Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2400344, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38497503

RESUMEN

Organic supramolecular photocatalysts have garnered widespread attention due to their adjustable structure and exceptional photocatalytic activity. Herein, a novel bis-dicarboxyphenyl-substituent naphthalenediimide self-assembly supramolecular photocatalyst (SA-NDI-BCOOH) with efficient dual-functional photocatalytic performance is successfully constructed. The large molecular dipole moment and short-range ordered stacking structure of SA-NDI-BCOOH synergistically create a giant internal electric field (IEF), resulting in a remarkable 6.7-fold increase in its charge separation efficiency. Additionally, the tetracarboxylic structure of SA-NDI-BCOOH greatly enhances its hydrophilicity. Thus, SA-NDI-BCOOH demonstrates efficient dual-functional activity for photocatalytic hydrogen and oxygen evolution, with rates of 372.8 and 3.8 µmol h-1 , respectively. Meanwhile, a notable apparent quantum efficiency of 10.86% at 400 nm for hydrogen evolution is achieved, prominently surpassing many reported supramolecular photocatalysts. More importantly, with the help of dual co-catalysts, it exhibits photocatalytic overall water splitting activity with H2 and O2 evolution rates of 3.2 and 1.6 µmol h-1 . Briefly, this work sheds light on enhancing the IEF by controlling the molecular polarity and stacking structure to dramatically improve the photocatalytic performance of supramolecular materials.

2.
Int Ophthalmol ; 44(1): 70, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349418

RESUMEN

PURPOSE: This study aimed to investigate the incidence of meibomian gland dysfunction (MGD) in postmenopausal women with primary acquired nasolacrimal duct obstruction (PANDO) and enables ophthalmologists to pay attention to ocular surface damage before surgery. METHODS: 165 postmenopausal women with PANDO and 115 postmenopausal women with a normal lacrimal drainage system were enrolled in this prospective study. Based on the results of lacrimal duct irrigation and age, the participants were further subdivided. The incidence of different severities of MGD in different groups was calculated and analyzed by the chi-squared test. RESULTS: The incidence of MGD in the PANDO group was 81.21%, and in the control group, it was 46.96%, which was significantly higher in the presence of PANDO (p < 0.001). The incidence of severe MGD in the complete and incomplete PANDO groups was higher than that in the control group (all p < 0.05), and no significant differences were observed between the complete and incomplete PANDO groups. The incidence of moderate MGD was significantly higher in the complete PANDO group than in the control group (p < 0.001). When age was considered an independent variable, the results revealed a significant value for patients aged < 70 years (p < 0.001). CONCLUSIONS: Our study revealed a prodominantly high incidence of MGD in postmenopausal women with PANDO, especially in a complete PANDO or aged < 70 years. Ophthalmologists need to pay close attention to MGD in postmenopausal women with PANDO.


Asunto(s)
Obstrucción del Conducto Lagrimal , Disfunción de la Glándula de Meibomio , Conducto Nasolagrimal , Humanos , Femenino , Incidencia , Obstrucción del Conducto Lagrimal/diagnóstico , Obstrucción del Conducto Lagrimal/epidemiología , Posmenopausia , Estudios Prospectivos , Párpados
3.
Angew Chem Int Ed Engl ; 63(19): e202319027, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38488819

RESUMEN

Heterocycle-linked phthalocyanine-based COFs with close-packed π-π conjugated structures are a kind of material with intrinsic electrical conductivity, and they are considered to be candidates for photoelectrical devices. Previous studies have revealed their applications for energy storage, gas sensors, and field-effect transistors. However, their potential application in photodetector is still not fully studied. The main difficulty is preparing high-quality films. In our study, we found that our newly designed benzimidazole-linked Cu (II)-phthalocyanine-based COFs (BICuPc-COFs) film can hardly formed with a regular aerobic oxidation method. Therefore, we developed a transfer dehydrogenation method with N-benzylideneaniline (BA) as a mild reagent. With this in hand, we successfully prepared a family of high crystalline BICuPc-COFs powders and films. Furthermore, both of these new BICuPc-COFs films showed high electrical conductivity (0.022-0.218 S/m), higher than most of the reported COFs materials. Due to the broad absorption and high conductivity of BICuPc-COFs, synaptic devices with small source-drain voltage (VDS=1 V) were fabricated with response light from visible to near-infrared. Based on these findings, we expect this study will provide a new perspective for the application of conducting heterocycle-linked COFs in synaptic devices.

4.
Biochem Biophys Res Commun ; 656: 86-96, 2023 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-36958259

RESUMEN

The abnormal immune response mediated by malignant melanoma is related to PD1. Paeonol has pharmacological antitumor activity. Previous studies have indicated that paeonol induces tumor cell apoptosis, but its underlying mechanism in tumor immunity remains unknown. In this study, malignant melanoma was established in normal and thymectomized mice to determine the important role of the thymus in the antitumor effects of paeonol. Paeonol-treated thymocytes were cocultured with melanoma cell spheres to further evaluate the regulatory role of thymocytes in tumor immune dysfunction. Studies have shown that PD1 may be targeted by miR-139-5p. Our results revealed that tumor-induced thymic atrophy was significantly accompanied by high PD1 expression and low miR-139-5p expression. Interestingly, paeonol significantly reversed thymic atrophy and largely protected thymocytes against low PD1 expression and high miR-139-5p expression. Dual-luciferase assays indicated that miR-139-5p interacted with the 3' untranslated region (3'-UTR) of PD1. These results showed that paeonol alleviates PD1-mediated antitumor immunity by reducing miR-139-5p expression and demonstrated a novel mechanism for melanoma immunotherapy.


Asunto(s)
Melanoma , MicroARNs , Animales , Ratones , Regulación hacia Arriba , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Apoptosis , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Melanoma Cutáneo Maligno
5.
Angew Chem Int Ed Engl ; 62(11): e202217897, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36639933

RESUMEN

High-efficiency photocatalysts based on metal-organic frameworks (MOFs) are often limited by poor charge separation and slow charge-transfer kinetics. Herein, a novel MOF photocatalyst is successfully constructed by encapsulating C60 into a nano-sized zirconium-based MOF, NU-901. By virtue of host-guest interactions and uneven charge distribution, a substantial electrostatic potential difference is set-up in C60 @NU-901. The direct consequence is a robust built-in electric field, which tends to be 10.7 times higher in C60 @NU-901 than that found in NU-901. In the catalyst, photogenerated charge carriers are efficiently separated and transported to the surface. For example, photocatalytic hydrogen evolution reaches 22.3 mmol g-1 h-1 for C60 @NU-901, which is among the highest values for MOFs. Our concept of enhancing charge separation by harnessing host-guest interactions constitutes a promising strategy to design photocatalysts for efficient solar-to-chemical energy conversion.

6.
Small ; 18(51): e2204924, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36336642

RESUMEN

Water oxidation is one of the most challenging steps in CO2 photoreduction, but its influence on CO2 photoreduction is still poorly understood. Herein, the concept of accelerating the water oxidation kinetics to promote the CO2 photoreduction is realized by incorporating supramolecular porphyrin nanosheets (NS) into the C3 N4 catalyst. As a prototype, porphyrin-C3 N4 based van der Waals heterojunctions with efficient charge separation are elaborately designed, in which the porphyrin and C3 N4 NS serve as the water oxidation booster and CO2 reduction center, respectively. Theoretical calculations and relevant experiments demonstrate that the added porphyrin NS reverses the rate-limiting step in the water oxidation while reducing its energy barrier, thus resulting in faster reaction kinetics. Therefore, the optimal sample shows excellent performance in visible-light-driven CO2 reduction with a maximum CO evolution rate of 16.8 µmol g-1 h-1 , which is 6.8 times that of the C3 N4 NS and reaches the current state of the art for C3 N4 -based materials in CO2 photoreduction. Overall, this work throws light that accelerating water oxidation kinetics can effectively improve the CO2 photoreduction efficiency.

7.
J Cell Mol Med ; 25(6): 2885-2899, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33534963

RESUMEN

Inflammation is a biological process that exists in a large number of diseases. If the magnitude or duration of inflammation becomes uncontrolled, inflammation may cause pathological damage to the host. HMGB1 and NF-κB have been shown to play pivotal roles in inflammation-related diseases. New drugs aimed at inhibiting HMGB1 expression have become a key research focus. In the present study, we showed that paeonol (Pae), the main active component of Paeonia suffruticosa, decreases the expression of inflammatory cytokines and inhibits the translocation of HMGB1 induced by lipopolysaccharide (LPS). By constructing HMGB1-overexpressing (HMGB1+ ) and HMGB1-mutant (HMGB1m ) RAW264.7 cells, we found that the nuclear HMGB1 could induce an LPS-tolerant state in RAW264.7 cells and that paeonol had no influence on the expression of inflammatory cytokines in HMGB1m RAW264.7 cells. In addition, the anti-inflammatory property of paeonol was lost in HMGB1 conditional knockout mice, indicating that HMGB1 is a target of paeonol and a mediator through which paeonol exerts its anti-inflammatory function. Additionally, we also found that HMGB1 and P50 competitively bound with P65, thus inactivating the NF-κB pathway. Our research confirmed the anti-inflammation property of paeonol and suggests that inhibiting the translocation of HMGB1 could be a new strategy for treating inflammation.


Asunto(s)
Acetofenonas/farmacología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Antiinflamatorios/farmacología , Proteína HMGB1/metabolismo , Acetofenonas/química , Animales , Antiinflamatorios/química , Núcleo Celular/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Proteína HMGB1/química , Proteína HMGB1/genética , Inflamación/tratamiento farmacológico , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Noqueados , Modelos Moleculares , FN-kappa B/metabolismo , Transporte de Proteínas , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
8.
J Cardiovasc Pharmacol ; 77(3): 334-342, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33278191

RESUMEN

ABSTRACT: Cyanotic congenital heart disease (CCHD) is the main cause of death in infants worldwide. Long noncoding RNAs (lncRNAs) have been pointed to exert crucial roles in development of CHD. The current research is designed to illuminate the impact and potential mechanism of lncRNA SNHG14 in CCHD in vitro. The embryonic rat ventricular myocardial cells (H9c2 cells) were exposed to hypoxia to establish the model of CCHD in vitro. Quantitative real-time polymerase chain reaction was conducted to examine relative expressions of SNHG14, miR-25-3p, and KLF4. Cell viability was determined by the MTT assay. Lactate dehydrogenase (LDH) was measured by an LDH assay kit. Apoptosis-related proteins (Bax and Bcl-2) and KLF4 were detected by Western Blot. The targets of SNHG14 and miR-25-3p were verified by the dual-luciferase reporter assay. SNHG14 and KLF4 were upregulated, whereas miR-25-3p was downregulated in hypoxia-induced H9c2 cells and cardiac tissues of patients with CCHD compared with their controls. Knockdown of SNHG14 or overexpression of miR-25-3p facilitated cell viability, while depressing cell apoptosis and release of LDH in hypoxia-induced H9c2 cells. MiR-25-3p was a target of SNHG14 and inversely modulated by SNHG14. MiR-25-3p could directly target KLF4 and negatively regulate expression of KLF4. Repression of miR-25-3p or overexpression of KLF4 reversed the suppression impacts of sh-SNHG14 on cell apoptosis and release of LDH as well as the promotion impact of sh-SNHG14 on cell viability in hypoxia-induced H9c2 cells. Sh-SNHG14 protected H9c2 cells against hypoxia-induced injury by modulating miR-25-3p/KLF4 axis in vitro.


Asunto(s)
Apoptosis , Cianosis/prevención & control , Cardiopatías Congénitas/complicaciones , Factor 4 Similar a Kruppel/metabolismo , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Hipoxia de la Célula , Línea Celular , Cianosis/etiología , Cianosis/metabolismo , Cianosis/patología , Femenino , Regulación de la Expresión Génica , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Humanos , Lactante , Factor 4 Similar a Kruppel/genética , Masculino , MicroARNs/genética , Miocitos Cardíacos/patología , ARN Largo no Codificante/genética , Ratas , Transducción de Señal
9.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(5): 488-491, 2021 May 10.
Artículo en Zh | MEDLINE | ID: mdl-33974263

RESUMEN

OBJECTIVE: To explore the correlation between DSG2, TTN and GATA4 genes and Brugada syndrome in Henan Province of China. METHODS: From February 2017 to February 2019, 100 patients with Brugada syndrome and 100 healthy individuals were selected as the study and the control groups, respectively. Electrocardiogram and echocardiography were carried out, and peripheral blood samples was collected. Coding regions of DSG2, TTN and GATA4 genes were amplified by PCR and sequenced. The results were compared with standard sequences from GenBank. RESULTS: Electrocardiogram showed that all patients from the study group had ventricular arrhythmia, 87 cases (87%) presented ventricular tachycardia (VT), 84 cases (84%) presented T wave inversion, and 51 cases (51%) presented Epsilon wave. Echocardiography showed that the right ventricle in the study group was enlarged with the inner diameter of the right ventricle being (40.0±13.3) mm, and the right ventricle showed various degree of abnormal systolic function. The enlargement of right atrium accounted for 64%, and the involvement of the left ventricle accounted for 27%. The right ventricular diameter and left ventricular diastolic diameter of the study group were significantly greater than those of the control group (P< 0.05). DNA sequencing showed that 60 patients carried DSG2 gene variants, among which 18 had missense variant of exon 8. Fifty patients carried TTN gene variants, including 8 in the A-band domain and 3 in the I-band domain. Twenty patients carried 3 variants of the GATA4 gene. CONCLUSION: Variants of the DSG2, TTN and GATA4 genes in Henan region are correlated with the onset of Brugada syndrome.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Síndrome de Brugada , Síndrome de Brugada/genética , China , Conectina , Desmogleína 2/genética , Factor de Transcripción GATA4 , Humanos , Linaje , Análisis de Secuencia de ADN
10.
J Cell Physiol ; 234(7): 11722-11733, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30536946

RESUMEN

Cardiac rupture and ventricular remodeling are recognized as the severe complications and major risk factors of acute myocardial infarction (AMI). This study aims to evaluate the regulatory roles of interleukin-1 receptor-associated kinase 3 (IRAK3) and nuclear factor-κB (NF-κB) signaling pathway in cardiac rupture and ventricular remodeling. Microarray analysis was performed to screen AMI-related differentially expressed genes and IRAK3 was identified. The models of AMI were established in male C57BL/6 mice to investigate the functional role of IRAK3. Afterwards, lentivirus recombinant plasmid si-IRAK3 was constructed for IRAK3 silencing. Next, cardiac function parameters were measured in response to IRAK3 silencing. The regulatory effects that IRAK3 had on myocardial infarct size and the content of myocardial interstitial collagen were analyzed. The regulation of IRAK3 silencing on the NF-κB signaling pathway was further assayed. The obtained results indicated that highly expressed IRAK3 and activated NF-κB signaling pathway were observed in myocardial tissues of mouse models of AMI, accompanied by increased expression of matrix metalloproteinase (MMP)-2/9 and tissue inhibitor of metalloproteinase 2 (TIMP-2). Notably, IRAK3 gene silencing inhibited the activation of NF-κB signaling pathway. Furthermore, IRAK3 gene silencing led to the decreased thickness of infarct area and collagen content of myocardial interstitium, alleviated diastolic, and systolic dysfunctions, as well as, facilitated cardiac functions in mice with AMI, corresponding to decreased expression of MMP-2/9 expression and increased expression of TIMP-2. Taken together, silencing of IRAK3 inactivates the NF-κB signaling pathway, and thereby impeding the cardiac rupture and ventricular remodeling, which eventually prevents AMI progression.


Asunto(s)
Silenciador del Gen , Rotura Cardíaca/prevención & control , Rotura Cardíaca/fisiopatología , Quinasas Asociadas a Receptores de Interleucina-1/genética , Infarto del Miocardio/fisiopatología , FN-kappa B/metabolismo , Transducción de Señal , Remodelación Ventricular , Animales , Colágeno/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Rotura Cardíaca/genética , Masculino , Ratones Endogámicos C57BL , Infarto del Miocardio/complicaciones , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miocardio/patología , Remodelación Ventricular/genética
11.
J Cell Biochem ; 120(9): 14636-14644, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31090947

RESUMEN

Previous studies have shown that phosphatase and tensin homolog (PTEN) are key regulators of the development of many malignant tumors and other diseases. However, its regulatory effect on coronary heart disease (CHD) has rarely been reported. Therefore, the regulatory effect of PTEN on the survival and cell death of vascular smooth muscle cells (VSMCs) in CHD mice was elucidated in this study. It was found that the protein and messenger RNA expressions of PTEN in VSMCs of 10 CHD mice were lower than those of normal mice. Then PTEN was overexpressed in VSMCs. It was suggested that the upregulation of PTEN was not conducive to the proliferation and survival of VSMCs in the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation assay. The flow cytometry (Annexin V-Fluorescein isothiocyanate (FITC)/propidium iodide) and the terminal deoxynucleotidyl transferase dUTP nick end labeling assay were used to detect the apoptotic rate of overexpressing PTEN cells. Some data showed that the expression of PTEN could lead to increased apoptotic rate. It was shown that antiapoptotic Bcl-2 levels were decreased, but cleaved caspase-3 and proapoptotic Bax levels were promoted by SIRT6 overexpression in Western blot analysis. Moreover, PI3K/Akt expression and phosphorylation were significantly decreased in cells expressing PTEN. Recovery of PI3K expression inhibited the suppressive influence of PTEN on VSMC survival, as evidenced by the activated PI3K/Akt pathway, increased cell proliferative rate, reduced the apoptotic level, and reversed expression patterns of Bcl-2 and Bax. Therefore, the findings in this study provide a new idea on the occurrence and development mechanism of CHD and may promote the discovery of innovative therapies.


Asunto(s)
Enfermedad Coronaria/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Animales , Apoptosis , Proliferación Celular , Supervivencia Celular , Enfermedad Coronaria/etiología , Enfermedad Coronaria/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Ratones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
12.
J Cell Biochem ; 120(6): 10421-10433, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30644128

RESUMEN

microRNAs are an emerging class of molecules that regulate pathogenesis of cardiovascular diseases. Here we aim to elucidate the effects and mechanism of miR-135a, a previously reported regulator of ischemia-reperfusion (I/R) injury, in myocardial I/R injury. Quantitative real-time polymerase chain reaction analysis revealed that the expression level of miR-135a was significantly decreased both in the rat I/R group and H9c2 cells subjected to hypoxia/reoxygenation. Overexpression of miR-135a in vivo markedly decreased the infarct size and inhibited the I/R-induced cardiomyocyte apoptosis. Overexpression of miR-135a in H9c2 also exerted antiapoptosis effects. Furthermore, bioinformatics analysis, luciferase activity, and the Western blot assay indicated that protein tyrosine phosphatase 1B (PTP1B) is a direct target of miR-135a. In addition, the expression of proapoptotic-related genes, such as p53, Bax, and cleaved caspase3, were decreased in association with the downregulation of PTP1B. In summary, this study demonstrates that miR-135a exerts protective effects against myocardial I/R injury by targeting PTP1B.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/genética , Daño por Reperfusión Miocárdica/prevención & control , Sustancias Protectoras , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Animales , Apoptosis , Masculino , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Ratas , Ratas Sprague-Dawley
13.
Chemistry ; 21(51): 18711-6, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26767332

RESUMEN

Ag2Mo3O10 nanorods decorated with Ag2 S nanoparticles have been synthesized by an anion-exchange route. With thiourea as the sulfur source, sulfur ions replace [Mo3O10](2-) units of active sites on the surface of Ag2Mo3O10 nanorods, forming Ag2Mo3O10 nanorods decorated with Ag2S nanoparticles. This induces enhanced absorption in the visible-light region. Ag2 S nanoparticles decorate the surface of Ag2Mo3O10 nanorods uniformly with a suitable amount of thiourea. The Ag2S/Ag2Mo3O10 nanoheterostructure enhances the photocatalytic activity on the degradations of Rhodamine B and glyphosate under visible light. This enhancement is attributed to the improved absorption of visible light and effective separation of charge carriers in the nanoheterostructure. Meanwhile, the Ag2S/Ag2Mo3O10 nanoheterostructure displays good photocatalytic stability based on cyclic photocatalytic experiments.

14.
Acta Pharmacol Sin ; 36(10): 1266-76, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26027659

RESUMEN

AIM: To investigate the molecular targets of DCLAK11, a novel compound discovered from a series of substituted pyridin-3-amine derivatives, and to characterize its anti-tumor properties in vitro. METHODS: Kinase inhibition was measured by an ELISA assay. Cell viability was assessed with an SRB or a CCK8 assay. The alterations induced by kinase signaling proteins in cancer cells were detected by Western blot. Apoptosis was determined by an Annexin V-PI assay. The following assays were used to evaluate the impact on angiogenesis: wound-healing, Transwell, tube formation and microvessel outgrowth from rat aortic rings. RESULTS: DCLAK11 was a multi-targeted kinase inhibitor that primarily inhibited the EGFR, HER2, and VEGFR2 tyrosine kinases with IC50 value of 6.5, 18, and 31 nmol/L, respectively. DCLAK11 potently inhibited the proliferation of EGFR- and HER2-driven cancer cells: its IC50 value was 12 and 22 nmol/L, respectively, in HCC827 and HCC4006 cells with EGFR exon deletions, and 19 and 81 nmol/L, respectively, in NCI-N87 and BT474 cells with HER2 amplification. Consistently, DCLAK11 blocked the EGFR and HER2 signaling in cancer cells with either an EGFR or a HER2 aberration. Furthermore, DCLAK11 effectively induced EGFR/HER2-driven cell apoptosis. Moreover, DCLAK11 exhibited anti-angiogenic activity, as shown by its inhibitory effect on the proliferation, migration and tube formation of human umbilical vascular endothelial cells and the microvessel outgrowth of rat aortic rings. CONCLUSIONS: DCLAK11 is a multi-targeted kinase inhibitor with remarkable potency against tyrosine kinases EGFR, HER2 and VEGFR2, which confirms its potent anti-cancer activity in EGFR- and HER2-addicted cancers and its anti-angiogenic activity.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Receptores ErbB/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Inhibidores de la Angiogénesis/química , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Receptores ErbB/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Inhibidores de Proteínas Quinasas/química , Piridinas/química , Ratas Sprague-Dawley , Receptor ErbB-2/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
15.
Bioorg Med Chem Lett ; 23(8): 2408-13, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23474386

RESUMEN

A series of novel 5-(benzyloxy)pyridin-2(1H)-ones were designed, synthesized and biologically evaluated for c-Met inhibition. Various amides and benzoimidazoles at C-3 position were investigated. A potent compound 12b with a c-Met IC50 of 12nM was identified. This compound exhibited potent inhibition of EBC-1 cell associated with c-Met constitutive activation and showed high selectivity for c-Met than other tested 11 kinases. The binding model 12b with c-Met was disclosed by docking analysis.


Asunto(s)
Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Piridonas/química , Piridonas/farmacología , Línea Celular Tumoral , Diseño de Fármacos , Humanos , Inhibidores de Proteínas Quinasas/síntesis química , Proteínas Proto-Oncogénicas c-met/química , Piridonas/síntesis química , Relación Estructura-Actividad
16.
Bioorg Med Chem Lett ; 23(8): 2306-12, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23489628

RESUMEN

The V600E BRAF kinase mutation, which activates the downstream MAPK signaling pathway, commonly occurs in about 8% of all human malignancies and about 50% of all melanomas. In this study, we employed virtual screening and chemical synthesis to identify a series of N-(thiophen-2-yl) benzamide derivatives as potent BRAF(V600E) inhibitors. Structure-activity relationship studies of these derivatives revealed that compounds b40 and b47 are the two most potent BRAF(V600E) inhibitors in this series.


Asunto(s)
Benzamidas/química , Benzamidas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Benzamidas/síntesis química , Proliferación Celular/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Modelos Moleculares , Proteínas Proto-Oncogénicas B-raf/química , Relación Estructura-Actividad
17.
Front Cardiovasc Med ; 10: 1195582, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492162

RESUMEN

Invasive cardiac lipoma is a rare type of primary cardiac tumor that is composed of adipose tissue but infiltrating the adjacent structures. It is a benign tumor that can cause significant morbidity and mortality due to its size and location within the heart. We describe a giant invasive intracardiac lipoma across atrial wall extending to the ascending aorta and the superior vena cava. This review will provide an overview of invasive cardiac lipoma, including its clinical presentation, diagnosis, and management.

18.
Cardiovasc Ther ; 2022: 1652315, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36545243

RESUMEN

Objective: Long noncoding RNAs (lncRNAs), including some members of small nucleolar RNA host gene (SNHG), are important regulators in myocardial injury, while the role of SNHG4 in myocardial infarction (MI) is rarely known. This study is aimed at exploring the regulatory role and mechanisms of SNHG4 on MI. Methods: Cellular and rat models of MI were established. The expression of relating genes was measured by qRT-PCR and/or western blot. In vitro, cell viability was detected by MTT assay, and cell apoptosis was assessed by caspase-3 level, Bax/Bcl-2 expression, and/or flow cytometry. The inflammation was evaluated by TNF-α, IL-1ß, and IL-6 levels. The myocardial injury in MI rats was evaluated by echocardiography, TTC/HE/MASSON/TUNEL staining, and immunohistochemistry (Ki67). DLR assay was performed to confirm the target relationships. Results: SNHG4 was downregulated in hypoxia-induced H9c2 cells and MI rats, and its overexpression enhanced cell viability and inhibited cell apoptosis and inflammation both in vitro and in vivo. SNHG4 overexpression also decreased infarct and fibrosis areas, relieved pathological changes, and improved heart function in MI rats. In addition, miR-148b-3p was an action target of SNHG4, and its silencing exhibited consistent results with SNHG4 overexpression in vitro. DUSP1 was a target of miR-148b-3p, which inhibited the apoptosis of hypoxia-induced H9c2 cells. Both miR-148b-3p overexpression and DUSP1 silencing weakened the effects of SNHG4 overexpression on protecting H9c2 cells against hypoxia. Conclusions: Overexpression of SNHG4 relieved MI through regulating miR-148b-3p/DUSP1, providing potential therapeutic targets.


Asunto(s)
MicroARNs , Infarto del Miocardio , ARN Largo no Codificante , Ratas , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Miocitos Cardíacos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Infarto del Miocardio/patología , Apoptosis , Hipoxia/metabolismo , Fosfatasa 1 de Especificidad Dual/metabolismo
19.
Front Cardiovasc Med ; 9: 925571, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36158842

RESUMEN

Background: The objective of this study was to evaluate the quality of anticoagulation by the time in therapeutic range (TTR) for patients with 12-week INR follow-up interval. Materials and methods: From January 2018 to December 2020, a selective group of patients who underwent mechanical valve replacement and followed up at our anticoagulation clinic for adjustment of warfarin dose were enrolled. The incidences of complications of anticoagulation therapy were reported by linearized rates. TTR was calculated by the Rosendaal linear interpolation method. Results: Two hundred and seventy-four patients were eligible for this study. The mean age of these patients was 52.8 ± 12.7 years, and 65.7% (180 cases) of them were females. The mean duration of warfarin therapy was 16.7 ± 28.1 months. A total of 1309 INR values were collected, representing 66789 patient days. In this study, the mean TTR was 63.7% ± 18.6%, weekly doses of warfarin were 20.6 ± 6.0 mg/weekly, and the mean monitoring interval for the patient was 53.6 ± 27.1 days. There were 153 cases in good TTR group (TTR ≥ 60%) and 121 cases in poor TTR group (TTR < 60%). The calculated mean TTR in both groups was 42.6% ± 22.1% and 74.8% ± 10.4%, respectively. Compared with the TTR ≥ 60% group, the TTR < 60% group exhibited a more prevalence of female gender (p = 0.001), atrial fibrillation (p < 0.001), NYHA ≥ III (p < 0.001), and lower preoperative left ventricular ejection fraction (LVEF, p = 0.032). In multivariate analysis, female gender (p = 0.023) and atrial fibrillation (p = 0.011) were associated with TTR < 60%. The incidence of major bleeding and thromboembolic events was 2.7% and 1.1% patient-years, respectively. There was one death which resulted from cerebral hemorrhage. The incidence of death was 0.5% patient-years. The difference in anticoagulation-related complications between the TTR < 60% group and the TTR ≥ 60% group was not statistically significant. Conclusion: For patients with stable international normalized ratio monitoring results who are follow-up at anticoagulation clinics, a 12-week monitoring interval has an acceptable quality of anticoagulation. The female gender and atrial fibrillation were associated with TTR < 60%.

20.
Comput Methods Programs Biomed ; 200: 105897, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33317873

RESUMEN

PURPOSE: Coronary artery disease (CAD) is known to have high prevalence, high disability and mortality. The incidence and mortality of cardiovascular disease are also gradually increasing worldwide. Therefore, our paper proposes to use a more efficient image processing method to extract accurate vascular structures from vascular images by combining computer vision and deep learning. METHOD: Our proposed segmentation of coronary angiography images based on PSPNet network was compared with FCN, and analyzed and discussed the experimental results using three evaluation indicators of precision, recall and Fl-score. Aiming at the complex and changeable structure of coronary angiography images and over-fitting or parameter structure destruction, we implemented the parallel multi-scale convolutional neural network model using PSPNet, using small sample transfer learning that limits parameter learning method. RESULTS: The accuracy of our technique proposed in this paper is 0.957. The accuracy of PSPNet is 26.75% higher than the traditional algorithm and 4.59% higher than U-Net. The average segmentation accuracy of the PSPNet model using transfer learning on the test set increased from 0.926 to 0.936, the sensitivity increased from 0.846 to 0.865, and the specificity increased from 0.921 to 0.949. The segmentation effect in this paper is closest to the segmentation result of the human expert, and is smoother than that of U-Net segmentation. CONCLUSION: The PSPNet network reduces manual interaction in diagnosis, reduces dependence on medical personnel, improves the efficiency of disease diagnosis, and provides auxiliary strategies for subsequent medical diagnosis systems based on cardiac coronary angiography.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Algoritmos , Angiografía Coronaria , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA