Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2318783121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588412

RESUMEN

Communication between insects and plants relies on the exchange of bioactive molecules that traverse the species interface. Although proteinic effectors have been extensively studied, our knowledge of other molecules involved in this process remains limited. In this study, we investigate the role of salivary microRNAs (miRNAs) from the rice planthopper Nilaparvata lugens in suppressing plant immunity. A total of three miRNAs were confirmed to be secreted into host plants during insect feeding. Notably, the sequence-conserved miR-7-5P is specifically expressed in the salivary glands of N. lugens and is secreted into saliva, distinguishing it significantly from homologues found in other insects. Silencing miR-7-5P negatively affects N. lugens feeding on rice plants, but not on artificial diets. The impaired feeding performance of miR-7-5P-silenced insects can be rescued by transgenic plants overexpressing miR-7-5P. Through target prediction and experimental testing, we demonstrate that miR-7-5P targets multiple plant genes, including the immune-associated bZIP transcription factor 43 (OsbZIP43). Infestation of rice plants by miR-7-5P-silenced insects leads to the increased expression of OsbZIP43, while the presence of miR-7-5P counteracts this upregulation effect. Furthermore, overexpressing OsbZIP43 confers plant resistance against insects which can be subverted by miR-7-5P. Our findings suggest a mechanism by which herbivorous insects have evolved salivary miRNAs to suppress plant immunity, expanding our understanding of cross-kingdom RNA interference between interacting organisms.


Asunto(s)
Hemípteros , MicroARNs , Oryza , Animales , Interferencia de ARN , MicroARNs/genética , MicroARNs/metabolismo , Saliva , Hemípteros/fisiología , Inmunidad de la Planta/genética , Oryza/genética
2.
Proc Natl Acad Sci U S A ; 121(14): e2315982121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38536757

RESUMEN

Throughout evolution, arboviruses have developed various strategies to counteract the host's innate immune defenses to maintain persistent transmission. Recent studies have shown that, in addition to bacteria and fungi, the innate Toll-Dorsal immune system also plays an essential role in preventing viral infections in invertebrates. However, whether the classical Toll immune pathway is involved in maintaining the homeostatic process to ensure the persistent and propagative transmission of arboviruses in insect vectors remain unclear. In this study, we revealed that the transcription factor Dorsal is actively involved in the antiviral defense of an insect vector (Laodelphax striatellus) by regulating the target gene, zinc finger protein 708 (LsZN708), which mediates downstream immune-related effectors against infection with the plant virus (Rice stripe virus, RSV). In contrast, an antidefense strategy involving the use of the nonstructural-protein (NS4) to antagonize host antiviral defense through competitive binding to Dorsal from the MSK2 kinase was employed by RSV; this competitive binding inhibited Dorsal phosphorylation and reduced the antiviral response of the host insect. Our study revealed the molecular mechanism through which Toll-Dorsal-ZN708 mediates the maintenance of an arbovirus homeostasis in insect vectors. Specifically, ZN708 is a newly documented zinc finger protein targeted by Dorsal that mediates the downstream antiviral response. This study will contribute to our understanding of the successful transmission and spread of arboviruses in plant or invertebrate hosts.


Asunto(s)
Arbovirus , Hemípteros , Oryza , Tenuivirus , Animales , Arbovirus/genética , Hemípteros/fisiología , Tenuivirus/fisiología , Insectos Vectores , Antivirales/metabolismo , Oryza/genética , Enfermedades de las Plantas
3.
Plant Physiol ; 195(1): 850-864, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38330080

RESUMEN

Plant viruses have multiple strategies to counter and evade the host's antiviral immune response. However, limited research has been conducted on the antiviral defense mechanisms commonly targeted by distinct types of plant viruses. In this study, we discovered that NUCLEAR FACTOR-YC (NF-YC) and NUCLEAR FACTOR-YA (NF-YA), 2 essential components of the NF-Y complex, were commonly targeted by viral proteins encoded by 2 different rice (Oryza sativa L.) viruses, rice stripe virus (RSV, Tenuivirus) and southern rice black streaked dwarf virus (SRBSDV, Fijivirus). In vitro and in vivo experiments showed that OsNF-YCs associate with OsNF-YAs and inhibit their transcriptional activation activity, resulting in the suppression of OsNF-YA-mediated plant susceptibility to rice viruses. Different viral proteins RSV P2 and SRBSDV SP8 directly disrupted the association of OsNF-YCs with OsNF-YAs, thereby suppressing the antiviral defense mediated by OsNF-YCs. These findings suggest an approach for conferring broad-spectrum disease resistance in rice and reveal a common mechanism employed by viral proteins to evade the host's antiviral defense by hindering the antiviral capabilities of OsNF-YCs.


Asunto(s)
Oryza , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Reoviridae , Tenuivirus , Proteínas Virales , Oryza/virología , Oryza/inmunología , Oryza/genética , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/inmunología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas Virales/inmunología , Tenuivirus/fisiología , Tenuivirus/patogenicidad , Virus de Plantas/fisiología , Factor de Unión a CCAAT/metabolismo , Factor de Unión a CCAAT/genética , Resistencia a la Enfermedad/genética
4.
Plant Physiol ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935533

RESUMEN

Emerging evidence indicates that fatty acid (FA) metabolic pathways regulate host immunity to vertebrate viruses. However, information on FA signaling in plant virus infection remains elusive. In this study, we demonstrate the importance of fatty acid desaturase (FAD), an enzyme that catalyzes the rate-limiting step in the conversion of saturated FAs into unsaturated FAs, during infection by a plant RNA virus. We previously found that the rare Kua-ubiquitin conjugating enzyme (Kua-UEV1) fusion protein FAD4 from Nicotiana benthamiana (NbFAD4) was down-regulated upon turnip mosaic virus (TuMV) infection. We now demonstrate that NbFAD4 is unstable and is degraded as TuMV infection progresses. NbFAD4 is required for TuMV replication, as it interacts with TuMV replication protein 6K2 and colocalizes with viral replication complexes. Moreover, NbFAD4 overexpression dampened the accumulation of immunity-related phytohormones and FA metabolites, and its catalytic activity appears to be crucial for TuMV infection. Finally, a yeast two-hybrid library screen identified the vacuolar H+-ATPase component ATP6V0C as involved in NbFAD4 degradation and further suppression of TuMV infection. This study reveals the intricate role of FAD4 in plant virus infection, and shed lights on a new mechanism by which a V-ATPase is involved in plant antiviral defense.

5.
BMC Genomics ; 25(1): 53, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212677

RESUMEN

BACKGROUND: Saliva plays a crucial role in shaping the feeding behavior of insects, involving processes such as food digestion and the regulation of interactions between insects and their hosts. Cyrtorhinus lividipennis serves as a predominant natural enemy of rice pests, while Apolygus lucorum, exhibiting phytozoophagous feeding behavior, is a destructive agricultural pest. In this study, a comparative transcriptome analysis, incorporating the published genomes of C.lividipennis and A.lucorum, was conducted to reveal the role of salivary secretion in host adaptation. RESULTS: In contrast to A.lucorum, C.lividipennis is a zoophytophagous insect. A de novo genome analysis of C.lividipennis yielded 19,706 unigenes, including 16,217 annotated ones. On the other hand, A.lucorum had altogether 20,111 annotated genes, as obtained from the published official gene set (20,353 unigenes). Functional analysis of the top 1,000 salivary gland (SG)-abundant genes in both insects revealed that the SG was a dynamically active tissue engaged in protein synthesis and secretion. Predictions of other tissues and signal peptides were compared. As a result, 94 and 157 salivary proteins were identified in C.lividipennis and A.lucorum, respectively, and were categorized into 68 and 81 orthogroups. Among them, 26 orthogroups were shared, potentially playing common roles in digestion and detoxification, including several venom serine proteases. Furthermore, 42 and 55 orthogroups were exclusive in C.lividipennis and A.lucorum, respectively, which were exemplified by a hyaluronidase in C.lividipennis that was associated with predation, while polygalacturonases in A.lucorum were involved in mesophyll-feeding patterns. CONCLUSIONS: Findings in this study provide a comprehensive insight into saliva secretions in C.lividipennis and A.lucorum via a transcriptome approach, reflecting the intricate connections between saliva secretions and feeding behaviors. It is found that conserved salivary secretions are involved in shaping the overlapping feeding patterns, while a plethora of unique salivary secretions may drive the evolution of specific feeding behaviors crucial for their survival. These results enhance our understanding of the feeding mechanisms in different insects from the perspective of saliva and contribute to future environmentally friendly pest control by utilizing predatory insects.


Asunto(s)
Heterópteros , Transcriptoma , Animales , Heterópteros/genética , Glándulas Salivales , Perfilación de la Expresión Génica/métodos , Saliva
6.
J Gen Virol ; 105(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38602389

RESUMEN

A negative-strand symbiotic RNA virus, tentatively named Nilaparvata lugens Bunyavirus (NLBV), was identified in the brown planthopper (BPH, Nilaparvata lugens). Phylogenetic analysis indicated that NLBV is a member of the genus Mobuvirus (family Phenuiviridae, order Bunyavirales). Analysis of virus-derived small interfering RNA suggested that antiviral immunity of BPH was successfully activated by NLBV infection. Tissue-specific investigation showed that NLBV was mainly accumulated in the fat-body of BPH adults. Moreover, NLBV was detected in eggs of viruliferous female BPHs, suggesting the possibility of vertical transmission of NLBV in BPH. Additionally, no significant differences were observed for the biological properties between NLBV-infected and NLBV-free BPHs. Finally, analysis of geographic distribution indicated that NLBV may be prevalent in Southeast Asia. This study provided a comprehensive characterization on the molecular and biological properties of a symbiotic virus in BPH, which will contribute to our understanding of the increasingly discovered RNA viruses in insects.


Asunto(s)
Hemípteros , Orthobunyavirus , Virus ARN , Animales , Femenino , Filogenia , Insectos , Virus ARN/genética
7.
Plant Biotechnol J ; 22(5): 1335-1351, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38100262

RESUMEN

Thiamine (vitamin B1) biosynthesis involves key enzymes known as thiazole moieties (THI1/THI2), which have been shown to participate in plant responses to abiotic stress. However, the role of THI1/THI2 in plant immunity remains unclear. In this study, we cloned TaTHI2 from wheat and investigated its function in Chinese wheat mosaic virus (CWMV) infection. Overexpression of TaTHI2 (TaTHI2-OE) inhibited CWMV infection, while TaTHI2 silencing enhanced viral infection in wheat. Interestingly, the membrane-localized TaTHI2 protein was increased during CWMV infection. TaTHI2 also interacted with the Ca2+-dependent protein kinase 5 (TaCPK5), which is localized in the plasma membrane, and promoted reactive oxygen species (ROS) production by repressing TaCPK5-mediated activity of the catalase protein TaCAT1. CWMV CP disrupted the interaction between TaTHI2 and TaCAT1, reducing ROS accumulation and facilitating viral infection. Additionally, transgenic plants overexpressing TaTHI2 showed increased seed number per ear and 1000-kernel weight compared to control plants. Our findings reveal a novel function of TaTHI2 in plant immunity and suggest its potential as a valuable gene for balancing disease resistance and wheat yield. Furthermore, the disruption of the TaTHI2-mediated plant immune pathway by CWMV CP provides further evidence for the evolutionary arms race between plants and viruses.


Asunto(s)
Virus de Plantas , Virosis , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas/genética , Virus de Plantas/genética , Tiamina , Enfermedades de las Plantas
8.
Opt Express ; 32(5): 7848-7864, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38439455

RESUMEN

On-chip switchable optical true-time delay lines (OTTDLs) feature a large group delay tuning range but suffer from a discrete tuning step. OTTDLs with a large delay tuning range and a continuous tuning capability are highly desired. In this paper, we propose and experimentally demonstrate a silicon-based broadband continuously tunable OTTDL comprising a 7-bit delay line and a switch-based continuously tunable delay line. The group delay of the entire OTTDL can be continuously tuned from 0 to 1020.16 ps. A delay error within -1.27 ps to 1.75 ps, and a delay fluctuation of less than 2.69 ps in the frequency range of 2∼25 GHz are obtained. We analyze the causes of the delay fluctuation and its influence on beamforming. Moreover, we also propose a simplified non-invasive calibration method that can significantly reduce the complexity of the delay state calibration and can be easily extended to delay lines with more stages of optical switches. The high performance of our OTTDL chip and the calibration method drive practical applications of integrated OTTDLs.

9.
Opt Lett ; 49(10): 2761-2764, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748155

RESUMEN

We report on the realization of a unidirectional transmission-based bidirectional erbium-doped fiber amplifier (UTB-EDFA) for the coherent optical fiber links. By applying an optical phase-locked loop (OPLL) between the two unidirectional EDFA (Ui-EDFA) paths, the annoying uncorrelated phase noise between the two paths can be largely suppressed. Promisingly, we can independently optimize the gains of the UTB-EDFAs for bidirectional transmissions, resulting in higher net gain acquired compared with the conventional single-path bidirectional EDFA (SPBA)-based ones. We demonstrate that the fractional frequency instability of the UTB-EDFA-based scheme can be decreased by 26.3% over the most asymmetrical 100 km two-way optical frequency comparison (TWC) system compared with the SPBA-based ones and, more importantly, can acquire higher net gain for unevenly distributed sub-links over ultra-long fiber links, such as 1000 km, by independently optimizing the gains. This technique paves the way for the applications of large-scale fiber networks.

10.
Opt Lett ; 49(4): 875-878, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38359205

RESUMEN

We proposed a joint time and frequency transfer scheme over a single International Telecommunication Union 100 GHz wavelength division multiplexing (WDM) channel using a normal commercial WDM device and commercial offset WDM device. A standard 100 GHz WDM channel is divided into three sub-channels with a frequency interval of more than 20 GHz for a time and frequency transfer, which could help to avoid the interference among time, frequency, and data signals in other WDM channels. A joint high-precision time and frequency transfer is, therefore, able to be performed with data transmission over WDM optical communication links without extra requirements on devices. A joint time and frequency transfer in a single 100 GHz WDM channel is experimentally demonstrated over a 60 km fiber link with the communication data transmission in the adjacent channels. The stability of the time transfer can be better than 15 ps at 1 s, and the stability of the frequency transfer can be better than 2.7×10-14 at 1 s, while the bit error rates of the adjacent channels are at the same level as the separate transmission.

11.
Opt Lett ; 49(11): 3018-3021, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824317

RESUMEN

We demonstrate a monolithic tunable dual-wavelength laser fabricated on erbium-doped lithium niobate on an insulator (Er:LNOI). The dual-wavelength laser enables independent tuning with a continuously linear electro-optic (EO)-modulated tuning range of 11.875 GHz at a tuning efficiency of 0.63 pm/V. Tunable microwave generation within 50 GHz with a maximum extinction ratio of 35 dB is experimentally demonstrated by further exploring the charge accumulation effect in LNOI. The monolithic design of this work paves the way for microscale integration of laser devices, presenting significant prospects in photonics research and applications.

12.
Arch Virol ; 169(5): 90, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578314

RESUMEN

Trees and shrubs provide important ecological services. However, few studies have surveyed the virome in trees and shrubs. In this study, we discovered a new positive-sense RNA virus originating from Viburnum odoratissimum, which we named "Vo narna-like virus". The complete genome of Vo narna-like virus is 3,451 nt in length with an open reading frame (ORF) encoding the RNA-dependent RNA polymerase (RdRP) protein. Phylogenetic analysis placed this virus within the betanarnavirus clade, sharing 53.63% amino acid sequence identity with its closest relative, Qingdao RNA virus 2. The complete sequence of the virus was confirmed by rapid amplification of cDNA ends (RACE) and Sanger sequencing. Small interfering RNA (siRNA) analysis indicated that this virus interacts with the RNA interference (RNAi) pathway of V. odoratissimum. This is the first report of a narnavirus in V. odoratissimum.


Asunto(s)
Virus ARN , Viburnum , Viburnum/genética , ARN Viral/genética , Filogenia , Genoma Viral , Virus ARN/genética , Sistemas de Lectura Abierta
13.
Arch Virol ; 169(8): 160, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981875

RESUMEN

A novel monopartite dsRNA virus, tentatively named "sponge gourd amalgavirus 1" (SGAV1), was discovered by high-throughput sequencing in sponge gourd (Luffa cylindrica) displaying mosaic symptoms in Jiashan County, Zhejiang Province, China. The genome of SGAV1 is 3,447 nucleotides in length and contains partially overlapping open reading frames (ORFs) encoding a putative replication factory matrix-like protein and a fusion protein, respectively. The fusion protein of SGAV1 shares 57.07% identity with the homologous protein of salvia miltiorrhiza amalgavirus 1 (accession no. DAZ91057.1). Phylogenetic analysis based on the RNA-dependent RNA polymerase (RdRp) protein suggests that SGAV1 belongs to the genus Amalgavirus of the family Amalgaviridae. Moreover, analysis of SGAV1-derived small interfering RNAs indicated that SGAV1 was actively replicating in the host plant. Semi-quantitative RT-PCR showed higher levels of SGAV1 expression in leaves than in flowers and fruits. This is the first report of a novel amalgavirus found in sponge gourd in China.


Asunto(s)
Genoma Viral , Luffa , Sistemas de Lectura Abierta , Filogenia , Genoma Viral/genética , Luffa/virología , Animales , China , Virus ARN Bicatenario/genética , Virus ARN Bicatenario/clasificación , Virus ARN Bicatenario/aislamiento & purificación , Secuenciación Completa del Genoma , Proteínas Virales/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética
14.
Arch Virol ; 169(1): 19, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38180588

RESUMEN

The complete genomic sequence of a novel robigovirus, provisionally named "Mentha arvensis robigovirus 1" (MARV1), was determined by combining next-generation sequencing (NGS), reverse transcription polymerase chain reaction (RT-PCR), and rapid amplification of cDNA ends (RACE) PCR. The complete genomic sequence of this new virus is 7617 nucleotides in length, excluding the 3' poly(A) tail. The MARV1 genome encodes a putative replicase, "triple gene block" proteins, and a coat protein. Phylogenetic analysis demonstrated that MARV1 is a member of the genus Robigovirus, with closest relationships to African oil palm ringspot virus (AOPRV). Furthermore, MARV1-derived small interfering RNAs (siRNAs) showed typical patterns of plant-virus-derived siRNAs produced by the host antiviral RNA interference pathway. This is the first report of a plant virus of the genus Robigovirus in M. arvensis.


Asunto(s)
Flexiviridae , Mentha , Filogenia , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Mensajero , ARN Interferente Pequeño/genética
15.
Arch Virol ; 169(7): 141, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850364

RESUMEN

The brown planthopper (BPH), Nilaparvata lugens, is a significant agricultural pest capable of long-distance migration and transmission of viruses that cause severe disease in rice. In this study, we identified a novel segmented RNA virus in a BPH, and this virus exhibited a close relationship to members of a recently discovered virus lineage known as "quenyaviruses" within the viral kingdom Orthornavirae. This newly identified virus was named "Nilaparvata lugens quenyavirus 1" (NLQV1). NLQV1 consists of five positive-sense, single-stranded RNAs, with each segment containing a single open reading frame (ORF). The genomic characteristics and phylogenetic analysis support the classification of NLQV1 as a novel quenyavirus. Notably, all of the genome segments of NLRV contained the 5'-terminal sequence AUCUG. The characteristic virus-derived small interfering RNA (vsiRNA) profile of NLQV1 suggests that the antiviral RNAi pathway of the host BPH was activated in response to virus infection. These findings represent the first documented report of quenyaviruses in planthoppers, contributing to our understanding of quenyaviruses and expanding our knowledge of insect-specific viruses in planthoppers.


Asunto(s)
Genoma Viral , Hemípteros , Sistemas de Lectura Abierta , Filogenia , Virus ARN , ARN Viral , Animales , Hemípteros/virología , Genoma Viral/genética , ARN Viral/genética , Virus ARN/genética , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Enfermedades de las Plantas/virología , Oryza/virología , Secuenciación Completa del Genoma , ARN Interferente Pequeño/genética
16.
Prenat Diagn ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117575

RESUMEN

OBJECTIVE: To assess the genetic etiologies underlying agenesis of the corpus callosum (ACC) and its pregnancy outcomes in the era of next-generation sequencing. METHODS: A retrospective analysis was conducted on prospectively collected prenatal ACC cases in which amniocentesis was performed between January 2016 and December 2022. ACC was divided into non-isolated and isolated according to the presence or absence of ultrasound abnormalities. Chromosomal microarray analysis (CMA), karyotyping and exome sequencing (ES) were performed after genetic counseling. Pregnancy outcomes were assessed by pediatric neurosurgeons and were followed up by telephone through their parents. RESULTS: Sixty-eight fetuses with ACC were enrolled in this study. CMA detected eight cases with pathogenic copy number variants (CNVs) and all were non-isolated ACC, with a detection rate of 11.8% (8/68). Among the CMA abnormalities, the majority (6/8) were detectable by karyotyping. ES was performed in 26 cases with normal CMA, revealing pathogenic or likely pathogenic gene variations in 12 cases (46.2%, 12/26), involving L1CMA, SMARCB1, PPP2R1A, ARID1B, USP34, CDC42, NFIA and DCC genes. The detection rates of ES in isolated and non-isolated ACC were 40% (6/15) and 54.5% (6/11), respectively. After excluding cases where pregnancy was terminated (56 cases), there were 12 live births, ranging in age from 15 months to 7 years. Of these, 91.7% (11 out of 12) demonstrated normal neurodevelopmental outcomes. Specifically, all five cases with isolated ACC and negative ES results exhibited normal neurodevelopment. The remaining six cases with favorable outcomes were all isolated ACC, among which ES identified variants of DCC and USP34 gene in one each case. The other four cases were CMA-negative and declined ES. CONCLUSIONS: We highlight the efficacy of prenatal ES in determining the genetic etiology of ACC, whether isolated or not. Favorable neurodevelopmental outcomes were observed when ACC was isolated and with normal ES results.

17.
Cell Biochem Funct ; 42(4): e4034, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38715189

RESUMEN

L1 syndrome, a neurological disorder with an X-linked inheritance pattern, mainly results from mutations occurring in the L1 cell adhesion molecule (L1CAM) gene. The L1CAM molecule, belonging to the immunoglobulin (Ig) superfamily of neurocyte adhesion molecules, plays a pivotal role in facilitating intercellular signal transmission across membranes and is indispensable for proper neuronal development and function. This study identified a rare missense variant (c.1759G>C; p.G587R) in the L1CAM gene within a male fetus presenting with hydrocephalus. Due to a lack of functional analysis, the significance of the L1CAM mutation c.1759G>C (p.G587R) remains unknown. We aimed to perform further verification for its pathogenicity. Blood samples were obtained from the proband and his parents for trio clinical exome sequencing and mutation analysis. Expression level analysis was conducted using western blot techniques. Immunofluorescence was employed to investigate L1CAM subcellular localization, while cell aggregation and cell scratch assays were utilized to assess protein function. The study showed that the mutation (c.1759G>C; p.G587R) affected posttranslational glycosylation modification and induced alterations in the subcellular localization of L1-G587R in the cells. It resulted in the diminished expression of L1CAM on the cell surface and accumulation in the endoplasmic reticulum. The p.G587R altered the function of L1CAM protein and reduced homophilic adhesion capacity of proteins, leading to impaired adhesion and migration of proteins between cells. Our findings provide first biological evidence for the association between the missense mutation (c.1759G>c; p.G587R) in the L1CAM gene and L1 syndrome, confirming the pathogenicity of this missense mutation.


Asunto(s)
Mutación Missense , Molécula L1 de Adhesión de Célula Nerviosa , Humanos , Masculino , Células HEK293 , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patología , Molécula L1 de Adhesión de Célula Nerviosa/genética , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Linaje , Recién Nacido
18.
19.
Arch Toxicol ; 98(2): 409-424, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38099972

RESUMEN

Arsenic, which can be divided into inorganic and organic arsenic, is a toxic metalloid that has been identified as a human carcinogen. A common source of arsenic exposure in seafood is arsenolipid, which is a complex structure of lipid-soluble organic arsenic compounds. At present, the known arsenolipid species mainly include arsenic-containing fatty acids (AsFAs), arsenic-containing hydrocarbons (AsHCs), arsenic glycophospholipids (AsPLs), and cationic trimethyl fatty alcohols (TMAsFOHs). Furthermore, the toxicity between different species is unique. However, the mechanism underlying arsenolipid toxicity and anabolism remain unclear, as arsenolipids exhibit a complex structure, are present at low quantities, and are difficult to extract and detect. Therefore, the objective of this overview is to summarize the latest research progress on methods to evaluate the toxicity and analyze the main speciation of arsenolipids in seafood. In addition, novel insights are provided to further elucidate the speciation, toxicity, and anabolism of arsenolipids and assess the risks on human health.


Asunto(s)
Arsénico , Arsenicales , Humanos , Arsénico/toxicidad , Ácidos Grasos/toxicidad , Hidrocarburos/química , Alimentos Marinos/toxicidad , Alimentos Marinos/análisis
20.
J Integr Neurosci ; 23(3): 65, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38538216

RESUMEN

BACKGROUND: It has been reported that ferroptosis participates in the pathophysiological mechanism of spinal cord injury (SCI). Our preliminary experiments verified that dendrobium nobile polysaccharide (DNP) improved the behavioral function of SCI rats. Therefore, the purpose of this study was to examine the role of DNP on ferroptosis and its neuroprotective mechanism in SCI rats. METHODS: Adult female sprague dawley (SD) rats were exposed to SCI by Allen's method, followed by an intragastric injection of 100 mg/kg DNP per day for 2 weeks. Behavioral features were verified by the Basso-Beattie-Bresnahan (BBB) scale and footprint evaluation. Iron content and glutathione (GSH) were assessed spectrophotometrically. Mitochondrial morphology was examined by transmission electron microscopy. The expression of ferroptosis-related genes, including System Xc- light chain (xCT), G-rich RNA sequence binding Factor 1 (GRSF1) and glutathione peroxidase 4 (Gpx4), was examined by real-time polymerase chain reaction (PCR) and western blot. The spinal cavity was defined using hematoxylin-eosin (HE) staining, and neuronal modifications were detected by immunofluorescence. RESULTS: Compared with the SCI group, the BBB score of rats in the DNP group increased at 7 d, 14 d, 21 d, and 28 d. The differences between the two groups were statistically significant. At 12 h post-injury the iron content began to decrease. At 24 h post-injury the iron content decreased significantly in the DNP group. The morphological changes of the mitochondrial crest and membrane in the DNP group were ameliorated within 24 h. Compared with the sham group, the expression of xCT, GSH, Gpx4, and GRSF1 were significantly reduced after SCI. After DNP treatment, the expression of xCT, Gpx4, and GSH were higher. The tissue cavity area was significantly reduced and the amount of NeuN+ cells was increased in the DNP group at 14 d and 28 d after SCI. CONCLUSIONS: DNP facilitated the post-injury recovery in SCI rats via the inhibition of ferroptosis.


Asunto(s)
Dendrobium , Ferroptosis , Traumatismos de la Médula Espinal , Ratas , Femenino , Animales , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Ratas Sprague-Dawley , Hierro/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA