Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227736

RESUMEN

Emerging evidence shows that psychological stress promotes the progression of Parkinson's disease (PD) and the onset of dyskinesia in non-PD individuals, highlighting a potential avenue for therapeutic intervention. We previously reported that chronic restraint-induced psychological stress precipitated the onset of parkinsonism in 10-month-old transgenic mice expressing mutant human α-synuclein (αSyn) (hαSyn A53T). We refer to these as chronic stress-genetic susceptibility (CSGS) PD model mice. In this study we investigated whether ginsenoside Rg1, a principal compound in ginseng notable for soothing the mind, could alleviate PD deterioration induced by psychological stress. Ten-month-old transgenic hαSyn A53T mice were subjected to 4 weeks' restraint stress to simulate chronic stress conditions that worsen PD, meanwhile the mice were treated with Rg1 (40 mg· kg-1 ·d-1, i.g.), and followed by functional magnetic resonance imaging (fMRI) and a variety of neurobehavioral tests. We showed that treatment with Rg1 significantly alleviated both motor and non-motor symptoms associated with PD. Functional MRI revealed that Rg1 treatment enhanced connectivity between brain regions implicated in PD, and in vivo multi-channel electrophysiological assay showed improvements in dyskinesia-related electrical activity. In addition, Rg1 treatment significantly attenuated the degeneration of dopaminergic neurons and reduced the pathological aggregation of αSyn in the striatum and SNc. We revealed that Rg1 treatment selectively reduced the level of the stress-sensitive protein RTP801 in SNc under chronic stress conditions, without impacting the acute stress response. HPLC-MS/MS analysis coupled with site-directed mutation showed that Rg1 promoted the ubiquitination and subsequent degradation of RTP801 at residues K188 and K218, a process mediated by the Parkin RING2 domain. Utilizing αSyn A53T+; RTP801-/- mice, we confirmed the critical role of RTP801 in stress-aggravated PD and its necessity for Rg1's protective effects. Moreover, Rg1 alleviated obstacles in αSyn autophagic degradation by ameliorating the RTP801-TXNIP-mediated deficiency of ATP13A2. Collectively, our results suggest that ginsenoside Rg1 holds promise as a therapeutic choice for treating PD-sensitive individuals who especially experience high levels of stress and self-imposed expectations.

2.
Acta Pharmacol Sin ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112771

RESUMEN

Esculetin (ESC) is a coumarin-derived phytochemical prevalent in traditional Chinese medicine that exhibits anti-acute ischemic stroke activities. Our previous studies demonstrate that CKLF1 is a potential anti-stroke target for coumarin-derived compound. In this study we investigated whether CKLF1 was involved in the neuroprotective effects of ESC against photothrombotic stroke in mice. The mice were treated with ESC (20, 40 or 80 mg·kg-1·d-1, i.g.) for two weeks. The therapeutic effect of ESC was assessed using MRI, neurological function evaluation, and a range of behavioral tests on D1, 3, 7 and 14 of ESC administration. We showed that oral administration of ESC dose-dependently reduced the cerebral infarction volume within one week after stroke, improved behavioral performance, and alleviated neuropathological damage within two weeks. Functional MRI revealed that ESC significantly enhanced the abnormal low-frequency fluctuation (ALFF) value of the motor cortex and promoted functional connectivity between the supplementary motor area (SMA) and multiple brain regions. We demonstrated that ESC significantly reduced the protein levels of CKLF1 and CCR5, as well as the CKLF1/CCR5 protein complex in the peri-infarcted area. We showed that ESC (0.1-10 µM) dose-dependently blocked CKLF1-induced chemotactic movement of neutrophils in the Transwell assay, reducing the interaction of CKLF1/CCR5 on the surface of neutrophils, thereby reducing neutrophil infiltration, and decreasing the expression of ICAM-1, VCAM-1 and MMP-9 in the peri-infarct tissue. Knockout of CKLF1 reduced brain infarction volume and motor dysfunction after stroke but also negated the anti-stroke efficacy and neutrophil infiltration of ESC. These results suggest that the efficacy of ESC in promoting post-stroke neural repair depends on its inhibition on CKLF1-mediated neutrophil infiltration, which offering novel perspectives for elucidating the therapeutic properties of coumarins.

3.
Phytother Res ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225243

RESUMEN

Exosomes, extracellular vesicles secreted by various cells, actively participate in intercellular communication by facilitating the exchange of crucial molecular information such as DNA, RNA, and lipids. Within this intricate network, microRNAs, endogenous non-coding small RNAs, emerge as pivotal regulators of post-transcriptional gene expression, significantly influencing the development of neurodegenerative diseases. The historical prominence of traditional Chinese medicine (TCM) in clinical practice in China underscores its enduring significance. Notably, TCM monomers, serving as active constituents within herbal medicine, assume a critical role in the treatment of neurodegenerative diseases, particularly in mitigating oxidative stress, inhibiting apoptosis, and reducing inflammation. This comprehensive review aims to delineate the specific involvement of exosomal microRNAs in various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, stroke, and amyotrophic lateral sclerosis. Furthermore, the exploration extends to the application of TCM monomers, elucidating their efficacy as therapeutic agents in these conditions. Additionally, the review examines the utilization of exosomes as drug delivery carriers in the context of neurodegenerative diseases, providing a nuanced understanding of the potential synergies between TCM and modern therapeutic approaches. This synthesis of knowledge aims to contribute to the advancement of our comprehension of the intricate molecular mechanisms underlying neurodegeneration and the potential therapeutic avenues offered by TCcom interventions.

4.
Int J Mol Sci ; 25(11)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38892334

RESUMEN

Noncoding RNAs (ncRNAs) are a class of nucleotide sequences that cannot be translated into peptides. ncRNAs can function post-transcriptionally by splicing complementary sequences of mRNAs or other ncRNAs or by directly engaging in protein interactions. Over the past few decades, the pervasiveness of ncRNAs in cell physiology and their pivotal roles in various diseases have been identified. One target regulated by ncRNAs is connexin (Cx), a protein that forms gap junctions and hemichannels and facilitates intercellular molecule exchange. The aberrant expression and misdistribution of connexins have been implicated in central nervous system diseases, cardiovascular diseases, bone diseases, and cancer. Current databases and technologies have enabled researchers to identify the direct or indirect relationships between ncRNAs and connexins, thereby elucidating their correlation with diseases. In this review, we selected the literature published in the past five years concerning disorders regulated by ncRNAs via corresponding connexins. Among it, microRNAs that regulate the expression of Cx43 play a crucial role in disease development and are predominantly reviewed. The distinctive perspective of the ncRNA-Cx axis interprets pathology in an epigenetic manner and is expected to motivate research for the development of biomarkers and therapeutics.


Asunto(s)
Conexinas , ARN no Traducido , Humanos , ARN no Traducido/genética , ARN no Traducido/metabolismo , Animales , Conexinas/metabolismo , Conexinas/genética , MicroARNs/genética , MicroARNs/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Regulación de la Expresión Génica , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/terapia , Uniones Comunicantes/metabolismo , Uniones Comunicantes/genética , Enfermedades del Sistema Nervioso Central/genética , Enfermedades del Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso Central/terapia
5.
Zhongguo Zhong Yao Za Zhi ; 49(1): 55-61, 2024 Jan.
Artículo en Zh | MEDLINE | ID: mdl-38403338

RESUMEN

The theory of kidney storing essence storage, an important part of the basic theory of traditional Chinese medicine(TCM), comes from the Chapter 9 Discussion on Six-Plus-Six System and the Manifestations of the Viscera in the Plain Questions, which says that "the kidney manages closure and is the root of storage and the house of Jing(Essence)". According to this theory, essence is the fundamental substance of human life activities and it is closely related to the growth and development of the human body. Alzheimer's disease(AD) is one of the common neurodegenerative diseases, with the main pathological features of Aß deposition and Tau phosphorylation, which activate neurotoxic reactions and eventually lead to neuronal dysfunction and cell death, severely impairing the patient's cognitive and memory functions. Although research results have been achieved in the TCM treatment of AD, the complex pathogenesis of AD makes it difficult to develop the drugs capable of curing AD. The stem cell therapy is an important method to promote self-repair and regeneration, and bone marrow mesenchymal stem cells(BMSCs) as adult stem cells have the ability of multi-directional differentiation. By reviewing the relevant literature, this paper discusses the association between BMSCs and the TCM theory of kidney storing essence, and expounds the material basis of this theory from the perspective of molecular biology. Studies have shown that TCM with the effect of tonifying the kidney in the treatment of AD are associated with BMSCs. Exosomes produced by such cells are one of the main substances affecting AD. Exosomes containing nucleic acids, proteins, and lipids can participate in intercellular communication, regulate cell function, and affect AD by reducing Aß deposition, inhibiting Tau protein phosphorylation and neuroinflammation, and promoting neuronal regeneration. Therefore, discussing the prevention and treatment of exosomes and AD based on the theory of kidney storing essence will provide a new research idea for the TCM treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Exosomas , Adulto , Humanos , Enfermedad de Alzheimer/prevención & control , Enfermedad de Alzheimer/tratamiento farmacológico , Exosomas/metabolismo , Exosomas/patología , Riñón/patología , Medicina Tradicional China , Neuronas
6.
Eur J Neurosci ; 58(9): 3932-3961, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37831013

RESUMEN

Astrocytes have countless links with neurons. Previously, astrocytes were only considered a scaffold of neurons; in fact, astrocytes perform a variety of functions, including providing support for neuronal structures and energy metabolism, offering isolation and protection and influencing the formation, function and elimination of synapses. Because of these functions, astrocytes play an critical role in central nervous system (CNS) diseases. The regulation of the secretiory factors, receptors, channels and pathways of astrocytes can effectively inhibit the occurrence and development of CNS diseases, such as neuromyelitis optica (NMO), multiple sclerosis, Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease. The expression of aquaporin 4 in AS is directly related to NMO and indirectly involved in the clearance of Aß and tau proteins in AD. Connexin 43 has a bidirectional effect on glutamate diffusion at different stages of stroke. Interestingly, astrocytes reduce the occurrence of PD through multiple effects such as secretion of related factors, mitochondrial autophagy and aquaporin 4. Therefore, this review is focused on the structure and function of astrocytes and the correlation between astrocytes and CNS diseases and drug treatment to explore the new functions of astrocytes with the astrocytes as the target. This, in turn, would provide a reference for the development of new drugs to protect neurons and promote the recovery of nerve function.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades del Sistema Nervioso Central , Esclerosis Múltiple , Neuromielitis Óptica , Enfermedad de Parkinson , Humanos , Acuaporina 4/metabolismo , Astrocitos/metabolismo , Neuromielitis Óptica/metabolismo , Esclerosis Múltiple/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Alzheimer/metabolismo
7.
J Neuroinflammation ; 20(1): 97, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098609

RESUMEN

Ischemic stroke is characterized by the presence of reactive microglia. However, its precise involvement in stroke etiology is still unknown. We used metabolic profiling and showed that chemokine like factor 1 (CKLF1) causes acute microglial inflammation and metabolic reprogramming from oxidative phosphorylation to glycolysis, which was reliant on the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-hypoxia inducible factor 1α (HIF-1α) signaling pathway. Once activated, microglia enter a chronic tolerant state as a result of widespread energy metabolism abnormalities, which reduces immunological responses, including cytokine release and phagocytosis. Metabolically dysfunctional microglia were also found in mice using genome-wide RNA sequencing after chronic administration of CKLF1, and there was a decrease in the inflammatory response. Finally, we showed that the loss of CKLF1 reversed the defective immune response of microglia, as indicated by the maintenance its phagocytosis to neutrophils, thereby mitigating the long-term outcomes of ischemic stroke. Overall, CKLF1 plays a crucial role in the relationship between microglial metabolic status and immune function in stroke, which prepares a potential therapeutic strategy for ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Ratones , Citocinas/metabolismo , Tolerancia Inmunológica , Accidente Cerebrovascular Isquémico/metabolismo , Mamíferos/metabolismo , Microglía/metabolismo , Accidente Cerebrovascular/metabolismo
8.
J Transl Med ; 21(1): 519, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37533007

RESUMEN

Cardiovascular diseases (CVDs) continue to exert a significant impact on global mortality rates, encompassing conditions like pulmonary arterial hypertension (PAH), atherosclerosis (AS), and myocardial infarction (MI). Oxidative stress (OS) plays a crucial role in the pathogenesis and advancement of CVDs, highlighting its significance as a contributing factor. Maintaining an equilibrium between reactive oxygen species (ROS) and antioxidant systems not only aids in mitigating oxidative stress but also confers protective benefits on cardiac health. Herbal monomers can inhibit OS in CVDs by activating multiple signaling pathways, such as increasing the activity of endogenous antioxidant systems and decreasing the level of ROS expression. Given the actions of herbal monomers to significantly protect the normal function of the heart and reduce the damage caused by OS to the organism. Hence, it is imperative to recognize the significance of herbal monomers as prospective therapeutic interventions for mitigating oxidative damage in CVDs. This paper aims to comprehensively review the origins and mechanisms underlying OS, elucidate the intricate association between CVDs and OS, and explore the therapeutic potential of antioxidant treatment utilizing herbal monomers. Furthermore, particular emphasis will be placed on examining the cardioprotective effects of herbal monomers by evaluating their impact on cardiac signaling pathways subsequent to treatment.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Corazón
9.
Acta Pharmacol Sin ; 44(10): 1935-1947, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37198412

RESUMEN

Chemokine receptor 5 (CCR5) is one of the main co-receptors of HIV-1, and has been found to be a potential therapeutic target for stroke. Maraviroc is a classic CCR5 antagonist, which is undergoing clinical trials against stroke. As maraviroc shows poor blood-brain barrier (BBB) permeability, it is of interest to find novel CCR5 antagonists suitable for neurological medication. In this study we characterized the therapeutic potential of a novel CCR5 antagonist A14 in treating ischemic stroke mice. A14 was discovered in screening millions compounds in the Chemdiv library based on the molecular docking diagram of CCR5 and maraviroc. We found that A14 dose-dependently inhibited the CCR5 activity with an IC50 value of 4.29 µM. Pharmacodynamic studies showed that A14 treatment exerted protective effects against neuronal ischemic injury both in vitro and vivo. In a SH-SY5Y cell line overexpressing CCR5, A14 (0.1, 1 µM) significantly alleviated OGD/R-induced cell injury. We found that the expression of CCR5 and its ligand CKLF1 was significantly upregulated during both acute and recovery period in focal cortical stroke mice; oral administration of A14 (20 mg·kg-1·d-1, for 1 week) produced sustained protective effect against motor impairment. A14 treatment had earlier onset time, lower onset dosage and much better BBB permeability compared to maraviroc. MRI analysis also showed that A14 treatment significantly reduced the infarction volume after 1 week of treatment. We further revealed that A14 treatment blocked the protein-protein interaction between CCR5 and CKLF1, increasing the activity of CREB signaling pathway in neurons, thereby improving axonal sprouting and synaptic density after stroke. In addition, A14 treatment remarkably inhibited the reactive proliferation of glial cells after stroke and reduced the infiltration of peripheral immune cells. These results demonstrate that A14 is a promising novel CCR5 antagonist for promoting neuronal repair after ischemic stroke. A14 blocked the protein-protein interaction between CKLF1 and CCR5 after stroke by binding with CCR5 stably, improved the infarct area and promoted motor recovery through reversing the CREB/pCREB signaling which was inhibited by activated CCR5 Gαi pathway, and benefited to the dendritic spines and axons sprouting.


Asunto(s)
Antagonistas de los Receptores CCR5 , Accidente Cerebrovascular Isquémico , Neuroblastoma , Accidente Cerebrovascular , Animales , Humanos , Ratones , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Maraviroc/uso terapéutico , Maraviroc/farmacología , Simulación del Acoplamiento Molecular , Receptores CCR5/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Antagonistas de los Receptores CCR5/química , Antagonistas de los Receptores CCR5/farmacología
10.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37108148

RESUMEN

Depression is a mental illness that has a serious negative impact on physical and mental health. The pathophysiology of depression is still unknown, and therapeutic medications have drawbacks, such as poor effectiveness, strong dependence, adverse drug withdrawal symptoms, and harmful side effects. Therefore, the primary purpose of contemporary research is to understand the exact pathophysiology of depression. The connection between astrocytes, neurons, and their interactions with depression has recently become the focus of great research interest. This review summarizes the pathological changes of neurons and astrocytes, and their interactions in depression, including the alterations of mid-spiny neurons and pyramidal neurons, the alterations of astrocyte-related biomarkers, and the alterations of gliotransmitters between astrocytes and neurons. In addition to providing the subjects of this research and suggestions for the pathogenesis and treatment techniques of depression, the intention of this article is to more clearly identify links between neuronal-astrocyte signaling processes and depressive symptoms.


Asunto(s)
Astrocitos , Depresión , Humanos , Transducción de Señal , Neuronas , Neuritas
11.
Molecules ; 28(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37446576

RESUMEN

Connexin 43 (Cx43) is most widely distributed in mammals, especially in the cardiovascular and nervous systems. Its phosphorylation state has been found to be regulated by the action of more than ten kinases and phosphatases, including mitogen-activated protein kinase/extracellular signaling and regulating kinase signaling. In addition, the phosphorylation status of different phosphorylation sites affects its own synthesis and assembly and the function of the gap junctions (GJs) to varying degrees. The phosphorylation of Cx43 can affect the permeability, electrical conductivity, and gating properties of GJs, thereby having various effects on intercellular communication and affecting physiological or pathological processes in vitro and in vivo. Therefore, clarifying the relationship between Cx43 phosphorylation and specific disease processes will help us better understand the disease. Based on the above clinical and preclinical findings, we present in this review the functional significance of Cx43 phosphorylation in multiple diseases and discuss the potential of Cx43 as a drug target in Cx43-related disease pathophysiology, with an emphasis on the importance of connexin 43 as an emerging therapeutic target in cardiac and neuroprotection.


Asunto(s)
Conexina 43 , Proteínas Quinasas Activadas por Mitógenos , Animales , Fosforilación , Conexina 43/genética , Conexina 43/metabolismo , Conexina 43/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal , Uniones Comunicantes/metabolismo , Comunicación Celular , Mamíferos/metabolismo
12.
Molecules ; 28(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36838809

RESUMEN

Major depressive disorder (MDD) is a leading chronic mental illness worldwide, characterized by anhedonia, pessimism and even suicidal thoughts. Connexin 43 (Cx43), mainly distributed in astrocytes of the brain, is by far the most widely and ubiquitously expressed connexin in almost all vital organs. Cx43 forms gap junction channels in the brain, which mediate energy exchange and effectively maintain physiological homeostasis. Increasing evidence suggests the crucial role of Cx43 in the pathogenesis of MDD. Neuroinflammation is one of the most common pathological features of the central nervous system dysfunctions. Inflammatory factors are abnormally elevated in patients with depression and are closely related to nearly all links of depression. After activating the inflammatory pathway in the brain, the release and uptake of glutamate and adenosine triphosphate, through Cx43 in the synaptic cleft, would be affected. In this review, we have summarized the association between Cx43 and neuroinflammation, the cornerstones linking inflammation and depression, and Cx43 abnormalities in depression. We also discuss the significant association of Cx43 in inflammation and depression, which will help to explore new antidepressant drug targets.


Asunto(s)
Conexina 43 , Trastorno Depresivo Mayor , Humanos , Conexina 43/metabolismo , Conexina 43/farmacología , Trastorno Depresivo Mayor/metabolismo , Enfermedades Neuroinflamatorias , Depresión , Astrocitos , Inflamación/metabolismo
13.
Biochem Biophys Res Commun ; 594: 46-56, 2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-35074585

RESUMEN

PURPOSE OF REVIEW: To explore the convergent downstream pathways of ketamine and rapastinel and drive further development of identification for following generational rapid-acting antidepressants in the synaptic process. RECENT FINDINGS: Ketamine is an NMDAR antagonist and is proven effective in depression for the rapid and sustained antidepressant response, while rapastinel is an NMDAR positive allosteric modulator, producing antidepressant effects like ketamine with no severe side effects. The common antidepressant effects of ketamine and rapastinel are BDNF and mTORC1 pathway in synaptic plasticity.


Asunto(s)
Antidepresivos/administración & dosificación , Depresión/tratamiento farmacológico , Ketamina/administración & dosificación , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Oligopéptidos/administración & dosificación , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Neurotransmisores/metabolismo , Animales , Humanos , Ratones , Conducta Autodestructiva , Transducción de Señal , Sinapsis/efectos de los fármacos
14.
Cell Mol Neurobiol ; 42(8): 2489-2504, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34436728

RESUMEN

AMPA receptors are tetrameric ionic glutamate receptors, which mediate 90% fast excitatory synaptic transmission induced by excitatory glutamate in the mammalian central nervous system through the activation or inactivation of ion channels. The alternation of synaptic AMPA receptor number and subtype is thought to be one of the primary mechanisms that involve in synaptic plasticity regulation and affect the functions in learning, memory, and cognition. The increasing of surface AMPARs enhances synaptic strength during long-term potentiation, whereas the decreasing of AMPARs weakens synaptic strength during the long-term depression. It is closely related to the AMPA receptor as well as its subunits assembly, trafficking, and degradation. The dysfunction of any step in these precise regulatory processes is likely to induce the disorder of synaptic transmission and loss of neurons, or even cause neuropsychiatric diseases ultimately. Therefore, it is useful to understand how AMPARs regulate synaptic plasticity and its role in related neuropsychiatric diseases via comprehending architecture and trafficking of the receptors. Here, we reviewed the progress in structure, expression, trafficking, and relationship with synaptic plasticity of AMPA receptor, especially in anxiety, depression, neurodegenerative disorders, and cerebral ischemia.


Asunto(s)
Plasticidad Neuronal , Receptores AMPA , Animales , Ácido Glutámico/metabolismo , Mamíferos/metabolismo , Plasticidad Neuronal/fisiología , Transporte de Proteínas , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
15.
Cell Mol Neurobiol ; 42(5): 1321-1339, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33528716

RESUMEN

Parkinson's disease (PD) is a severe neurodegenerative disorder caused by the progressive loss of dopaminergic neurons in the substantia nigra and affects millions of people. Currently, mitochondrial dysfunction is considered as a central role in the pathogenesis of both sporadic and familial forms of PD. Mitophagy, a process that selectively targets damaged or redundant mitochondria to the lysosome for elimination via the autophagy devices, is crucial in preserving mitochondrial health. So far, aberrant mitophagy has been observed in the postmortem of PD patients and genetic or toxin-induced models of PD. Except for mitochondrial dysfunction, mitophagy is involved in regulating several other PD-related pathological mechanisms as well, e.g., oxidative stress and calcium imbalance. So far, the mitophagy mechanisms induced by PD-related proteins, PINK1 and Parkin, have been studied widely, and several other PD-associated genes, e.g., DJ-1, LRRK2, and alpha-synuclein, have been discovered to participate in the regulation of mitophagy as well, which further strengthens the link between mitophagy and PD. Thus, in this view, we reviewed mitophagy pathways in belief and discussed the interactions between mitophagy and several PD's pathological mechanisms and how PD-related genes modulate the mitophagy process.


Asunto(s)
Mitofagia , Enfermedad de Parkinson , Autofagia , Humanos , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Enfermedad de Parkinson/metabolismo
16.
Neurochem Res ; 47(6): 1721-1735, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35229270

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disorder. Progressive loss of dopaminergic neurons in the substantia nigra (SN) is one of the major pathological changes. However, the reasons for the dopaminergic neuron loss are still ambiguous and further studies are needed to evaluate the in-depth mechanisms of neuron death. Oxidative stress is a significant factor causing neuronal damage. Dopaminergic neurons in the SN are susceptible to oxidative stress, which is closely associated with iron dyshomeostasis in the brain. Ginsenoside Rg1 from ginseng plays a crucial role in neuroprotective effects through anti-inflammation and attenuating the aggregation of abnormal α-synuclein. In our study, we established a chronic PD mouse model by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine combined with probenecid and explored the effect of Rg1 on the oxidative stress and brain iron homeostasis. Rg1 was verified to improve the level of tyrosine hydroxylase and anti-oxidant stress. In addition, Rg1 maintained the iron-regulated protein homeostasis by increasing the expression of ferritin heavy chain and decreasing ferritin light chain in oligodendrocytes, especially the mature oligodendrocytes (OLs). Furthermore, Rg1 had a positive effect on the myelin sheath protection and increased the number of mature oligodendrocytes, proved by the increased staining of myelin basic protein and CC-1. In conclusion, Rg1 could play a neuroprotective role through remitting the iron-regulated protein dyshomeostasis by ferritin and against lipid peroxidation stress in oligodendrocytes.


Asunto(s)
Ginsenósidos , Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Hierro/metabolismo , Peroxidación de Lípido , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Oligodendroglía/metabolismo
17.
Neurochem Res ; 47(12): 3627-3634, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35348944

RESUMEN

Parkinson's disease (PD) is a chronic neurodegenerative disease mainly characterized by movement disorders and other non-motor symptoms, including the loss of dopaminergic neurons in the substantia nigra parts. Abnormal α-synuclein aggregation in the brain is closely associated with the loss of dopaminergic neurons. α-synuclein can propagate in the central nervous system (CNS) and periphery under pathological conditions. Many researches have focused on its aggregation and distribution in the CNS and explored its relationship with PD. But in recent years, the distribution of α-synuclein in peripheral tissues have been paid much attention. This review summarized the distribution of α-synuclein in the choroid plexus, blood, saliva, gastrointestine and other tissues, and discussed the potential mechanism of α-synuclein aggregation, providing a basis for the early diagnosis and intervention of PD.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedad de Parkinson/patología , Sustancia Negra/metabolismo , Neuronas Dopaminérgicas/metabolismo
18.
Neurochem Res ; 47(12): 3761-3776, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36222958

RESUMEN

Depression has become an important disease threatening human health. In recent years, the efficacy of Traditional Chinese Medicine (TCM) in treating the disease has become increasingly prominent, so it is meaningful to find new antidepressant TCM. Mahonia fortune (Lindl.) Fedde is a primary drug in traditional formulas for the treatment of depression, and alkaloids are the main components of it. However, the detailed mechanism of Mahonia alkaloids (MA) on depression remains unclear. This study aimed to investigate the effect of MA on gap junction function in depression via the miR-205/Cx43 axis. The antidepressant effects of MA were observed by a rat model of reserpine-induced depression and a model of corticosterone (CORT)-induced astrocytes. The concentrations of neurotransmitters were measured by ELISA, the expression of Connexin 43 (Cx43) protein was measured by Immunohistochemistry and western-blot, brain derived neurotrophic factor (BDNF), cAMP-response element binding protein (CREB) proteins were measured by western-blot, the pathological changes of prefrontal cortex were observed by hematoxylin-eosin (H&E) staining. Luciferase reporter assay was performed to verify the binding of miR-205 and Cx43. The regulation effect of Cx43 on CREB was verified by interference experiment. Gap junction dysfunction was detected by fluorescent yellow staining. The results confirmed that MA remarkably decreased miR-205 expression and increased Cx43, BDNF, CREB expression in depression rat and CORT-induced astrocytes. In addition, after overexpression of miR-205 in vitro, the decreased expression of Cx43, BDNF and CREB could be reversed by MA. Moreover, after interfering with Cx43, the decreased expression of CREB and BDNF could be reversed by MA. Thus, MA may ameliorate depressive behavior through CREB/BDNF pathway regulated by miR-205/Cx43 axis.


Asunto(s)
Alcaloides , Conexina 43 , Uniones Comunicantes , Mahonia , MicroARNs , Animales , Ratas , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Conexina 43/metabolismo , Corticosterona , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Depresión/inducido químicamente , Depresión/tratamiento farmacológico , Depresión/metabolismo , Uniones Comunicantes/metabolismo , Uniones Comunicantes/patología , Hipocampo/metabolismo , Mahonia/química , MicroARNs/metabolismo , Reserpina , Alcaloides/farmacología , Alcaloides/uso terapéutico
19.
Acta Pharmacol Sin ; 43(10): 2448-2461, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35145238

RESUMEN

Major depressive disorder (MDD), a chronic and recurrent disease characterized by anhedonia, pessimism or even suicidal thought, remains a major chronic mental concern worldwide. Connexin 43 (Cx43) is the most abundant connexin expressed in astrocytes and forms the gap junction channels (GJCs) between astrocytes, the most abundant and functional glial cells in the brain. Astrocytes regulate neurons' synaptic strength and function by expressing receptors and regulating various neurotransmitters. Astrocyte dysfunction causes synaptic abnormalities, which are related to various mood disorders, e.g., depression. Increasing evidence suggests a crucial role of Cx43 in the pathogenesis of depression. Depression down-regulates Cx43 expression in humans and rats, and dysfunction of Cx43 also induces depressive behaviors in rats and mice. Recently Cx43 has received considerable critical attention and is highly implicated in the onset of depression. However, the pathological mechanisms of depression-like behavior associated with Cx43 still remain ambiguous. In this review we summarize the recent progress regarding the underlying mechanisms of Cx43 in the etiology of depression-like behaviors including gliotransmission, metabolic disorders, and neuroinflammation. We also discuss the effects of antidepressants (monoamine antidepressants and ketamine) on Cx43. The clarity of the candidate pathological mechanisms of depression-like behaviors associated with Cx43 and its potential pharmacological roles for antidepressants will benefit the exploration of a novel antidepressant target.


Asunto(s)
Trastorno Depresivo Mayor , Ketamina , Animales , Antidepresivos/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Astrocitos/metabolismo , Conexina 43/metabolismo , Conexinas/metabolismo , Depresión/tratamiento farmacológico , Trastorno Depresivo Mayor/tratamiento farmacológico , Humanos , Ketamina/farmacología , Ratones , Neurotransmisores/metabolismo , Corteza Prefrontal/metabolismo , Ratas
20.
Acta Pharmacol Sin ; 43(1): 1-9, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33772140

RESUMEN

Recent evidence shows that when ischemic stroke (IS) occurs, the BBB would be destructed, thereby promoting the immune cells to migrate into the brain, suggesting that the immune responses can play a vital role in the pathology of IS. As an essential subpopulation of immunosuppressive T cells, regulatory T (Treg) cells are involved in maintaining immune homeostasis and suppressing immune responses in the pathophysiological conditions of IS. During the past decades, the regulatory role of Treg cells has attracted the interest of numerous researchers. However, whether they are beneficial or detrimental to the outcomes of IS remains controversial. Moreover, Treg cells exert distinctive effects in the different stages of IS. Therefore, it is urgent to elucidate how Treg cells modulate the immune responses induced by IS. In this review, we describe how Treg cells fluctuate and play a role in the regulation of immune responses after IS in both experimental animals and humans, and summarize their biological functions and mechanisms in both CNS and periphery. We also discuss how Treg cells participate in poststroke inflammation and immunodepression and the potential of Treg cells as a novel therapeutic approach.


Asunto(s)
Isquemia Encefálica/inmunología , Accidente Cerebrovascular/inmunología , Linfocitos T Reguladores/inmunología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA