to intact IgG at all mix ratios tested. CONCLUSION: The preliminary findings from our present study indicate that the binding level of IgA in purified sialylated IgG is lower than that in desialylated IgG.
Asunto(s)
Glomerulonefritis por IGA , Inmunoglobulina A , Inmunoglobulina G , Humanos , Glomerulonefritis por IGA/inmunología , Glomerulonefritis por IGA/metabolismo , Inmunoglobulina A/metabolismo , Inmunoglobulina A/inmunología , Inmunoglobulina G/metabolismo , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Masculino , Femenino , Adulto , Persona de Mediana Edad , Complejo Antígeno-Anticuerpo/metabolismo , Complejo Antígeno-Anticuerpo/inmunología , Adulto Joven , Ensayo de Inmunoadsorción Enzimática , Ácido N-Acetilneuramínico/metabolismo , Neuraminidasa/metabolismo , Neuraminidasa/inmunologíaRESUMEN
Femtosecond optical vortices with a phase singular point have diverse applications such as microscopic particles manipulation, special-structure micro-processing and quantum information. Raising the number of singularity points can provide additional dimensions of control. Here we report for what we believe is the first time the generation of femtosecond optical vortices with multiple (two and five) singularities directly from a laser oscillator. The average powers and pulse durations of the resulting vortex pulses are several hundred milliwatts and less than 300 fs, respectively. This work represents an innovate way for obtaining femtosecond multi-vortices, opening the way to the further studies of optical vortex crystals and their applications.
RESUMEN
Kerr-lens mode-locking (KLM) has been widely used in thin-disk oscillators to generate high-power femtosecond pulses. Here we demonstrate a Kerr-lens mode-locked Yb:YAG thin-disk oscillator that can be self-started under two configurations. The first can deliver 13-W, 235-fs pulses at a repetition rate of 103â MHz; the second delivers 49 W at a repetition rate of 46.5â MHz, whose corresponding pulse energy of 1.05 µJ is, to the best of our knowledge, the highest energy ever obtained in self-started Kerr-lens mode-locked oscillators. A new method to initiate KLM in the form of optical perturbation in a thin-disk oscillator has also been demonstrated.
RESUMEN
We report the generation of high-order transverse modes from a Kerr-lens mode-locked femtosecond laser. Two different orders of Hermite-Gaussian modes were realized by non-collinear pumping, which were converted into the corresponding Laguerre-Gaussian vortex modes using a cylindrical lens mode converter. The mode-locked vortex beams, with an average power of 1.4 W and 0.8 W, contained pulses as short as 126 fs and 170 fs at the first and second Hermite-Gaussian mode orders, respectively. This work demonstrates the possibility of developing Kerr-lens mode-locked bulk lasers with various pure high-order modes and paves the way for generating ultrashort vortex beams.
RESUMEN
Ultrafast ring-cavity thin-disk oscillators combine high output power with the flexibility of generating output either unidirectionally or bidirectionally. Here, we report a Kerr-lens mode-locked ring-cavity Yb:YAG thin-disk oscillator delivering unidirectional 89-fs pulses by inducing additional spectral broadening with nonlinear plates. This is the shortest pulse duration for a ring-cavity mode-locked thin-disk oscillator. Bidirectional mode-locking was also realized. These results lay the foundation for the more efficient generation of high-order harmonics at MHz repetition rates and high-power dual frequency combs.
RESUMEN
Chronic atrophic gastritis (CAG) is an important stage in the transformation of the normal gastric mucosa into gastric cancer. Granule Dendrobii (GD), a proprietary Chinese medicine, has proven clinical efficacy in treating CAG. GD might promote the reversal of precancerous lesions by improving them in CAG patients. However, the mechanism of GD in CAG treatment is relatively less understood. Here, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced CAG rats were treated with GD and its efficacy was evaluated by observing the changes in the rats' weight and the pathology of gastric tissues. The potential effect of GD on the bacteria was predicted and verified in the large and small intestines and stomachs of CAG rats using amplicon sequencing and RT-qPCR. The results showed that GD could ameliorate the symptoms of body weight loss in CAG rats. Hematoxylin-Eosin (HE) and Alcian Blue (AB) staining showed that GD significantly improved the pathological state of the gastric mucosa in CAG rats. The relative abundance (RA) of Lactobacillus and Turicibacter significantly decreased after GD intervention compared with that of the model group (P < 0.05), indicating that GD might improve CAG by regulating the RA of Lactobacillus and Turicibacter. These findings revealed that Lactobacillus and Turicibacter as bacteria agents associated with gastritis, have the potential to inhibit gastric cancer, especially Turicibacter maybe another pathogen of CAG besides Helicobacter pylori (HP), which is worthy of further study. Meanwhile, the findings provided new ideas and materials for the research and development of new CAG drugs.
Asunto(s)
Gastritis Atrófica , Gastritis , Neoplasias Gástricas , Animales , Ratas , Gastritis Atrófica/tratamiento farmacológico , Metilnitronitrosoguanidina , LactobacillusRESUMEN
Developing non-fullerene acceptors (NFAs) by modifying the backbone, side chains and end groups is the most important strategy to improve the power conversion efficiency of organic solar cells (OSCs). Among numerous developed NFAs, Y6 and its derivatives are famous NFAs in the OSC field due to their good performance. Herein, in order to understand the mechanism of tuning the photovoltaic performance by modifying the Y6's center backbone, π-spacer and side-chains, we selected the PM6:Y6 OSC as a reference and systematically studied PM6:AQx-2, PM6:Y6-T, PM6:Y6-2T, PM6:Y6-O, PM6:Y6-1O and PM6:Y6-2O OSC systems based on extensive quantum chemistry calculations. The results indicate that introducing quinoxaline to substitute thiadiazole in the backbone induces a blue-shift of absorption spectra, reduces the charge transfer (CT) distance (Δd) and average electrostatic potential (ESP), and increases the singlet-triplet energy gap (ΔEST), CT excitation energy and the number of CT states in low-lying excitations. Inserting thienyl and dithiophenyl as π spacers generates a red-shift of absorption spectra, enlarges Δd and average ESP, and reduces ΔEST and the number of CT states. Introducing furo[3,2-b]furan for substituting one thieno[3,2-b]thiophene unit in the Y6's backbone causes a red-shift of absorption spectra and increases ΔEST, Δd and average ESP as well as CT excitation energy. Introducing alkoxyl as a side chain results in a blue-shift of absorption spectra, and increases ΔEST, Δd, average ESP, CT excitation energy and the number of CT states. The rate constants calculated using Marcus theory suggest that all the molecular modifications of Y6 reduce the exciton dissociation and charge recombination rates at the heterojunction interface, while introducing furo[3,2-b]furan and alkoxyl enlarges CT rates.
RESUMEN
Oncogene-induced senescence (OIS) is a tumor-suppressive mechanism typified by stable proliferative arrest, a persistent DNA damage response, and the senescence-associated secretory phenotype (SASP), which helps to maintain the senescent state and triggers bystander senescence in a paracrine fashion. Here, we demonstrate that the tumor suppressive histone variant macroH2A1 is a critical component of the positive feedback loop that maintains SASP gene expression and triggers the induction of paracrine senescence. MacroH2A1 undergoes dramatic genome-wide relocalization during OIS, including its removal from SASP gene chromatin. The removal of macroH2A1 from SASP genes results from a negative feedback loop activated by SASP-mediated endoplasmic reticulum (ER) stress. ER stress leads to increased reactive oxygen species and persistent DNA damage response including activation of ATM, which mediates removal macroH2A1 from SASP genes. Together, our findings indicate that macroH2A1 is a critical control point for the regulation of SASP gene expression during senescence.
Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Senescencia Celular/genética , Senescencia Celular/fisiología , Histonas/genética , Histonas/metabolismo , Línea Celular , Daño del ADN , Estrés del Retículo Endoplásmico , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Humanos , Modelos Biológicos , Oncogenes , Comunicación Paracrina , FenotipoRESUMEN
BACKGROUND: To explore the clinicopathologic features and outcomes of IgAN patients who presented with fibrinoid necrosis (FN) lesions or not and the effect of immunosuppressive (IS) treatment in IgAN patients with FN lesions as well. METHODS: This was a retrospective cohort study with 665 patients diagnosed with primary IgAN from January 2010 to December 2020 in Tianjin Medical University General Hospital and having detailed baseline and follow-up characteristics. Patients were divided into two groups depending on the appearance of FN lesions. Patients with FN lesions were recruited into Group FN1, while patients who were not found FN lesions in their renal biopsy specimens were recruited into Group FN0. Compare the differences between Group FN0 and Group FN1 in baseline clinicopathologic features, treatment solutions and follow-up data as well. To evaluate the impact of different fractions of FN lesions on baseline characteristics and prognosis of IgAN, we subdivided patients in Group FN1 into 3 groups depending on the FN lesions distribution, Mild Group: 0 < FN% < 1/16; Moderate Group: 1/16 < FN% < 1/10; Severe Group: FN% > 1/10. Furthermore, we compared the differences in baseline clinicopathologic features, treatment solutions and follow-up data among these three groups. Kidney endpoint event was defined as patients went into end-stage kidney disease (ESKD), which estimated glomerular filtration rate (eGFR) < 15 ml/min/1.73 m^2, regularly chronic dialysis over 6 months or received renal transplantation surgery. The kidney composite endpoint was defined by a ≥ 30% reduction in eGFR, double Scr increase than on-set, ESKD, chronic dialysis over 6 months or renal transplantation. Compare the survival from a composite endpoint rate in different groups by Kaplan-Meier survival curve. The univariate and multivariate Cox models were used to establish the basic model for renal outcomes in patients with FN lesions. RESULTS: (1) A total of 230 patients (34.59%) were found FN lesions in all participants. Patients with FN lesions suffered more severe hematuria than those without. On the hand of pathological characteristic, patients with FN lesions showed higher proportions of M1, E1, C1/C2 and T1/T2 lesions compared with those without FN lesions. (2) The 1-year, 3-year, and 5-year survival of the composite endpoint were lower in the FN1 group than FN0 group. (3) After adjusting for clinicopathological variables, the presence of FN lesions was a significantly independent risk factor for composite endpoint. By using multivariate Cox regression analyses, we also found when the fraction of FN lesions exceeded 10%, the risk of progression into composite endpoint increased 3.927 times. CONCLUSION: Fibrinoid necrosis of capillary loops is an independent risk factor of poor renal outcomes. More effective treatment should be considered for those who had FN lesions.
Asunto(s)
Glomerulonefritis por IGA , Fallo Renal Crónico , Humanos , Glomerulonefritis por IGA/diagnóstico , Estudios Retrospectivos , Progresión de la Enfermedad , Riñón/patología , Pronóstico , Fallo Renal Crónico/diagnóstico , Tasa de Filtración Glomerular , NecrosisRESUMEN
BACKGROUND: Cardiac hypertrophy is an important prepathology of, and will ultimately lead to, heart failure. However, the mechanisms underlying pathological cardiac hypertrophy remain largely unknown. This study aims to elucidate the effects and mechanisms of HINT1 (histidine triad nucleotide-binding protein 1) in cardiac hypertrophy and heart failure. METHODS: HINT1 was downregulated in human hypertrophic heart samples compared with nonhypertrophic samples by mass spectrometry analysis. Hint1 knockout mice were challenged with transverse aortic constriction surgery. Cardiac-specific overexpression of HINT1 mice by intravenous injection of adeno-associated virus 9 (AAV9)-encoding Hint1 under the cTnT (cardiac troponin T) promoter were subjected to transverse aortic construction. Unbiased transcriptional analyses were used to identify the downstream targets of HINT1. AAV9 bearing shRNA against Hoxa5 (homeobox A5) was administrated to investigate whether the effects of HINT1 on cardiac hypertrophy were HOXA5-dependent. RNA sequencing analysis was performed to recapitulate possible changes in transcriptome profile.Coimmunoprecipitation assays and cellular fractionation analyses were conducted to examine the mechanism by which HINT1 regulates the expression of HOXA5. RESULTS: The reduction of HINT1 expression was observed in the hearts of hypertrophic patients and pressure overloaded-induced hypertrophic mice, respectively. In Hint1-deficient mice, cardiac hypertrophy deteriorated after transverse aortic construction. Conversely, cardiac-specific overexpression of HINT1 alleviated cardiac hypertrophy and dysfunction. Unbiased profiler polymerase chain reaction array showed HOXA5 is 1 target for HINT1, and the cardioprotective role of HINT1 was abolished by HOXA5 knockdown in vivo. Hoxa5 was identified to affect hypertrophy through the TGF-ß (transforming growth factor ß) signal pathway. Mechanically, HINT1 inhibited PKCß1 (protein kinase C ß type 1) membrane translocation and phosphorylation via direct interaction, attenuating the MEK/ERK/YY1 (mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/yin yang 1) signal pathway, downregulating HOXA5 expression, and eventually attenuating cardiac hypertrophy. CONCLUSIONS: HINT1 protects against cardiac hypertrophy through suppressing HOXA5 expression. These findings indicate that HINT1 may be a potential target for therapeutic interventions in cardiac hypertrophy and heart failure.
Asunto(s)
Cardiomegalia/etiología , Cardiomegalia/metabolismo , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas del Tejido Nervioso/metabolismo , Animales , Biomarcadores , Cardiomegalia/diagnóstico , Células Cultivadas , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Proteínas de Homeodominio/metabolismo , Humanos , Inmunohistoquímica , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Especificidad de Órganos , Ratas , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Macrophage polarization plays a crucial role in atherosclerosis (AS), which is closely associated with energy metabolism. However, the underlying mechanism remains elusive. Hepatoma-derived growth factor (HDGF) has been reported to promote tumor metastasis via energy metabolism reprogramming. In this study, we aimed to investigate the role and underlying mechanism of HDGF in regulating macrophage polarization and AS. Our results suggested the elevated expression of HDGF in aortas from atherosclerotic patients and ApoeKO mice, as well as M1 macrophages. The specific deficiency of HDGF in macrophages resulted in a significant reduction of plaque area, inflammation and M1 macrophages content in ApoeKO mouse model of AS. Consistent with the in vivo data, the specific deficiency of HDGF attenuated the inflammation, glycolysis, and lipids accumulation in M1 macrophages, and rescued the mitochondrial dysfunction. Mechanistically, HDGF plays a crucial role in atherogenesis by regulating the M1 macrophages polarization through energy metabolism reprogramming. The expression level of methyltransferase Mettl3 elevated significantly in M1 macrophages, which contributed to enhancing mRNA stability and protein expression of HDGF via N6-methyladenosine (m6A) RNA methylation. Taken together, our study revealed a novel mechanism underlying the macrophage polarization, which may be a potential therapy for AS.
Asunto(s)
Aterosclerosis , Animales , Ratones , Aterosclerosis/metabolismo , Metabolismo Energético , Inflamación/patología , Macrófagos/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN/metabolismo , Ratones Noqueados para ApoERESUMEN
BACKGROUND AND AIMS: Protein S-sulfhydration mediated by H2 S has been shown to play important roles in several diseases. However, its precise role in liver disease and the related mechanism remain unclear. APPROACH AND RESULTS: We showed that in streptozotocin (STZ)-treated and high-fat diet (HFD)-treated low-density lipoprotein receptor-negative (LDLr-/- ) mice, the H2 S donor GYY4137 ameliorated liver injury, decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, mitigated lipid deposition, and reduced hepatocyte death. Strikingly, S-sulfhydration of Kelch-like ECH-associated protein 1 (Keap1) was decreased in the livers of patients with fatty liver under diabetic conditions. In STZ+HFD-treated LDLr-/- mice and in high glucose-treated and oxidized low-density lipoprotein (ox-LDL)-treated primary mouse hepatocytes, the GYY4137-mediated increase in Keap1 S-sulfhydration induced nuclear erythroid 2-related factor 2 (Nrf2) dissociation from Keap1, which enhanced the nuclear translocation of Nrf2 itself and the consequent expression of antioxidant proteins. Keap1 Cys151 mutation significantly reduced Keap1 S-sulfhydration and abolished the hepatoprotective effects of H2 S both in vivo and in vitro. Nrf2 deficiency inhibited the H2 S-induced beneficial impacts in Nrf2-/- mice. Similarly, in CCl4 -stimulated mice, GYY4137 increased Keap1 S-sulfhydration, improved liver function, alleviated liver fibrosis, decreased hepatic oxidative stress, and activated the Nrf2 signaling pathway; and these effects were abrogated after Keap1 Cys151 mutation. Moreover, H2 S increased the binding of Nrf2 to the promoter region of LDLr-related protein 1 (Lrp1) and consequently up-regulated LRP1 expression, but these effects were disrupted by Keap1 Cys151 mutation. CONCLUSIONS: H2 S-mediated Keap1 S-sulfhydration alleviates liver damage through activation of Nrf2. Hence, administration of exogenous H2 S in the form of the H2 S donor GYY4137 may be of therapeutic benefit in the context of concurrent hyperlipidemia and hyperglycemia-induced or CCl4 -stimulated liver dysfunction.
Asunto(s)
Sulfuro de Hidrógeno/sangre , Sulfuro de Hidrógeno/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Hígado/irrigación sanguínea , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Dieta Alta en Grasa , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Lipoproteínas LDL/farmacología , Hígado/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Morfolinas/farmacología , Morfolinas/uso terapéutico , Factor 2 Relacionado con NF-E2/deficiencia , Factor 2 Relacionado con NF-E2/genética , Compuestos Organotiofosforados/farmacología , Compuestos Organotiofosforados/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , EstreptozocinaRESUMEN
Pancreatic cancer (PC) is one of the most fatal malignancies. Pyroptosis, a type of inflammatory cell death, likely plays a critical role in the development and progression of tumors. However, the relationship between pyroptosis-related genes (PRGs) and prognosis and immunity to PC is not entirely clear. This study, aimed at identifying the key PRGs in PC, highlights their prognostic value, immune characteristics, and candidate drugs for therapies. We screened 47 differentially expressed PRGs between PC and normal pancreas tissues from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) datasets. Afterwards, a pyroptosis-related gene prognostic index (PRGPI) was constructed based on eight PRGs (AIM2, GBP1, HMGB1, IL18, IRF6, NEK7, NLRP1 and PLCG1) selected by univariate and multivariate Cox regression analysis and LASSO regression analysis, and verified in two external datasets from the International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO) databases. We found that the PC patients in the PRGPI-defined subgroups not only reflected significantly different levels of infiltration in a variety of immune cells, such as M1 macrophages, but also showed differential expression in genes of the human leukocyte antigen (HLA) family and immune checkpoints. Additionally, molecular characteristics and drug sensitivity also stayed close to the PRGPI risk scores. Therefore, PRGPI may serve as a valuable prognostic biomarker and may potentially provide guidance toward novel therapeutic options for PC patients.