Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 49(2): 359-367, 2013 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-23177740

RESUMEN

The ability to measure human aging from molecular profiles has practical implications in many fields, including disease prevention and treatment, forensics, and extension of life. Although chronological age has been linked to changes in DNA methylation, the methylome has not yet been used to measure and compare human aging rates. Here, we build a quantitative model of aging using measurements at more than 450,000 CpG markers from the whole blood of 656 human individuals, aged 19 to 101. This model measures the rate at which an individual's methylome ages, which we show is impacted by gender and genetic variants. We also show that differences in aging rates help explain epigenetic drift and are reflected in the transcriptome. Moreover, we show how our aging model is upheld in other human tissues and reveals an advanced aging rate in tumor tissue. Our model highlights specific components of the aging process and provides a quantitative readout for studying the role of methylation in age-related disease.


Asunto(s)
Envejecimiento/genética , Metilación de ADN , Genoma Humano , Adulto , Anciano , Anciano de 80 o más Años , Epigénesis Genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Modelos Genéticos , Fenotipo , Análisis de Secuencia de ADN , Transcriptoma , Adulto Joven
2.
Genome Res ; 20(2): 190-200, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20007327

RESUMEN

In eukaryotes, many chromatin proteins together regulate gene expression. Chromatin proteins often direct the genomic binding pattern of other chromatin proteins, for example, by recruitment or competition mechanisms. The network of such targeting interactions in chromatin is complex and still poorly understood. Based on genome-wide binding maps, we constructed a Bayesian network model of the targeting interactions among a broad set of 43 chromatin components in Drosophila cells. This model predicts many novel functional relationships. For example, we found that the homologous proteins HP1 and HP1C each target the heterochromatin protein HP3 to distinct sets of genes in a competitive manner. We also discovered a central role for the remodeling factor Brahma in the targeting of several DNA-binding factors, including GAGA factor, JRA, and SU(VAR)3-7. Our network model provides a global view of the targeting interplay among dozens of chromatin components.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Redes y Vías Metabólicas , Animales , Teorema de Bayes , Modelos Biológicos , Mapeo de Interacción de Proteínas
3.
Cell Rep ; 3(1): 128-37, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23291096

RESUMEN

Classic "position-effect" experiments repositioned genes near telomeres to demonstrate that the epigenetic landscape can dramatically alter gene expression. Here, we show that systematic gene knockout collections provide an exceptional resource for interrogating position effects, not only near telomeres but at every genetic locus. Because a single reporter gene replaces each deleted gene, interrogating this reporter provides a sensitive probe into different chromatin environments while controlling for genetic context. Using this approach, we find that, whereas systematic replacement of yeast genes with the kanMX marker does not perturb the chromatin landscape, chromatin differences associated with gene position account for 35% of kanMX activity. We observe distinct chromatin influences, including a Set2/Rpd3-mediated antagonistic interaction between histone H3 lysine 36 trimethylation and the Rap1 transcriptional activation site in kanMX. This interaction explains why some yeast genes have been resistant to deletion and allows successful generation of these deletion strains through the use of a modified transformation procedure. These findings demonstrate that chromatin regulation is not governed by a uniform "histone code" but by specific interactions between chromatin and genetic factors.


Asunto(s)
Efectos de la Posición Cromosómica/genética , Epigénesis Genética , Orden Génico/genética , Saccharomyces cerevisiae/genética , Acetilación , Cromatina/metabolismo , Cromosomas Fúngicos/genética , Diploidia , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Técnicas de Inactivación de Genes , Biblioteca de Genes , Genes Fúngicos/genética , Marcadores Genéticos , Heterocigoto , Histonas/metabolismo , Lisina/metabolismo , Metilación , Mutagénesis Insercional/genética , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Procesamiento Proteico-Postraduccional/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA