Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biophys J ; 123(12): 1722-1734, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38773770

RESUMEN

Cervical cancer ranks fourth in female mortality. Since the mechanisms for pathogenesis of cervical cancer are still poorly understood, the effective treatment options are lacking. Beclin-1 exhibits an inhibitory role in cervical cancer via suppressing the proliferation, invasion, and migration of cervical cancer cells. It is reported that USP19 removes the K11-linked ubiquitination of Beclin-1 to protect Beclin-1 from proteasomal degradation. Interestingly, we found that hypoxia induced a significant decrease of both Beclin-1 and USP19, suggesting that hypoxia could dually inhibit the protein level of Beclin-1 through a type 2 coherent feed-forward loop (C2-FFL, hypoxia ⊸ Beclin-1 integrating with hypoxia ⊸ USP19 → Beclin-1) to promote the occurrence and development of cervical cancer. Furthermore, mathematical modeling revealed that under the hypoxic environment of solid tumor, the hypoxia/USP19/Beclin-1 coherent feed-forward loop could significantly reduce the protein level of Beclin-1, greatly enhance the sensitivity of Beclin-1 to hypoxia, strikingly restrict the heterogeneity of Beclin-1, and contribute to the low positive rate of Beclin-1 in cervical cancer. It is expected to have significance for elucidating the underlying mechanisms of the occurrence and development of cervical cancer and to provide novel targets and strategies for prevention and treatment of cervical cancer.


Asunto(s)
Beclina-1 , Neoplasias del Cuello Uterino , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Femenino , Beclina-1/metabolismo , Humanos , Modelos Biológicos , Retroalimentación Fisiológica , Hipoxia de la Célula , Línea Celular Tumoral
2.
Glob Chang Biol ; 30(10): e17537, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39425618

RESUMEN

Anthropogenic land-use practices influence ecosystem functions and the environment. Yet, the effect of global land-use change on ecosystem nitrogen (N) cycling remains unquantified despite that ecosystem N cycling plays a critical role in maintaining food security. Here, we analysed 2430 paired observations globally to show that converting natural to managed ecosystems increases ratios of autotrophic nitrification to ammonium immobilisation and nitrate to ammonium, but decreases soil immobilisation of mineral N, causing increased N losses via leaching and gaseous N emissions, such as nitrous oxide (e.g., via denitrification), resulting in a leaky N cycle. Changing land use from intensively managed to one that resembles natural ecosystems reversed N losses by 108% on average, resulting in a more conservative N cycle. Structural equation modelling revealed that changes in soil organic carbon, pH and carbon to N ratio were more important than changes in soil moisture content and temperature in predicting ecosystem N retention capacities following land-use conversion and its reversion. The hotspots of leaky N cycles were mostly in equatorial and tropical regions, as well as in Western Europe, the United States and China. Our results suggest that whether an ecosystem exhibits a conservative N cycle after land-use reversion depends on management practices.


Asunto(s)
Ecosistema , Ciclo del Nitrógeno , Suelo , Suelo/química , Agricultura/métodos , Nitrógeno/metabolismo , Nitrógeno/análisis , Modelos Teóricos , Desnitrificación
3.
Plant Dis ; 108(4): 996-1004, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38613135

RESUMEN

Bacterial wilt caused by Ralstonia solanacearum (RS) is one of the most devastating diseases in patchouli (Pogostemon cablin [Blanco] Benth.), which results in low yield and quality of patchouli. However, no stable and effective control methods have been developed yet. To evaluate the potential of dominant bacterial endophytes in biocontrol, the endophytic bacterial diversity of patchouli was investigated based on Illumina sequencing analysis, and the ability of isolates belonging to the dominant bacterial genera to control RS wilt of patchouli was explored in pot experiments. A total of 245 bacterial genera were detected in patchouli plants, with the highest relative abundance of operational taxonomic units belonging to the genus Pseudomonas detected in roots, leaves, and stems. The Pseudomonas isolates S02, S09, and S26 showed antagonistic activity against RS in vitro and displayed many plant growth-promoting characteristics, including production of indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylic acid deaminase and phosphate- and potassium-solubilizing capability. Inoculation of patchouli plants with the isolates S02, S09, and S26 significantly improved shoot growth and decreased the incidence of bacterial wilt caused by RS. The results suggest that screening of dominant bacterial endophytes for effective biocontrol agents based on Illumina sequencing analysis is more efficient than random isolation and screening procedures.


Asunto(s)
Endófitos , Enfermedades de las Plantas , Ralstonia solanacearum , Ralstonia solanacearum/fisiología , Ralstonia solanacearum/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Endófitos/genética , Endófitos/fisiología , Endófitos/aislamiento & purificación , Pseudomonas/genética , Pseudomonas/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Agentes de Control Biológico
4.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37445898

RESUMEN

In numerous animals, one essential chemosensory organ that detects chemical signals is the vomeronasal organ (VNO), which is involved in species-specific behaviors, including social and sexual behaviors. The purpose of this study is to investigate the mechanism underlying the processing of chemosensory cues in semi-aquatic mammals using muskrats as the animal model. Muskrat (Ondatra zibethicus) has a sensitive VNO system that activates seasonal breeding behaviors through receiving specific substances, including pheromones and hormones. Vomeronasal organ receptor type 1 (V1R) and type 2 (V2R) and estrogen receptor α and ß (ERα and ERß) were found in sensory epithelial cells, non-sensory epithelial cells and lamina propria cells of the female muskrats' VNO. V2R and ERα mRNA levels in the VNO during the breeding period declined sharply, in comparison to those during the non-breeding period, while V1R and ERß mRNA levels were detected reversely. Additionally, transcriptomic study in the VNO identified that differently expressed genes might be related to estrogen signal and metabolic pathways. These findings suggested that the seasonal structural and functional changes in the VNO of female muskrats with different reproductive status and estrogen was regulated through binding to ERα and ERß in the female muskrats' VNO.


Asunto(s)
Receptor alfa de Estrógeno , Órgano Vomeronasal , Animales , Femenino , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Señales (Psicología) , Mamíferos/metabolismo , Estrógenos/metabolismo , Órgano Vomeronasal/metabolismo , Arvicolinae
5.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38069380

RESUMEN

Ongoing research is gradually broadening the idea of cancer treatment, with attention being focused on nanoparticles to improve the stability, therapeutic efficacy, targeting, and other important metrics of conventional drugs and traditional drug delivery methods. Studies have demonstrated that drug delivery carriers based on biomaterials (e.g., protein nanoparticles and lipids) and inorganic materials (e.g., metal nanoparticles) have potential anticancer effects. Among these carriers, self-assembled proteins and peptides, which are highly biocompatible and easy to standardize and produce, are strong candidates for the preparation of anticancer drugs. Breast cancer (BC) and cervical cancer (CC) are two of the most common and deadly cancers in women. These cancers not only threaten lives globally but also put a heavy burden on the healthcare system. Despite advances in medical care, the incidence of these two cancers, particularly CC, which is almost entirely preventable, continues to rise, and the mortality rate remains steady. Therefore, there is still a need for in-depth research on these two cancers to develop more targeted, efficacious, and safe therapies. This paper reviews the types of self-assembling proteins and peptides (e.g., ferritin, albumin, and virus-like particles) and natural products (e.g., soy and paclitaxel) commonly used in the treatment of BC and CC and describes the types of drugs that can be delivered using self-assembling proteins and peptides as carriers (e.g., siRNAs, DNA, plasmids, and mRNAs). The mechanisms (including self-assembly) by which the natural products act on CC and BC are discussed. The mechanism of action of natural products on CC and BC and the mechanism of action of self-assembled proteins and peptides have many similarities (e.g., NF-KB and Wnt). Thus, natural products using self-assembled proteins and peptides as carriers show potential for the treatment of BC and CC.


Asunto(s)
Productos Biológicos , Neoplasias de la Mama , Nanopartículas , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias del Cuello Uterino/tratamiento farmacológico , Péptidos/uso terapéutico , Péptidos/farmacología , Proteínas/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos/uso terapéutico , Nanopartículas/uso terapéutico , Productos Biológicos/uso terapéutico
6.
Pharmacol Res ; 179: 106232, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35462012

RESUMEN

With the common use of poly ADP-ribose polymerase inhibitors (PARPi) for the man-agement of epithelial ovarian cancer (EOC) across the treatment life cycle, there is a critical need for the development of functional tests, as a complementary to genomic assays, in the study of PARPi sensitivity and resistance. Patient-derived organoids (PDOs) are found feasible for rapid functional testing and predicting drug response. Here, we established a series of PDOs from EOC and tested the sensitivity of seven cases to various agents including PARPi. PDOs recapitulated patient clinical response to platinum chemotherapy and displayed drug response heterogeneity to targeted agents including PARPi. Of three PDOs harboring mutational signature of homologous recombination repair (HRR) deficiency, two were PARPi sensitive while one was inherent resistant. Another PDO derived from a patient who relapsed during olaparib maintenance therapy was found acquired resistant to PARPi. Subsequent functional analysis revealed the potential resistant mechanisms related to replication fork protection and HRR functional restoration, and combination strategies targeting the mechanisms could reverse the resistance. Our research demonstrated the capacity of EOC PDOs for evaluating the sensitivity to PARPi under different settings, exploring mechanisms of resistance, and identifying effective combined strategies, which has implications for the clinical application of PARPi.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/genética , Resistencia a Antineoplásicos , Femenino , Humanos , Organoides , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
7.
Anal Bioanal Chem ; 413(1): 255-261, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33079213

RESUMEN

Uracil-DNA glycosylase (UDG) is a protein enzyme that initiates the base excision repair pathway for maintaining genome stability. Sensitive detection of UDG activity is important in the study of many biochemical processes and clinical applications. Here, a method for detecting UDG is proposed by integrating magnetic separation and real-time ligation chain reaction (LCR). First, a DNA substrate containing uracil base is designed to be conjugated to the magnetic beads. By introducing a DNA complementary to the DNA substrate, the uracil base is recognized and removed by UDG to form an apurinic/apyrimidinic (AP) site. The DNA substrate is then cut off from the AP site by endonuclease IV, releasing a single-strand DNA (ssDNA). After magnetic separation, the ssDNA is retained in the supernatant and then detected by real-time LCR. The linear range of the method is 5 × 10-4 to 5 U/mL with four orders of magnitude, and the detection limit is 2.7 × 10-4 U/mL. In the assay, ssDNA template obtained through magnetic separation can prevent other DNA from affecting the subsequent LCR amplification reaction, which provides a simple, sensitive, specific, and universal way to detect UDG and other repair enzymes. Furthermore, the real-time LCR enables the amplification reaction and fluorescence detection simultaneously, which simplifies the operation, avoids post-contamination, and widens the dynamic range. Therefore, the integration of magnetic separation and real-time LCR opens a new avenue for the detection of UDG and other DNA repair enzymes.


Asunto(s)
Reacción en Cadena de la Ligasa/métodos , Uracil-ADN Glicosidasa/análisis , Células HeLa , Calor , Humanos , Límite de Detección , Reproducibilidad de los Resultados , Uracil-ADN Glicosidasa/antagonistas & inhibidores
8.
BMC Cancer ; 20(1): 936, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-32993568

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is a common malignant tumor with characteristics of poor prognosis, high morbidity and mortality worldwide. In particular, only a few systemic treatment options are available for advanced HCC patients, and include sorafenib and the recently described atezolizumab plus bevacizumab regimen as possible first-line treatments. We here propose acteoside, a phenylethanoid glycoside widely distributed in many medicinal plants as a potential candidate against advanced HCC. METHODS: Cell proliferation, colony formation and migration were analyzed in the three human HCC cell lines BEL7404, HLF and JHH-7. Angiogenesis assay was performed using HUVESs. The BEL7404 or JHH-7 xenograft nude mice model was established to analyze the possible antitumor effects of acteoside. qRT-PCR and western blotting were used to reveal the potential antitumor mechanisms of acteoside. RESULTS: Acteoside inhibited cell proliferation, colony formation and migration in all the three human HCC cell lines BEL7404, HLF and JHH-7. The prohibition of angiogenesis by acteoside was revealed by the inhibition of tube formation and cell migration of HUVECs. The combination of acteoside and sorafenib produced stronger inhibition of cell colony formation and migration of the HCC cells as well as of angiogenesis of HUVECs. The in vivo antitumor efficacy of acteoside was further demonstrated in BEL7404 or JHH-7 xenograft nude mice model, with an enhancement when combined with sorafenib in inhibiting the growth of JHH-7 xenograft. Further treatment of JHH-7 cells with acteoside revealed an increase in the level of tumor suppressor protein p53 as well as a decrease of kallikrein-related peptidase (KLK1, 2, 4, 9 and 10) gene level with no significant changes of the rest of KLK1-15 genes. CONCLUSIONS: Acteoside exerts an antitumor effect possibly through its up-regulation of p53 levels as well as inhibition of KLK expression and angiogenesis. Acteoside could be useful as an adjunct in the treatment of advanced HCC in the clinic.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Glucósidos/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Fenoles/farmacología , Proteína p53 Supresora de Tumor/genética , Animales , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Calicreínas/efectos de los fármacos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Sorafenib/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
9.
J Ind Microbiol Biotechnol ; 44(9): 1355-1365, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28660369

RESUMEN

Glycosylphosphatidylinositol (GPI)-anchored glycoproteins have diverse intrinsic functions in yeasts, and they also have different uses in vitro. The GPI-modified cell wall proteins GCW21, GCW51, and GCW61 of Pichia pastoris were chosen as anchoring proteins to construct co-expression strains in P. pastoris GS115. The hydrolytic activity and the amount of Candida antarctica lipase B (CALB) displayed on cell surface increased significantly following optimization of the fusion gene dosage and combination of the homogeneous or heterogeneous cell wall proteins. Maximum CALB hydrolytic activity was achieved at 4920 U/g dry cell weight in strain GS115/CALB-GCW (51 + 51 + 61 + 61) after 120 h of methanol induction. Changes in structural morphology and the properties of the cell surfaces caused by co-expression of fusion proteins were observed by transmission electron microscopy (TEM) and on plates containing cell-wall-destabilizing reagent. Our results suggested that both the outer and inner cell layers were significantly altered by overexpression of GPI-modified cell wall proteins. Interestingly, quantitative analysis of the inner layer components showed an increase in ß-1,3-glucan, but no obvious changes in chitin in the strains overexpressing GPI-modified cell wall proteins.


Asunto(s)
Pared Celular/metabolismo , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Pichia/genética , Pichia/metabolismo , Pared Celular/química , Pared Celular/ultraestructura , Proteínas Fúngicas/metabolismo , Proteínas Ligadas a GPI/genética , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Hidrólisis , Lipasa/metabolismo , Metanol/metabolismo , Pichia/química , Pichia/ultraestructura , beta-Glucanos/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-39226155

RESUMEN

This study was conducted to investigate the association between alcohol consumption in adolescence and the risk of hypertension or prehypertension development in early adulthood. This cohort study included adolescent participants aged 12-18 years from the 2000-2011 China Health and Nutrition Survey. Cox proportional risk regression models were used to analyze the associations of the frequency of alcohol consumption, alcohol intake, and type of alcohol with the risk of developing hypertension or prehypertension. Restricted cubic spline analysis was used to assess the dose-response relationships for alcohol intake and their hazard ratios (HRs). A total of 1556 participants were included in the final analysis. Among the overall population, 448 (30.81%) and 35 (34.31%) participants developed hypertension or prehypertension, respectively. Compared with no alcohol consumption, alcohol consumption ≥ 2 times/week and consumption of ≥2 types of alcohol were associated with an increased risk of hypertension and prehypertension, with HRs of 1.97 (95% confidence interval [CI] 1.17-3.34; p = 0.011) and 1.77 (95% CI 1.01-3.09; p = 0.046), respectively. Alcohol intake of > 96 mL/week was associated with an increased risk of hypertension and prehypertension, with HRs of 2.09 (95% CI 1.12-3.90; p = 0.020) and 2.07 (95% CI 1.11-3.84; p = 0.021), respectively. The restricted cubic spline analysis showed that the risk of developing high blood pressure or prehypertension tends to increase with increasing alcohol consumption. Heavy alcohol consumption in adolescence increased the risk of developing hypertension and prehypertension in early adulthood.

11.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39065770

RESUMEN

Atherosclerosis (AS) is the formation of atherosclerotic plaques on the walls of the arteries, causing them to narrow. If this occurs in the coronary arteries, the blood vessels may be completely blocked, resulting in myocardial infarction; if it occurs in the blood vessels of the brain, the blood vessels may be blocked, resulting in cerebral infarction, i.e., stroke. Studies have shown that the pathogenesis of atherosclerosis involves the processes of inflammation, lipid infiltration, oxidative stress, and endothelial damage, etc. SIRT, as a key factor regulating the molecular mechanisms of oxidative stress, inflammation, and aging, has an important impact on the pathogenesis of plaque formation, progression, and vulnerability. Statistics show that AS accounts for about 50 per cent of deaths in Western countries. Currently, oral medication is the mainstay of AS treatment, but its development is limited by side effects, low bioavailability and other unfavourable factors. In recent years, with the rapid development of nano-preparations, researchers have combined statins and natural product drugs within nanopreparations to improve their bioavailability. Based on this, this paper summarises the main pathogenesis of AS and also proposes new oral nanoformulations such as liposomes, nanoparticles, nanoemulsions, and nanocapsules to improve their application in the treatment of AS.

12.
Front Microbiol ; 15: 1360988, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559356

RESUMEN

Tartary buckwheat (Fagopyrum tataricum) is a significant medicinal crop, with flavonoids serving as a crucial measure of its quality. Presently, the artificial cultivation of Tartary buckwheat yields low results, and the quality varies across different origins. Therefore, it is imperative to identify an effective method to enhance the yield and quality of buckwheat. Endophytic fungi reside within plants and form a mutually beneficial symbiotic relationship, aiding plants in nutrient absorption, promoting host growth, and improving secondary metabolites akin to the host. In this study, high-throughput sequencing technology was employed to assess the diversity of endophytic fungi in Tartary buckwheat. Subsequently, a correlation analysis was performed between fungi and metabolites, revealing potential increases in flavonoid content due to endophytic fungi such as Bipolaris, Hymenula, and Colletotrichum. Additionally, a correlation analysis between fungi and phenotypic traits unveiled the potential influence of endophytic fungi such as Bipolaris, Buckleyzyma, and Trichosporon on the phenotypic traits of Tartary buckwheat. Notably, the endophytic fungi of the Bipolaris genus exhibited the potential to elevate the content of Tartary buckwheat metabolites and enhance crop growth. Consequently, this study successfully identified the resources of endophytic fungi in Tartary buckwheat, explored potential functional endophytic fungi, and laid a scientific foundation for future implementation of biological fertilizers in improving the quality and growth of Tartary buckwheat.

13.
Int Immunopharmacol ; 133: 112058, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38613883

RESUMEN

Fetal growth restriction (FGR) is a major cause of premature and low-weight births, which increases the risk of necrotizing enterocolitis (NEC); however, the association remains unclear. We report a close correlation between placental polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and NEC. Newborns with previous FGR exhibited intestinal inflammation and more severe NEC symptoms than healthy newborns. Placental PMN-MDSCs are vital regulators of fetal development and neonatal gut inflammation. Placental single-cell transcriptomics revealed that PMN-MDSCs populations and olfactomedin-4 gene (Olfm4) expression levels were significantly increased in PMN-MDSCs in later pregnancy compared to those in early pregnancy and non-pregnant females. Female mice lacking Olfm4 in myeloid cells mated with wild-type males showed FGR during pregnancy, with a decreased placental PMN-MDSCs population and expression of growth-promoting factors (GPFs) from placental PMN-MDSCs. Galectin-3 (Gal-3) stimulated the OLFM4-mediated secretion of GPFs by placental PMN-MDSCs. Moreover, GPF regulation via OLFM4 in placental PMN-MDSCs was mediated via hypoxia inducible factor-1α (HIF-1α). Notably, the offspring of mothers lacking Olfm4 exhibited intestinal inflammation and were susceptible to NEC. Additionally, OLFM4 expression decreased in placental PMN-MDSCs from pregnancies with FGR and was negatively correlated with neonatal morbidity. These results revealed that placental PMN-MDSCs contributed to fetal development and ameliorate newborn intestinal inflammation.


Asunto(s)
Retardo del Crecimiento Fetal , Células Supresoras de Origen Mieloide , Placenta , Animales , Femenino , Embarazo , Humanos , Placenta/inmunología , Placenta/metabolismo , Recién Nacido , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Retardo del Crecimiento Fetal/inmunología , Ratones , Ratones Noqueados , Enterocolitis Necrotizante/inmunología , Enterocolitis Necrotizante/metabolismo , Factor Estimulante de Colonias de Granulocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos/genética , Ratones Endogámicos C57BL , Masculino , Galectinas/metabolismo , Galectinas/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Intestinos/inmunología , Intestinos/patología
14.
J Steroid Biochem Mol Biol ; 243: 106558, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38815727

RESUMEN

The dynamic systems of mitochondria, including mitochondrial fusion and fission, are essential for ovarian endocrine and follicular development. Meanwhile, ERK1/2 signaling is an important mechanism mediating altered mitochondrial dynamics and steroidogenesis. The purpose of this study was to investigate the seasonal changes in ovarian steroidogenesis concerning EGFR-ERK1/2 signaling and mitochondrial dynamics of the muskrats (Ondatra zibethicus). The results showed that follicular development in the muskrats remained in the tertiary follicular stage during the non-breeding season, accompanied by a significant decrease in serum and ovarian concentrations of 17ß-estradiol and progesterone from the breeding season to the non-breeding season. EGF, EGFR, ERK1/2, p-ERK1/2, and mitochondrial dynamics regulators were mainly localized in granulosa cells and theca cells of muskrats during the breeding and non-breeding seasons. The mRNA levels of Egfr, Erk1/2, Mfn1/2, Opa1, Drp1, and steroidogenic enzymes in the ovaries were remarkably higher during the breeding season. The 17ß-estradiol concentrations in the serum and ovaries as well as the relative levels of Mfn1/2, Opa1, and Drp1 were positively associated with each other. Furthermore, transcriptomic analysis of the ovaries revealed that differentially expressed genes might be linked to steroid biosynthesis, estrogen signaling pathway, and mitochondrial membrane-related pathways. In conclusion, these results suggest that the up-regulation of mitochondrial dynamics regulators during the breeding season is closely associated with enhanced ovarian steroidogenesis in the muskrats, which may be regulated by upstream EGFR-ERK1/2 signaling.


Asunto(s)
Receptores ErbB , Estradiol , Sistema de Señalización de MAP Quinasas , Dinámicas Mitocondriales , Ovario , Estaciones del Año , Animales , Femenino , Receptores ErbB/metabolismo , Receptores ErbB/genética , Ovario/metabolismo , Estradiol/sangre , Estradiol/metabolismo , Estradiol/biosíntesis , Arvicolinae/genética , Arvicolinae/metabolismo , Progesterona/sangre , Progesterona/metabolismo , Progesterona/biosíntesis , Mitocondrias/metabolismo
15.
Environ Sci Pollut Res Int ; 30(6): 15230-15240, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36163573

RESUMEN

Microbial induced carbonate precipitation (MICP) is one of the most commonly researched topics on biocementation, which achieves cementation of soil particles by carbonate from urea hydrolysis catalyzed by microbial urease. Although most MICP studies are limited to stabilizing sandy soils, more researchers are now turning their interest to other weak soils, particularly organic soils. To stabilize organic soils, the influence of humic substances should be investigated since it has been reported to inhibit urease activity and disrupt the formation of calcium carbonate. This study investigates the effect of humic acid (HA), one fraction of humic substances, on MICP. For this purpose, the effects of HA content on CaCO3 precipitation using three strains and on CaCO3 morphology were examined. The results showed that native species in organic soils were less adversely affected by HA addition than the exogenous one. Another interesting finding is that bacteria seem to have strategies to cope with harsh conditions with HA. Observation of CaCO3 morphology revealed that the crystallization process was hindered by HA to some extent, producing lots of fine amorphous precipitates and large aggregated CaCO3. Overall, this study could provide an insightful understanding of possible obstacles when using MICP to stabilize organic soils.


Asunto(s)
Sustancias Húmicas , Suelo , Suelo/química , Ureasa , Carbonatos , Carbonato de Calcio/química , Precipitación Química
16.
Front Bioeng Biotechnol ; 11: 1216171, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37388775

RESUMEN

Microbial induced carbonate precipitation (MICP) through the ureolysis metabolic pathway is one of the most studied topics in biocementation due to its high efficiency. Although excellent outcomes have proved the potential of this technique, microorganisms face some obstacles when considering complicated situations in the real field, such as bacterial adaptability and survivability issues. This study made the first attempt to seek solutions to this issue from the air, exploring ureolytic airborne bacteria with resilient features to find a solution to survivability issues. Samples were collected using an air sampler in Sapporo, Hokkaido, a cold region where sampling sites were mostly covered with dense vegetation. After two rounds of screening, 12 out of 57 urease-positive isolates were identified through 16S rRNA gene analysis. Four potentially selected strains were then evaluated in terms of growth pattern and activity changes within a range of temperatures (15°C-35°C). The results from sand solidification tests using two Lederbergia strains with the best performance among the isolates showed an improvement in unconfined compressive strength up to 4-8 MPa after treatment, indicating a high MICP efficiency. Overall, this baseline study demonstrated that the air could be an ideal isolation source for ureolytic bacteria and laid a new pathway for MICP applications. More investigations on the performance of airborne bacteria under changeable environments may be required to further examine their survivability and adaptability.

17.
Gels ; 9(8)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37623108

RESUMEN

Regenerative medicine is a complex discipline that is becoming a hot research topic. Skin, bone, and nerve regeneration dominate current treatments in regenerative medicine. A new type of drug is urgently needed for their treatment due to their high vulnerability to damage and weak self-repairing ability. A self-assembled peptide hydrogel is a good scaffolding material in regenerative medicine because it is similar to the cytoplasmic matrix environment; it promotes cell adhesion, migration, proliferation, and division; and its degradation products are natural and harmless proteins. However, fewer studies have examined the specific mechanisms of self-assembled peptide hydrogels in promoting tissue regeneration. This review summarizes the applications and mechanisms of self-assembled short peptide and peptide hydrogels in skin, bone, and neural healing to improve their applications in tissue healing and regeneration.

18.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37631010

RESUMEN

Natural products play important roles in the pathogenesis of many human malignancies, including colorectal cancer, and can act as a gene regulator in many cancers. They regulate malignant cell growth through many cellular signal pathways, including Rac family small GTPase 1 (RAC1)/PI3K/AKT (α-serine/threonine-protein kinase), mitogen-activated protein kinase (MAPK), Wnt/ß-catenin pathway, transforming growth factor-ß (TGF-ß), Janus kinase and signal transducer and activator of transcription (JAK-STAT), nuclear factor kappa-B (NF-κB), the Notch pathway, Hippo pathway, and Hedgehog pathway. In this review, we describe the epigenetic roles of several natural products, e.g., platycodin D (PD), ginsenoside Rd, tretinoin, Rutin, curcumin, clove extract, betulinic acid, resveratrol, and curcumin, in colorectal cancer, including their impact on colorectal cancer cell proliferation, apoptosis, invasion, migration, and anti-chemotherapeutic resistance. The aim is to illustrate the epigenetic mechanisms of action of natural products in cancer prevention and treatment, and to provide (1) a theoretical basis for the study of the role of epigenetics in influencing colorectal cancer; (2) new directions for studying the occurrence, development, and prognosis of colorectal cancer; and (3) new targets for treating and preventing colorectal cancer.

19.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37631037

RESUMEN

Diseases are evolving as living standards continue to improve. Cancer is the main cause of death and a major public health problem that seriously threatens human life. Colorectal cancer is one of the top ten most common malignant tumors in China, ranking second after gastric cancer among gastrointestinal malignant tumors, and its incidence rate is increasing dramatically each year due to changes in the dietary habits and lifestyle of the world's population. Although conventional therapies, such as surgery, chemotherapy, and radiotherapy, have profoundly impacted the treatment of colorectal cancer (CRC), drug resistance and toxicity remain substantial challenges. Natural products, such as dietary therapeutic agents, are considered the safest alternative for treating CRC. In addition, there is substantial evidence that natural products can induce apoptosis, inhibit cell cycle arrest, and reduce the invasion and migration of colon cancer cells by targeting and regulating the expression and function of miRNAs. Here, we summarize the recent research findings on the miRNA-regulation-based antitumor mechanisms of various active ingredients in natural products, highlighting how natural products target miRNA regulation in colon cancer prevention and treatment. The application of natural drug delivery systems and predictive disease biomarkers in cancer prevention and treatment is also discussed. Such approaches will contribute to the discovery of new regulatory mechanisms associated with disease pathways and provide a new theoretical basis for developing novel colon cancer drugs and compounds and identifying new therapeutic targets.

20.
Anal Chim Acta ; 1264: 341302, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37230722

RESUMEN

Aristolochic Acid I (AAI) is an environmental and foodborne toxin found in the Aristolochia and Asarum species of plants that are widespread all over the world. Therefore, there is an urgent need to develop a sensitive and specific biosensor for identifying AAI. Aptamers as a powerful biorecognition element provide the most viable options for solving this problem. In this study, we used library-immobilized SELEX to isolate an AAI-specific aptamer with a KD value of 86 ± 13 nM. To verify the practicability of the selected aptamer, a label-free colorimetric aptasensor was designed. This aptasensor exhibited a low detection limit of 225 nM. Besides, it had been further applied for the determination of AAI in real samples and the recoveries ranged from 97.9% to 102.4%. In the future, AAI aptamer will provide a promising tool for safety evaluation in various fields of agriculture, food, and medication.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Límite de Detección , Extractos Vegetales , Técnica SELEX de Producción de Aptámeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA