Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.728
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(25): 5457-5471.e17, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-37979582

RESUMEN

Extracellular perception of auxin, an essential phytohormone in plants, has been debated for decades. Auxin-binding protein 1 (ABP1) physically interacts with quintessential transmembrane kinases (TMKs) and was proposed to act as an extracellular auxin receptor, but its role was disputed because abp1 knockout mutants lack obvious morphological phenotypes. Here, we identified two new auxin-binding proteins, ABL1 and ABL2, that are localized to the apoplast and directly interact with the extracellular domain of TMKs in an auxin-dependent manner. Furthermore, functionally redundant ABL1 and ABL2 genetically interact with TMKs and exhibit functions that overlap with those of ABP1 as well as being independent of ABP1. Importantly, the extracellular domain of TMK1 itself binds auxin and synergizes with either ABP1 or ABL1 in auxin binding. Thus, our findings discovered auxin receptors ABL1 and ABL2 having functions overlapping with but distinct from ABP1 and acting together with TMKs as co-receptors for extracellular auxin.


Asunto(s)
Arabidopsis , Ácidos Indolacéticos , Reguladores del Crecimiento de las Plantas , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
Nature ; 606(7913): 414-419, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35650436

RESUMEN

All known triterpenes are generated by triterpene synthases (TrTSs) from squalene or oxidosqualene1. This approach is fundamentally different from the biosynthesis of short-chain (C10-C25) terpenes that are formed from polyisoprenyl diphosphates2-4. In this study, two fungal chimeric class I TrTSs, Talaromyces verruculosus talaropentaene synthase (TvTS) and Macrophomina phaseolina macrophomene synthase (MpMS), were characterized. Both enzymes use dimethylallyl diphosphate and isopentenyl diphosphate or hexaprenyl diphosphate as substrates, representing the first examples, to our knowledge, of non-squalene-dependent triterpene biosynthesis. The cyclization mechanisms of TvTS and MpMS and the absolute configurations of their products were investigated in isotopic labelling experiments. Structural analyses of the terpene cyclase domain of TvTS and full-length MpMS provide detailed insights into their catalytic mechanisms. An AlphaFold2-based screening platform was developed to mine a third TrTS, Colletotrichum gloeosporioides colleterpenol synthase (CgCS). Our findings identify a new enzymatic mechanism for the biosynthesis of triterpenes and enhance understanding of terpene biosynthesis in nature.


Asunto(s)
Ascomicetos , Talaromyces , Triterpenos , Ascomicetos/enzimología , Colletotrichum/enzimología , Ciclización , Difosfatos/metabolismo , Escualeno/química , Especificidad por Sustrato , Talaromyces/enzimología , Triterpenos/química , Triterpenos/metabolismo
3.
Genes Dev ; 34(7-8): 580-597, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32115408

RESUMEN

Dysregulation of early neurodevelopment is implicated in macrocephaly/autism disorders. However, the mechanism underlying this dysregulation, particularly in human cells, remains poorly understood. Mutations in the small GTPase gene RAB39b are associated with X-linked macrocephaly, autism spectrum disorder (ASD), and intellectual disability. The in vivo roles of RAB39b in the brain remain unknown. We generated Rab39b knockout (KO) mice and found that they exhibited cortical neurogenesis impairment, macrocephaly, and hallmark ASD behaviors, which resembled patient phenotypes. We also produced mutant human cerebral organoids that were substantially enlarged due to the overproliferation and impaired differentiation of neural progenitor cells (NPCs), which resemble neurodevelopmental deficits in KO mice. Mechanistic studies reveal that RAB39b interacts with PI3K components and its deletion promotes PI3K-AKT-mTOR signaling in NPCs of mouse cortex and cerebral organoids. The mTOR activity is robustly enhanced in mutant outer radial glia cells (oRGs), a subtype of NPCs barely detectable in rodents but abundant in human brains. Inhibition of AKT signaling rescued enlarged organoid sizes and NPC overproliferation caused by RAB39b mutations. Therefore, RAB39b mutation promotes PI3K-AKT-mTOR activity and alters cortical neurogenesis, leading to macrocephaly and autistic-like behaviors. Our studies provide new insights into neurodevelopmental dysregulation and common pathways associated with ASD across species.


Asunto(s)
Trastorno Autístico/genética , Corteza Cerebral/embriología , Megalencefalia/genética , Neurogénesis/genética , Proteínas de Unión al GTP rab/genética , Animales , Trastorno Autístico/fisiopatología , Conducta Animal/fisiología , Diferenciación Celular/genética , Proliferación Celular/genética , Corteza Cerebral/citología , Eliminación de Gen , Humanos , Megalencefalia/fisiopatología , Ratones , Ratones Noqueados , Modelos Animales , Organoides/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/genética , Células Madre/citología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Unión al GTP rab/metabolismo
4.
Cell ; 148(6): 1293-307, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22424236

RESUMEN

Personalized medicine is expected to benefit from combining genomic information with regular monitoring of physiological states by multiple high-throughput methods. Here, we present an integrative personal omics profile (iPOP), an analysis that combines genomic, transcriptomic, proteomic, metabolomic, and autoantibody profiles from a single individual over a 14 month period. Our iPOP analysis revealed various medical risks, including type 2 diabetes. It also uncovered extensive, dynamic changes in diverse molecular components and biological pathways across healthy and diseased conditions. Extremely high-coverage genomic and transcriptomic data, which provide the basis of our iPOP, revealed extensive heteroallelic changes during healthy and diseased states and an unexpected RNA editing mechanism. This study demonstrates that longitudinal iPOP can be used to interpret healthy and diseased states by connecting genomic information with additional dynamic omics activity.


Asunto(s)
Genoma Humano , Genómica , Medicina de Precisión , Diabetes Mellitus Tipo 2/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Metabolómica , Persona de Mediana Edad , Mutación , Proteómica , Virus Sincitiales Respiratorios/aislamiento & purificación , Rhinovirus/aislamiento & purificación
5.
Proc Natl Acad Sci U S A ; 121(14): e2217019121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38547062

RESUMEN

Mitochondria constantly fuse and divide for mitochondrial inheritance and functions. Here, we identified a distinct type of naturally occurring fission, tail-autotomy fission, wherein a tail-like thin tubule protrudes from the mitochondrial body and disconnects, resembling autotomy. Next, utilizing an optogenetic mitochondria-specific mechanostimulator, we revealed that mechanical tensile force drives tail-autotomy fission. This force-induced fission involves DRP1/MFF and endoplasmic reticulum tubule wrapping. It redistributes mitochondrial DNA, producing mitochondrial fragments with or without mitochondrial DNA for different fates. Moreover, tensile force can decouple outer and inner mitochondrial membranes, pulling out matrix-excluded tubule segments. Subsequent tail-autotomy fission separates the matrix-excluded tubule segments into matrix-excluded mitochondrial-derived vesicles (MDVs) which recruit Parkin and LC3B, indicating the unique role of tail-autotomy fission in segregating only outer membrane components for mitophagy. Sustained force promotes fission and MDV biogenesis more effectively than transient one. Our results uncover a mechanistically and functionally distinct type of fission and unveil the role of tensile forces in modulating fission and MDV biogenesis for quality control, underscoring the heterogeneity of fission and mechanoregulation of mitochondrial dynamics.


Asunto(s)
Proteínas de la Membrana , Dinámicas Mitocondriales , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Mitocondrias/genética , ADN Mitocondrial , Control de Calidad , Dinaminas/genética
6.
Proc Natl Acad Sci U S A ; 121(23): e2318843121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805277

RESUMEN

The development and performance of two mass spectrometry (MS) workflows for the intraoperative diagnosis of isocitrate dehydrogenase (IDH) mutations in glioma is implemented by independent teams at Mayo Clinic, Jacksonville, and Huashan Hospital, Shanghai. The infiltrative nature of gliomas makes rapid diagnosis necessary to guide the extent of surgical resection of central nervous system (CNS) tumors. The combination of tissue biopsy and MS analysis used here satisfies this requirement. The key feature of both described methods is the use of tandem MS to measure the oncometabolite 2-hydroxyglutarate (2HG) relative to endogenous glutamate (Glu) to characterize the presence of mutant tumor. The experiments i) provide IDH mutation status for individual patients and ii) demonstrate a strong correlation of 2HG signals with tumor infiltration. The measured ratio of 2HG to Glu correlates with IDH-mutant (IDH-mut) glioma (P < 0.0001) in the tumor core data of both teams. Despite using different ionization methods and different mass spectrometers, comparable performance in determining IDH mutations from core tumor biopsies was achieved with sensitivities, specificities, and accuracies all at 100%. None of the 31 patients at Mayo Clinic or the 74 patients at Huashan Hospital were misclassified when analyzing tumor core biopsies. Robustness of the methodology was evaluated by postoperative re-examination of samples. Both teams noted the presence of high concentrations of 2HG at surgical margins, supporting future use of intraoperative MS to monitor for clean surgical margins. The power of MS diagnostics is shown in resolving contradictory clinical features, e.g., in distinguishing gliosis from IDH-mut glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Isocitrato Deshidrogenasa , Mutación , Glioma/genética , Glioma/cirugía , Glioma/patología , Isocitrato Deshidrogenasa/genética , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Espectrometría de Masas en Tándem/métodos , Glutaratos/metabolismo , Espectrometría de Masas/métodos , Ácido Glutámico/metabolismo , Ácido Glutámico/genética
7.
Trends Biochem Sci ; 47(12): 996-998, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35985942

RESUMEN

Altered global miRNA abundance is closely related to the occurrence of cancer. Recently, Qi et al. discovered that abnormal 1-nucleotide (nt)-shorter miRNA isoforms are widely accumulated in different human tumors. Ectopic expression of the plant immune protein RNA-dependent RNA polymerase (RDR)-1 can achieve a broad-spectrum antitumor effect by rescuing miRNA defects in cancer cells.


Asunto(s)
MicroARNs , Neoplasias , Humanos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Polimerasa Dependiente del ARN , MicroARNs/genética
8.
PLoS Pathog ; 20(2): e1012061, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38416782

RESUMEN

Alternative polyadenylation (APA) is a widespread mechanism of gene regulation that generates mRNA isoforms with alternative 3' untranslated regions (3' UTRs). Our previous study has revealed the global 3' UTR shortening of host mRNAs through APA upon viral infection. However, how the dynamic changes in the APA landscape occur upon viral infection remains largely unknown. Here we further found that, the reduced protein abundance of CPSF6, one of the core 3' processing factors, promotes the usage of proximal poly(A) sites (pPASs) of many immune related genes in macrophages and fibroblasts upon viral infection. Shortening of the 3' UTR of these transcripts may improve their mRNA stability and translation efficiency, leading to the promotion of type I IFN (IFN-I) signalling-based antiviral immune responses. In addition, dysregulated expression of CPSF6 is also observed in many immune related physiological and pathological conditions, especially in various infections and cancers. Thus, the global APA dynamics of immune genes regulated by CPSF6, can fine-tune the antiviral response as well as the responses to other cellular stresses to maintain the tissue homeostasis, which may represent a novel regulatory mechanism for antiviral immunity.


Asunto(s)
Poliadenilación , Virosis , Factores de Escisión y Poliadenilación de ARNm , Humanos , Regiones no Traducidas 3'/genética , Regulación hacia Abajo , Inmunidad/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Virosis/genética , Ratones , Animales
9.
Lancet ; 403(10430): 969-983, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38458216

RESUMEN

The potential risk for mental health conditions over the menopause transition shapes women's expectations and informs putative physiological mechanisms regulating women's mental health. We review evidence from prospective studies reporting on associations between mental health conditions and the menopause transition. Major depressive disorder and the more prevalent subthreshold depressive symptoms are the most common conditions studied. We reviewed 12 prospective studies reporting depressive symptoms, major depressive disorder, or both over the menopause transition and found no compelling evidence for a universal increased risk for either condition. However, specific subgroups of participants, primarily defined by menopause-related risk factors (ie, vasomotor symptoms that are severe or disturb sleep, a long duration of the transition, or reproductive hormone dynamics) and psychosocial risk factors (eg, stressful life events), were vulnerable to depressive symptoms. The increased risk of major depressive disorder over the menopause transition appears predominantly in individuals with previous major depressive disorder. Greater focus on recognising risk factors in primary care is warranted. On the basis of scarce data, we found no compelling evidence that risk of anxiety, bipolar disorder, or psychosis is universally elevated over the menopause transition. Potential misattribution of psychological distress and psychiatric disorders to menopause could harm women by delaying accurate diagnosis and the initiation of effective psychotropic treatments, and by creating negative expectations for people approaching menopause. A paradigm shift is needed. We conclude with recommendations for the detection and treatment of depressive symptoms or major depressive disorder and strategies to promote good mental health over the menopause transition, while responsibly preparing and supporting those at risk.


Asunto(s)
Trastorno Depresivo Mayor , Salud Mental , Femenino , Humanos , Trastorno Depresivo Mayor/epidemiología , Estudios Prospectivos , Menopausia/psicología , Salud de la Mujer , Depresión/epidemiología , Depresión/psicología
10.
Nat Methods ; 19(3): 359-369, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35277709

RESUMEN

Long-term visualization of the dynamic interactions between intracellular structures throughout the three-dimensional space of whole live cells is essential to better understand their functions, but this task remains challenging due to the limitations of existing three-dimensional fluorescence microscopy techniques, such as an insufficient axial resolution, low volumetric imaging rate and photobleaching. Here, we present the combination of a progressive deep-learning super-resolution strategy with a double-ring-modulated selective plane illumination microscopy design capable of visualizing the dynamics of intracellular structures in live cells for hours at an isotropic spatial resolution of roughly 100 nm in three dimensions at speeds up to roughly 17 Hz. Using this approach, we reveal the complex spatial relationships and interactions between endoplasmic reticulum (ER) and mitochondria throughout live cells, providing new insights into ER-mediated mitochondrial division. We also examined the motion of Drp1 oligomers involved in mitochondrial fission and revealed the dynamic interactions between Drp1 and mitochondria in three dimensions.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Retículo Endoplásmico/metabolismo , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Fotoblanqueo
11.
Am J Pathol ; 194(6): 879-893, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38417698

RESUMEN

Cholestatic liver diseases encompass a range of organic damages, metabolic disorders, and dysfunctions within the hepatobiliary system, arising from various pathogenic causes. These factors contribute to disruptions in bile production, secretion, and excretion. Cholestatic liver diseases can be classified into intrahepatic and extrahepatic cholestasis, according to the location of occurrence. The etiology of cholestatic liver diseases is complex, and includes drugs, poisons, viruses, parasites, bacteria, autoimmune responses, tumors, and genetic metabolism. The pathogenesis of cholelstatic liver disease is not completely clarified, and effective therapy is lacking. Clarifying its mechanism to find more effective therapeutic targets and drugs is an unmet need. Increasing evidence demonstrates that miRNA and long noncoding RNA are involved in the progression of cholestatic liver diseases. This review provides a comprehensive summary of the research progress on the roles of miRNA and long noncoding RNA in cholestatic liver diseases. The aim of the review is to enhance the understanding of their potential diagnostic, therapeutic, and prognostic value for patients with cholestasis.


Asunto(s)
Colestasis , MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Colestasis/genética , Colestasis/metabolismo , Colestasis/patología , Animales , Hepatopatías/genética , Hepatopatías/metabolismo , Hepatopatías/patología
12.
FASEB J ; 38(11): e23681, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38814725

RESUMEN

Ischemia-reperfusion (IR) injury is primarily characterized by the restoration of blood flow perfusion and oxygen supply to ischemic tissue and organs, but it paradoxically leads to tissue injury aggravation. IR injury is a challenging pathophysiological process that is difficult to avoid clinically and frequently occurs during organ transplantation, surgery, shock resuscitation, and other processes. The major causes of IR injury include increased levels of free radicals, calcium overload, oxidative stress, and excessive inflammatory response. Ghrelin is a newly discovered brain-intestinal peptide with anti-inflammatory and antiapoptotic effects that improve blood supply. The role and mechanism of ghrelin in intestinal ischemia-reperfusion (IIR) injury remain unclear. We hypothesized that ghrelin could attenuate IIR-induced oxidative stress and apoptosis. To investigate this, we established IIR by using a non-invasive arterial clip to clamp the root of the superior mesenteric artery (SMA) in mice. Ghrelin was injected intraperitoneally at a dose of 50 µg/kg 20 min before IIR surgery, and [D-Lys3]-GHRP-6 was injected intraperitoneally at a dose of 12 nmol/kg 20 min before ghrelin injection. We mimicked the IIR process with hypoxia-reoxygenation (HR) in Caco-2 cells, which are similar to intestinal epithelial cells in structure and biochemistry. Our results showed that ghrelin inhibited IIR/HR-induced oxidative stress and apoptosis by activating GHSR-1α. Moreover, it was found that ghrelin activated the GHSR-1α/Sirt1/FOXO1 signaling pathway. We further inhibited Sirt1 and found that Sirt1 was critical for ghrelin-mediated mitigation of IIR/HR injury. Overall, our data suggest that pretreatment with ghrelin reduces oxidative stress and apoptosis to attenuate IIR/HR injury by binding with GHSR-1α to further activate Sirt1.


Asunto(s)
Apoptosis , Proteína Forkhead Box O1 , Ghrelina , Ratones Endogámicos C57BL , Estrés Oxidativo , Receptores de Ghrelina , Daño por Reperfusión , Sirtuina 1 , Ghrelina/farmacología , Ghrelina/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Sirtuina 1/metabolismo , Animales , Ratones , Receptores de Ghrelina/metabolismo , Humanos , Masculino , Proteína Forkhead Box O1/metabolismo , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Intestinos/efectos de los fármacos , Células CACO-2
13.
Nature ; 568(7751): 240-243, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30944466

RESUMEN

The plant hormone auxin has crucial roles in almost all aspects of plant growth and development. Concentrations of auxin vary across different tissues, mediating distinct developmental outcomes and contributing to the functional diversity of auxin. However, the mechanisms that underlie these activities are poorly understood. Here we identify an auxin signalling mechanism, which acts in parallel to the canonical auxin pathway based on the transport inhibitor response1 (TIR1) and other auxin receptor F-box (AFB) family proteins (TIR1/AFB receptors)1,2, that translates levels of cellular auxin to mediate differential growth during apical-hook development. This signalling mechanism operates at the concave side of the apical hook, and involves auxin-mediated C-terminal cleavage of transmembrane kinase 1 (TMK1). The cytosolic and nucleus-translocated C terminus of TMK1 specifically interacts with and phosphorylates two non-canonical transcriptional repressors of the auxin or indole-3-acetic acid (Aux/IAA) family (IAA32 and IAA34), thereby regulating ARF transcription factors. In contrast to the degradation of Aux/IAA transcriptional repressors in the canonical pathway, the newly identified mechanism stabilizes the non-canonical IAA32 and IAA34 transcriptional repressors to regulate gene expression and ultimately inhibit growth. The auxin-TMK1 signalling pathway originates at the cell surface, is triggered by high levels of auxin and shares a partially overlapping set of transcription factors with the TIR1/AFB signalling pathway. This allows distinct interpretations of different concentrations of cellular auxin, and thus enables this versatile signalling molecule to mediate complex developmental outcomes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/antagonistas & inhibidores , Mutación , Reguladores del Crecimiento de las Plantas/antagonistas & inhibidores , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(11): e2113991119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35271396

RESUMEN

SignificanceSonic Hedgehog (Shh) is a key signaling molecule that plays important roles in embryonic patterning, cell differentiation, and organ development. Although fundamentally important, the molecular mechanisms that regulate secretion of newly synthesized Shh are still unclear. Our study reveals a role for the cargo receptor, SURF4, in facilitating export of Shh from the endoplasmic reticulum (ER) via a ER export signal. In addition, our study provides evidence suggesting that proteoglycans promote the dissociation of SURF4 from Shh at the Golgi, suggesting a SURF4-to-proteoglycan relay mechanism. These analyses provide insight into an important question in cell biology: how do cargo receptors capture their clients in one compartment, then disengage at their destination?


Asunto(s)
Proteínas Hedgehog , Proteínas de la Membrana , Proteoglicanos , Retículo Endoplásmico/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/fisiología , Proteoglicanos/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(15): e2118819119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35394877

RESUMEN

In idiopathic Parkinson's disease (PD), pathologic αSyn aggregates drive oxidative and nitrative stress that may cause genomic and mitochondrial DNA damage. These events are associated with activation of the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) immune pathway, but it is not known whether STING is activated in or contributes to α-synucleinopathies. Herein, we used primary cell cultures and the intrastriatal αSyn preformed fibril (αSyn-PFF) mouse model of PD to demonstrate that αSyn pathology causes STING-dependent neuroinflammation and dopaminergic neurodegeneration. In microglia-astrocyte cultures, αSyn-PFFs induced DNA double-strand break (DSB) damage response signaling (γH2A.X), as well as TBK1 activation that was blocked by STING inhibition. In the αSyn-PFF mouse model, we similarly observed TBK1 activation and increased γH2A.X within striatal microglia prior to the onset of dopaminergic neurodegeneration. Using STING-deficient (Stinggt) mice, we demonstrated that striatal interferon activation in the α-Syn PFF model is STING-dependent. Furthermore, Stinggt mice were protected from α-Syn PFF-induced motor deficits, pathologic αSyn accumulation, and dopaminergic neuron loss. We also observed upregulation of STING protein in the substantia nigra pars compacta (SNpc) of human PD patients that correlated significantly with pathologic αSyn accumulation. STING was similarly upregulated in microglia cultures treated with αSyn-PFFs, which primed the pathway to mount stronger interferon responses when exposed to a STING agonist. Our results suggest that microglial STING activation contributes to both the neuroinflammation and neurodegeneration arising from α-synucleinopathies, including PD.


Asunto(s)
Interferón Tipo I , Proteínas de la Membrana , Enfermedad de Parkinson , Sinucleinopatías , Animales , Neuronas Dopaminérgicas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Enfermedades Neurodegenerativas , Enfermedades Neuroinflamatorias , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Sinucleinopatías/genética
16.
Nano Lett ; 24(17): 5379-5386, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38649277

RESUMEN

Liquid confined in a nanochannel or nanotube has exhibited a superfast transport phenomenon, providing an ideal heat and mass transfer platform to meet the increasingly stringent challenge of thermal management in developing high-power-density nanoelectronics and nanochips. However, understanding the thermal transport of confined liquid is currently lacking and is speculated to be fundamentally different from that of bulk counterparts due to the unprecedented thermodynamics of liquid in nanoconfined environments. Here, we report that the thermal conductivity of water confined in a silica nanotube is nearly 2-fold as that of bulk status. Further molecular dynamics simulations reveal that this unusual enhancement originates from the densification and reorientation of local hydrogen bonds close to the nanotubes. Thermal-confinement scaling law is established and quantitatively supported by comprehensive simulations with remarkable agreement. Our findings lay a theoretical foundation for designing nanofluidics-enabled cooling strategies and devices.

17.
Plant J ; 113(5): 969-985, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36587293

RESUMEN

Folate (vitamin B9) is important for plant root development, but the mechanism is largely unknown. Here we characterized a root defective mutant, folb2, in Arabidopsis, which has severe developmental defects in the primary root. The root apical meristem of the folb2 mutant is impaired, and adventitious roots are frequently found at the root-hypocotyl junction. Positional cloning revealed that a 61-bp deletion is present in the predicted junction region of the promoter and the 5' untranslated region of AtFolB2, a gene encoding a dihydroneopterin aldolase that functions in folate biosynthesis. This mutation leads to a significant reduction in the transcript level of AtFolB2. Liquid chromatography-mass spectrometry analysis showed that the contents of the selected folate compounds were decreased in folb2. Arabidopsis AtFolB2 knockdown lines phenocopy the folb2 mutant. On the other hand, the application of exogenous 5-formyltetrahydrofolic acid could rescue the root phenotype of folb2, indicating that the root phenotype is indeed related to the folate level. Further analysis revealed that folate could promote rootward auxin transport through auxin transporters and that folate may affect particular auxin/indole-3-acetic acid proteins and auxin response factors. Our findings provide new insights into the important role of folic acid in shaping root structure.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Meristema/genética , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación
18.
Lab Invest ; 104(4): 100324, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38220044

RESUMEN

Meningiomas rank among the most common intracranial tumors, and surgery stands as the primary treatment modality for meningiomas. The precise subtyping and diagnosis of meningiomas, both before and during surgery, play a pivotal role in enabling neurosurgeons choose the optimal surgical program. In this study, we utilized multiphoton microscopy (MPM) based on 2-photon excited fluorescence and second-harmonic generation to identify 5 common meningioma subtypes. The morphological features of these subtypes were depicted using the MPM multichannel mode. Additionally, we developed 2 distinct programs to quantify collagen content and blood vessel density. Furthermore, the lambda mode of the MPM characterized architectural and spectral features, from which 3 quantitative indicators were extracted. Moreover, we employed machine learning to differentiate meningioma subtypes automatically, achieving high classification accuracy. These findings demonstrate the potential of MPM as a noninvasive diagnostic tool for meningioma subtyping and diagnosis, offering improved accuracy and resolution compared with traditional methods.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/diagnóstico por imagen , Colágeno , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Neoplasias Meníngeas/diagnóstico por imagen , Computadores
19.
J Neurochem ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783749

RESUMEN

The dorsal striatum is composed of the caudate nucleus and the putamen in human and non-human primates. These two regions receive different cortical projections and are functionally distinct. The caudate is involved in the control of goal-directed behaviors, while the putamen is implicated in habit learning and formation. Previous reports indicate that ethanol differentially influences neurotransmission in these two regions. Because neurotransmitters primarily signal through G protein-coupled receptors (GPCRs) to modulate neuronal activity, the present study aimed to determine whether ethanol had a region-dependent impact on the expression of proteins that are involved in the trafficking and function of GPCRs, including G protein subunits and their effectors, protein kinases, and elements of the cytoskeleton. Western blotting was performed to examine protein levels in the caudate and the putamen of male cynomolgus macaques that self-administered ethanol for 1 year under free access conditions, along with control animals that self-administered an isocaloric sweetened solution under identical operant conditions. Among the 18 proteins studied, we found that the levels of one protein (PKCß) were increased, and 13 proteins (Gαi1/3, Gαi2, Gαo, Gß1γ, PKCα, PKCε, CaMKII, GSK3ß, ß-actin, cofilin, α-tubulin, and tubulin polymerization promoting protein) were reduced in the caudate of alcohol-drinking macaques. However, ethanol did not alter the expression of any proteins examined in the putamen. These observations underscore the unique vulnerability of the caudate nucleus to changes in protein expression induced by chronic ethanol exposure. Whether these alterations are associated with ethanol-induced dysregulation of GPCR function and neurotransmission warrants future investigation.

20.
BMC Med ; 22(1): 75, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373990

RESUMEN

BACKGROUND: Immune checkpoint inhibitors (ICIs) have transformed tumor treatment. However, the risk of pulmonary adverse events (PAEs) associated with ICI combination therapy is still unclear. We aimed to provide a PAE overview and risk ordering of ICIs used in tumor treatment. METHODS: We searched the databases of PubMed, PsycINFO, Embase, Cochrane Library, CINAHL, Web of Science, Scopus, and clinical trial websites during January 2011-April 2023 to identify phase II and III randomized clinical trials (RCTs) and single-arm clinical trials wherein at least one treatment arm received ICIs (e.g., ICI monotherapy, a combination of two ICIs, or ICIs in combination with conventional cancer therapy). We reported the results of PAEs. Additionally, we compared risks of PAEs between different drug classes using a Bayesian network meta-analysis. RESULTS: Among 143 RCTs and 24 single-arm trials, the incidence of all-grade and grade 3-4 PAEs were highest with programmed death L1 (PD-L1) plus cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and plus chemotherapy and anti-PD1 plus anti-CTLA4, the lowest with targeted therapy drug plus chemotherapy and anti-PD1 plus anti-PDL1. Anti-PD1 plus anti-CTLA4 and plus chemotherapy was the intervention with the highest risk for all-grade and 3-4 grade PAEs, and the intervention with the lowest risk was chemotherapy and anti-PD1 plus anti-PDL1. In terms of all-grade PAEs, chemotherapy was safer than ICI monotherapy. Except for the anti-PD1 plus anti-PDL1 regimen, no significant difference in the risk of grade 3-4 PAEs was detected between dual-ICIs and single-ICIs. Furthermore, the risk of PAEs associated with nivolumab, pembrolizumab, and atezolizumab may be dose dependent. CONCLUSIONS: In the single-drug regimen, anti-PD1 caused the greatest incidence of PAEs. The risk of PAEs was higher with all single-ICIs than with chemotherapy. However, no significant difference in the risk of PAEs was detected between single-ICIs. In the combined regimen, anti-PD1 plus anti-CTLA4 and plus chemotherapy showed the greatest risk of PAEs, but there were no significant differences in risk between dual-ICIs and single-ICIs.


Asunto(s)
Antineoplásicos Inmunológicos , Neoplasias , Humanos , Antineoplásicos Inmunológicos/efectos adversos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Incidencia , Neoplasias/epidemiología , Metaanálisis en Red , Ensayos Clínicos como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA