Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 161(2)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-38984962

RESUMEN

Two-dimensional (2D)/three-dimensional (3D) halide perovskite heterostructures have been extensively studied for their ability to combine the outstanding long-term stability of 2D perovskites with the superb optoelectronic properties of 3D perovskites. While current studies mostly focus on vertically stacked 2D/3D perovskite heterostructures, a theoretical understanding regarding the optoelectronic properties of 2D/3D perovskite lateral heterostructures is still lacking. Herein, we construct a series of 2D/3D perovskite lateral heterostructures to study their optoelectronic properties and interfacial charge transfer using density functional theory (DFT) calculations. We find that the band alignments of 2D/3D heterostructures can be regulated by varying the quantum-well thickness of 2D perovskites. Moreover, decreasing the 2D component ratio in 2D/3D heterostructures can be favorable to form type-I band alignment, whereas a large component ratio of 2D perovskites tends to form type-II band alignment. We can improve the amount of charge transfer at the 2D/3D perovskite interfaces and the light absorption of 2D perovskites by increasing quantum-well thickness. These present findings can provide a clear designing principle for achieving 3D/2D perovskite lateral heterostructures with tunable optoelectronic properties.

2.
Ecotoxicol Environ Saf ; 283: 116788, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39067073

RESUMEN

Mangrove forests are sources and sinks for various pollutants. This study analyzed the current status of heavy metal and arsenic (As) pollution in mangrove surface sediments in rapidly industrializing and urbanizing port cities. Surface sediments of mangroves at Wulishan Port on the Leizhou Peninsula, China, were analyzed using inductively coupled plasma emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) for the presence of Cr, Pb, Ni, Zn, Cd, Cu, As, and Hg. The Pollution load index, Nemerow pollution index, and Potential ecological risk index were employed to evaluate the pollutant. Multivariate statistical methods were applied for the qualitative analysis of pollutant sources, and the APCS-MLR receptor model was used for quantification. This study indicated the following results: (1) The average content of eight pollutants surpassed the local background level but did not exceed the Marine Sediment Quality standard. The pollution levels across the four sampling areas were ranked as Ⅲ > Ⅳ > Ⅰ > Ⅱ. The area Ⅱ exhibited relatively lower pollution levels with the grain size of the sediments dominated by sand, which was not conducive to pollutant adsorption and enrichment. (2) The factor analysis and cluster analyses identified three primary sources of contamination. As, Cr, Ni, and Pb originated from nearby industrial activities and their associated wastewater, suggesting that the primary source was the industrial source. Cd, Cu, and Zn stem from the cement columns utilized in oyster farming, alongside discharges from mariculture and pig farming, establishing a secondary agricultural source. Hg originated from ship exhaust burning oil and vehicle emissions in the vicinity, representing the third traffic source. (3) The APCS-MLR receptor model results demonstrated industrial, agricultural, and traffic sources contributing 47.19 %, 33.13 %, and 13.03 %, respectively, with 6.65 % attributed to unidentified sources.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38150972

RESUMEN

The dynamic modification of RNA plays a crucial role in biological regulation and is strongly linked to human disease development and progression. Notably, modified nucleosides in urine have shown promising potential as early diagnostic biomarkers for various conditions. In this study, we developed and validated a rapid, sensitive, and accurate UPLC-MS/MS method for quantifying eight types of modified nucleosides (N1-methyladenosine (m1A), N6-methyladenosine (m6A), 5-methyluridine (m5U), 5-taurinomethyl-2-thiouridine (τm5s2U), 5-methylcytidine (m5C), 2'-O-methylcytidine (Cm), N1-methylguanosine (m1G), and N7-methylguanosine (m7G) in human urine. Using the method, we measured the urinary concentrations of m1A, m6A, m5U, τm5s2U, m5C, Cm, m1G, and m7G in a total of 21 control individuals and 23 patients diagnosed with diabetic retinopathy (DR). Cm levels showed promise as a diagnostic marker for diabetic retinopathy (DR), with a significant value (P < 0.01) and an AUC of 0.735. Other modified nucleosides also exhibited significant differences within specific subpopulations. As non-proliferative diabetic retinopathy (NPDR) signifies the latent early stage of diabetic retinopathy, we developed a multivariate linear model that integrates patients' sex, age, height, and urinary concentration of modified nucleosides which aims to predict and differentiate between healthy individuals, NPDR patients, and proliferative diabetic retinopathy (PDR) patients. Encouragingly, the model achieved satisfactory accuracy rates: healthy (81%), NPDR (75%), and PDR (80%). Our findings provide valuable insights into the development of an early, cost-effective, and noninvasive diagnostic approach for diabetic retinopathy.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Tiouridina/análogos & derivados , Humanos , Nucleósidos/orina , Retinopatía Diabética/diagnóstico , Cromatografía Liquida/métodos , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Biomarcadores
4.
Polymers (Basel) ; 16(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38399840

RESUMEN

Water-based chloroprene latex is a solvent-free, environmentally friendly adhesive. Currently, its market demand is growing rapidly. However, there are problems such as a lack of heat resistance and poor mechanical properties, which limit its application. The introduction of vinyl-POSS (OVS) into the resin structure can effectively improve the thermal stability of chloroprene adhesives. In this paper, modified waterborne chloroprene latex was prepared by copolymerization of methyl methacrylate and OVS with chloroprene latex. The results showed that vinyl-POSS was successfully grafted onto the main chain of the waterborne chloroprene latex, and the modified waterborne chloroprene latex had good storage stability. With the increase in vinyl-POSS, the tensile strength of the chloroprene latex firstly increased and then decreased, the tensile property (peel strength of 20.2 kgf) was maintained well at a high temperature (100 °C), and the thermal stability of the chloroprene latex was improved. When the addition amount was 4%, the comprehensive mechanical properties were their best. This study provides a new idea for the construction of a new and efficient waterborne chloroprene latex system and provides more fields for the practical application of waterborne chloroprene latex. This newly developed vinyl-POSS modified chloroprene latex has great application potential for use in home furniture, bags, and seat cushions.

5.
Polymers (Basel) ; 16(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38201751

RESUMEN

Vinyl-capped cationic waterborne polyurethane (CWPU) was prepared using isophorone diisocyanate (IPDI), polycarbonate diol (PCDL), N-methyldiethanolamine (MDEA), and trimethylolpropane (TMP) as raw materials and hydroxyethyl methacrylate (HEMA) as a capping agent. Then, a crosslinked FPUA composite emulsion with polyurethane (PU) as the shell and fluorinated acrylate (PA) as the core was prepared by core-shell emulsion polymerization with CWPU as the seed emulsion, together with dodecafluoroheptyl methacrylate (DFMA), diacetone acrylamide (DAAM), and methyl methacrylate (MMA). The effects of the core-shell ratio of PA/PU on the surface properties, mechanical properties, and heat resistance of FPUA emulsions and films were investigated. The results showed that when w(PA) = 30~50%, the stability of FPUA emulsion was the highest, and the particles showed a core-shell structure with bright and dark intersections under TEM. When w(PA) = 30%, the tensile strength reached 23.35 ± 0.08 MPa. When w(PA) = 50%, the fluorine content on the surface of the coating film was 14.75% and the contact angle was as high as 98.5°, which showed good hydrophobicity; the surface flatness of the film was observed under AFM. It is found that the tensile strength of the film increases and then decreases with the increase in the core-shell ratio and the heat resistance of the FPUA film is gradually increased. The FPUA film has excellent properties such as good impact resistance, high flexibility, high adhesion, and corrosion resistance.

6.
Polymers (Basel) ; 15(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38231956

RESUMEN

The incorporation of a naphthyl curing agent (NCA) can enhance the thermal stability of pressure-sensitive adhesives (PSAs). In this study, a PSA matrix was synthesized using a solution polymerization process and consisted of butyl acrylate, acrylic acid, and an ethyl acrylate within an acrylic copolymer. Benzoyl peroxide was used as an initiator during the synthesis. To facilitate the UV curing of the solvent-borne PSAs, glycidyl methacrylate was added to introduce unsaturated carbon double bonds. The resulting UV-curable acrylic PSA tapes exhibited longer holding times at high temperatures (150 °C) compared to uncross-linked PSA tapes, without leaving any residues on the substrate surface. The thermal stability of the PSA was further enhanced by adding more NCA and increasing the UV dosage. This may be attributed to the formation of cross-linking networks within the polymer matrix at higher doses. The researchers successfully balanced the adhesion performance and thermal stability by modifying the amount of NCA and UV radiation, despite the peel strength declining and the holding duration shortening. This research also investigated the effects of cross-linking density on gel content, molecular weight, glass transition temperature, and other properties of the PSAs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA