Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 38(5): e23553, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38470398

RESUMEN

Polycystic ovary syndrome (PCOS) is a common and complex endocrine disorder in reproductive-aged women that frequently leads to infertility due to poor oocyte quality. In this study, we identified a new active peptide (advanced glycation end products receptors RAGE344-355 ) from PCOS follicular fluid using mass spectrometry. We found that supplementing PCOS-like mouse oocytes with RAGE344-355 attenuated both meiotic defects and oxidative stress levels, ultimately preventing developmental defects. Additionally, our results suggest that RAGE344-355 may interact with eEF1a1 to mitigate oxidative meiotic defects in PCOS-like mouse oocytes. These findings highlight the potential for further clinical development of RAGE344-355 as a potent supplement and therapeutic option for women with PCOS. This research addresses an important clinical problem and offers promising opportunities for improving oocyte quality in PCOS patients.


Asunto(s)
Síndrome del Ovario Poliquístico , Humanos , Femenino , Animales , Ratones , Adulto , Oocitos , Suplementos Dietéticos , Estrés Oxidativo , Péptidos
2.
Clin Exp Nephrol ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782822

RESUMEN

BACKGROUND: Diabetic nephropathy (DN), a complication of diabetes, is the most leading cause of end-stage renal disease. Bariatric surgery functions on the remission of diabetes and diabetes-related complications. One anastomosis gastric bypass (OAGB), one of popular bariatric surgery, can improve diabetes and its complications by regulating the glucagon-like peptide-1 (GLP-1) level. Meanwhile, GLP-1 can alleviate renal damage in high-fat-diet-induced obese rats. However, the effect of OAGB on renal injury remains uncertain in DN. METHODS: A diabetes model was elicited in rats via HFD feeding and STZ injection. The role and mechanism of OAGB were addressed in DN rats by the body and kidney weight and blood glucose supervision, oral glucose tolerance test (OGTT), enzyme-linked immunosorbent assay (ELISA), biochemistry detection, histopathological analysis, and western blot assays. RESULTS: OAGB surgery reversed the increase in body weight and glucose tolerance indicators in diabetes rats. Also, OAGB operation neutralized the DN-induced average kidney weight, kidney weight/body weight, and renal injury indexes accompanied with reduced glomerular hypertrophy, alleviated mesangial dilation and decreased tubular and periglomerular collagen deposition. In addition, OAGB introduction reduced the DN-induced renal triglyceride and renal cholesterol with the regulation of fatty acids-related proteins expression. Mechanically, OAGB administration rescued the DN-induced expression of Sirt1/AMPK/PGC1α pathway mediated by GLP-1. Pharmacological block of GLP-1 receptor inverted the effect of OAGB operation on body weight, glucose tolerance, renal tissue damage, and fibrosis and lipids accumulation in DN rats. CONCLUSION: OAGB improved renal damage and fibrosis and lipids accumulation in DN rats by GLP-1-mediated Sirt1/AMPK/PGC1α pathway.

3.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731988

RESUMEN

Heavy metal copper (Cu) will inevitably impact the marine macroalgae Gracilariopsis lemaneiformis (G. lemaneiformis), which is a culture of economic importance along China's coastline. In this study, the detoxification mechanism of Cu stress on G. lemaneiformis was revealed by assessing physiological indicators in conjunction with transcriptome and metabolome analyses at 1 d after Cu stress. Our findings revealed that 25 µM Cu stimulated ROS synthesis and led to the enzymatic oxidation of arachidonic acid residues. This process subsequently impeded G. lemaneiformis growth by suppressing photosynthesis, nitrogen metabolism, protein synthesis, etc. The entry of Cu ions into the algae was facilitated by ZIPs and IRT transporters, presenting as Cu2+. Furthermore, there was an up-regulation of Cu efflux transporters HMA5 and ABC family transporters to achieve compartmentation to mitigate the toxicity. The results revealed that G. lemaneiformis elevated the antioxidant enzyme superoxide dismutase and ascorbate-glutathione cycle to maintain ROS homeostasis. Additionally, metabolites such as flavonoids, 3-O-methylgallic acid, 3-hydroxy-4-keto-gama-carotene, and eicosapentaenoic acid were up-regulated compared with the control, indicating that they might play roles in response to Cu stress. In summary, this study offers a comprehensive insight into the detoxification mechanisms driving the responses of G. lemaneiformis to Cu exposure.


Asunto(s)
Cobre , Metaboloma , Transcriptoma , Cobre/toxicidad , Cobre/metabolismo , Metaboloma/efectos de los fármacos , Algas Marinas/metabolismo , Algas Marinas/genética , Rhodophyta/metabolismo , Rhodophyta/genética , Rhodophyta/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Perfilación de la Expresión Génica , Estrés Fisiológico , Estrés Oxidativo/efectos de los fármacos , Metabolómica/métodos
4.
Chemotherapy ; 68(3): 119-130, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36657426

RESUMEN

BACKGROUND: Oxaliplatin-based chemotherapy resistance is a major cause of recurrence in patients with colorectal cancer (CRC). Increasing evidence indicates that lncRNA BCAR4 is involved in the occurrence and development of various cancers. However, the effect of BCAR4 on CRC chemotherapy resistance remains unclear. METHODS: Real-time quantitative PCR and Western blotting were used to detect the expression levels of gene and protein, respectively. The role of BCAR4 in drug resistance was evaluated by cell viability and apoptosis experiments. Luciferase reporter assay and Western blot analysis confirmed the relationship between BCAR4, miR-483-3p, and RAB5C. RESULTS: Luciferase reporter assay and Western blotting analysis confirmed the relationship among BCAR4, miR-483-3p, and RAB5C. The results showed that the expression levels of BCAR4 and RAB5C were increased in CRC tumor tissue. The expression levels of BCAR4 were increased in patients with chemotherapy resistance. Functional analysis showed that knockdown of BCAR4 reduced the expression levels of proteins related to stemness, decreased the activity of cells, and promoted apoptosis of CRC cells, while overexpression of RAB5C reversed these effects. Moreover, the results showed that BCAR4 promoted oxaliplatin resistance by inhibiting cell apoptosis. Mechanistically, BCAR4 sponged miR-483-3p and promoted the expression of RAB5C. Knockdown of BCAR4 reduced tumor size and enhanced cell sensitivity to oxaliplatin in vivo. CONCLUSION: The results suggested that BCAR4/miR-483-3p/RAB5C axis has the potential to be explored as a novel therapeutic target for CRC treatment.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Humanos , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Línea Celular Tumoral , Proliferación Celular , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo , Proteínas de Unión al GTP rab5/farmacología
5.
Neoplasma ; 70(1): 123-135, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36916928

RESUMEN

Since metastasis remains the primary reason for colorectal cancer (CRC) associated death, a better understanding of the molecular mechanism underlying CRC metastasis is urgently needed. Here, we elucidated the role of Cathepsin C (CTSC) in promoting CRC metastasis. The expression of CTSC was detected by real-time PCR and immunohistochemistry in the human CRC cohort. The metastatic capacities of CTSC-mediated metastasis were analyzed by in vivo metastasis model. Elevated CSTC expression was positively associated with tumor differentiation, tumor invasion, lymph node metastasis, and AJCC stage and indicated poor prognosis in human CRC. CTSC overexpression in CRC cells promoted myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) recruitment by the CSF1/CSF1R axis. In contrast, the knockdown of CSF1 reduced CTSC-mediated MDSCs and TAMs infiltration and CRC metastasis. Depletion of either MDSCs or TAMs decreased CTSC-mediated CRC metastasis. In human CRC tissues, CTSC expression was positively associated with intratumoral MDSCs and TAMs infiltration. Furthermore, the combination of CTSC inhibitor AZD7986 and anti-PD-L1 antibody blocked CTSC-induced CRC metastasis. CTSC overexpression promoted MDSCs and TAMs infiltration by CSF1/CSF1R axis. Interruption of this oncogenic loop may provide a promising treatment strategy for inhibiting CTSC-driven CRC metastasis.


Asunto(s)
Catepsina C , Neoplasias Colorrectales , Humanos , Diferenciación Celular , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Metástasis Linfática , Metástasis de la Neoplasia
6.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37958540

RESUMEN

Aconitum carmichaelii is a herbaceous herb indigenous to China that has been cultivated for traditional medicine for centuries. Virus-like symptoms of A. carmichaelii plants were observed on leaves in some A. carmichaelii plantations in Zhanyi and Wuding Counties, Yunnan Province, southwest China. High-throughput sequencing (HTS) was performed on 28 symptomatic plants, and the results revealed infection with 11 viruses, including 2 novel viruses and 9 previously described viruses: Aconitum amalgavirus 1 (AcoAV-1), aconite virus A (AcVA), cucumber mosaic virus (CMV), currant latent virus (CuLV), apple stem grooving virus (ASGV), chilli veinal mottle virus (ChiVMV), tomato spotted wilt orthotospovirus (TSWV), tobacco vein distorting virus (TVDV), and potato leafroll virus (PLRV). Two novel viruses tentatively named Aconitum potyvirus 1 and Aconitum betapartitivirus 1, were supported by sequence and phylogenetic analysis results of their genomes. We proposed the names Potyvirus aconiti and Betapartitivirus aconiti. RT-PCR assays of 142 plants revealed the predominance and widespread distribution of CMV, AcVA, and AcoPV-1 in plantations. The detection of isolates of CuLV, ASGV, ChiVMV, TSWV, TVDV, and PLRV infections for the first time in A. carmichaelii expands their known host ranges.


Asunto(s)
Aconitum , Cucumovirus , Infecciones por Citomegalovirus , Potyvirus , Secoviridae , Virus , Filogenia , Viroma , China
7.
Molecules ; 28(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446916

RESUMEN

Significant efforts have been made in recent years to produce healthier wines, with the primary goal of reducing the use of sulfur dioxide (SO2), which poses health risks. This study aimed to assess the effectiveness of three plant-derived polyphenols (dihydromyricetin, resveratrol, and catechins) as alternatives to SO2 in wine. After a three-month aging process, the wines were evaluated using analytical techniques such as high-performance liquid chromatography, colorimetry, gas chromatography-olfactometry-mass spectrometry, as well as electronic nose and electronic tongue analyses, with the purpose to assess parameters including antioxidant activity, color, contents of volatile aroma compounds, and sensory characteristics. The results demonstrated various degrees of improvement in the antioxidant activity, aromatic intensity, and sensory characteristics of wines using polyphenols. Notably, dihydromyricetin (200 mg/L) exhibited the strongest antioxidant activity, with increases of 18.84%, 23.28%, and 20.87% in 2,2-diphenyl-1-picrylhydrazyl, 2,2'azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and ferric-ion-reducing antioxidant power assays, respectively. Resveratrol (200 mg/L) made the most significant contribution to volatile aroma compounds, with an 8.89% increase in the total content of alcohol esters. In E-nose analysis, catechins (200 mg/L) showed the highest response to aromatic compounds and the lowest response to volatile sulfur compounds, while also exhibiting the best sensory characteristics. Therefore, the three plant-derived polyphenols investigated here exhibited the potential to enhance wine quality as alternatives to SO2. However, it is important to consider the specific impact of different polyphenols on wine; hence, suitable antioxidants should be selected in wine production according to specific requirements.


Asunto(s)
Polifenoles , Vino , Polifenoles/química , Antioxidantes/farmacología , Antioxidantes/análisis , Vino/análisis , Odorantes/análisis , Resveratrol/análisis , Dióxido de Azufre/análisis , Azufre/análisis
8.
BMC Plant Biol ; 22(1): 597, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36536287

RESUMEN

BACKGROUND: Posttranscriptional processing of precursor mRNAs contributes to transcriptome and protein diversity and gene regulatory mechanisms in eukaryotes. However, this posttranscriptional mechanism has not been studied in the marine macroalgae Gracilariopsis lemaneiformis, which is the most cultivated red seaweed species in China. RESULTS: In the present study, third-generation sequencing (Pacific Biosciences single-molecule real-time long-read sequencing, SMRT-Seq) was used to sequence the full-length transcriptome of G. lemaneiformis to identify alternatively spliced transcripts and alternative polyadenylation (APA) sites in this species. RNAs were isolated from G. lemaneiformis under various treatments including abiotic stresses and exogenous phytohormones, and then equally pooled for SMRT-Seq. In summary, 346,544 full-length nonchimeric reads were generated, from which 13,630 unique full-length transcripts were obtained in G. lemaneiformis. Compared with the known splicing events in the gene models, more than 3000 new alternative splicing (AS) events were identified in the SMRT-Seq reads. Additionally, 810 genes were found to have poly (A) sites and 91 microRNAs (miRNAs), 961 long noncoding RNAs and 1721 novel genes were identified in G. lemaneiformis. Moreover, validation experiments showed that abiotic stresses and phytohormones could induce some specific AS events, especially intron retain isoforms, cause some alterations to the relative ratios of transcripts annotated to the same gene, and generate novel 3' ends because of differential APA. The growth of G. lemaneiformis was inhibited by Cu stress, while this inhibition was alleviated by ACC treatment. RNA-Seq analysis further revealed that 211 differential alternative splicing (DAS) events and 142 DAS events was obtained in CK vs Cu and Cu vs Cu + ACC, respectively, suggesting that AS of functional genes could be regulated by Cu stress and ACC. Compared with Cu stress, the expression of transcripts with DAS events mainly involved in the carbon fixation in photosynthetic organisms and oxidative phosphorylation pathway was upregulated in Cu + ACC treatment, revealing that ACC alleviated the growth inhibition by Cu stress by increasing carbon fixation and oxidative phosphorylation. CONCLUSIONS: Our results provide the first comprehensive picture of the full-length transcriptome and posttranscriptional mechanism in red macroalgae, including transcripts that appeared in the presence of common abiotic stresses and phytohormones, which will improve the gene annotations of Gracilariopsis and contribute to the study of gene regulation in this important cultivated seaweed.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Transcriptoma , Empalme Alternativo , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Empalme del ARN
9.
Arch Virol ; 167(3): 999-1002, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35142942

RESUMEN

A novel enamovirus was identified in common bean plants with disease symptoms. Its genome of 5,781 nucleotides (nt) contains five open reading frames. This virus and other members of the genus Enamovirus share 50.4-68.4% nucleotide sequence identity in the complete genome and 19.9-51.9% amino acid sequence identity in the P0 protein, 24.9-52.5% in P1, 33.4-62.9% in P1-P2, 30.6-81.1% in P3, and 32.3-74.2% in P3-P5. Phylogenetic analysis showed that the virus is most closely related to alfalfa enamovirus 1 and pea enation mosaic virus 1 in the genus Enamovirus of the family Solemoviridae. These results suggest that this virus, tentatively named "bean enamovirus 1", should be classified as a member of a new species in the genus Enamovirus.


Asunto(s)
Luteoviridae , Phaseolus , Genoma Viral , Genómica , Luteoviridae/genética , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas , ARN Viral/genética
10.
Arch Virol ; 167(11): 2351-2353, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35842550

RESUMEN

A novel virus named Aconitum amalgavirus 1 (AcoAV-1) was identified in Chinese aconite (Aconitum carmichaelii) plants. The complete genome of AcoAV-1 is 3,370 nucleotides long, containing two partially overlapping open reading frames encoding a putative coat protein and a RNA-dependent RNA polymerase, respectively. Its fusion protein shares 34.9%-50.7% amino acid sequence identity with other amalgaviruses. Phylogenetic analysis showed that this virus formed a clade with blueberry latent virus and four other related viruses, suggesting that it belongs to the genus Amalgavirus in the family Amalgaviridae.


Asunto(s)
Aconitum , Virus ARN , Aconitum/genética , Genoma Viral , Nucleótidos , Sistemas de Lectura Abierta , Filogenia , Virus ARN/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN
11.
Mar Drugs ; 20(7)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35877735

RESUMEN

Agar is widely applied across the food, pharmaceutical and biotechnology industries, owing to its various bioactive functions. To better understand the agar biosynthesis in commercial seaweed Gracilariopsis lemaneiformis, the activities of four enzymes participating in the agar biosynthesis were detected, and phosphoglucomutase (PGM) was confirmed as highly correlated with agar accumulation. Three genes of PGM (GlPGM1, GlPGM2 and GlPGM3) were identified from the G. lemaneiformis genome. The subcellular localization analysis validated that GlPGM1 was located in the chloroplast and GlPGM3 was not significantly distributed in the organelles. Both the GlPGM1 and GlPGM3 protein levels showed a remarkable consistency with the agar variations, and GlPGM3 may participate in the carbon flux between (iso)floridoside, floridean starch and agar synthesis. After treatment with the PGM inhibitor, the agar and floridean starch contents and the activities of floridean starch synthase were significantly decreased; products identified in the Calvin cycle, the pentose phosphate pathway, the Embden-Meyerhof-Parnas pathway and the tricarboxylic acid cycle were depressed; however, lipids, phenolic acids and the intermediate metabolites, fructose-1,6-phosphate were upregulated. These findings reveal the essential role of PGM in regulating the carbon flux between agar and other carbohydrates in G. lemaneiformis, providing a guide for the artificial regulation of agar accumulation.


Asunto(s)
Fosfoglucomutasa , Rhodophyta , Agar/metabolismo , Ciclo del Carbono , Fosfoglucomutasa/genética , Fosfoglucomutasa/metabolismo , Rhodophyta/metabolismo , Almidón/metabolismo
12.
Molecules ; 27(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36234972

RESUMEN

Knoxia roxburghii (Spreng.) M. A. Rau (KR) is a plant clinically used in traditional Chinese medicine (TCM) for the treatment of cancer. The study objectives were to examine the effects of KR extracts, petroleum ether (PET), ethyl acetate (EtoAc), butanol (n-BuOH), and H2O-soluble fractions (HSF) of the 75% EtOH extraction on A549 (non-small cell lung cancer), HepG2 (liver cancer), HeLa (cervical cancer), MCF-7 (breast cancer), and L02 (normal hepatocyte) cells. It was found that HSF exhibited the strongest cytotoxic activity against MCF-7 cells, and was accompanied by reduced mitochondrial transmembrane potential, increased levels of intra-cellular reactive oxygen species (ROS) and activated caspases, and upregulated pro-apoptotic and downregulated anti-apoptotic proteins. LC-MS analysis further showed that HSF primarily consisted of calycosin, aloe emodin, rein, maackiain, asperuloside, orientin, vicenin-2, and kaempferide, which have been mostly reported for anti-tumor activity in previous studies. In summary, the current study illustrated the effect, mechanism, and the potential major active components of KR against breast cancer.


Asunto(s)
Antineoplásicos Fitogénicos , Neoplasias de la Mama , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Rubiaceae , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis , Proteínas Reguladoras de la Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Butanoles , Caspasas/metabolismo , Proliferación Celular , Femenino , Humanos , Células MCF-7 , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Rubiaceae/metabolismo
13.
New Phytol ; 231(6): 2262-2281, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34096619

RESUMEN

Plant intracellular nucleotide-binding leucine-rich repeat (NLR) receptors play critical roles in mediating host immunity to pathogen attack. We use tomato Sw-5b::tospovirus as a model system to study the specific role of the compartmentalized plant NLR in dictating host defenses against the virus at different infection steps. We demonstrated here that tomato NLR Sw-5b distributes to the cytoplasm and nucleus, respectively, to play different roles in inducing host resistances against tomato spotted wilt orthotospovirus (TSWV) infection. The cytoplasmic-enriched Sw-5b induces a strong cell death response to inhibit TSWV replication. This host response is, however, insufficient to block viral intercellular and long-distance movement. The nuclear-enriched Sw-5b triggers a host defense that weakly inhibits viral replication but strongly impedes virus intercellular and systemic movement. Furthermore, the cytoplasmic and nuclear Sw-5b act synergistically to dictate a full host defense of TSWV infection. We further demonstrated that the extended N-terminal Solanaceae domain (SD) of Sw-5b plays critical roles in cytoplasm/nucleus partitioning. Sw-5b NLR controls its cytoplasm localization. Strikingly, the SD but not coil-coil domain is crucial for Sw-5b receptor to import into the nucleus to trigger the immunity. The SD was found to interact with importins. Silencing both importin α and ß expression disrupted Sw-5b nucleus import and host immunity against TSWV systemic infection. Collectively, our findings suggest that Sw-5b bifurcates disease resistances by cytoplasm/nucleus partitioning to block different infection steps of TSWV. The findings also identified a new regulatory role of extra domain of a plant NLR in mediating host innate immunity.


Asunto(s)
Solanum lycopersicum , Tospovirus , Núcleo Celular , Resistencia a la Enfermedad , Enfermedades de las Plantas , Dominios Proteicos
14.
Andrologia ; 53(3): e13980, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33528066

RESUMEN

Transducin (ß)-like 1 X-linked receptor 1 (TBL1XR1) is an evolutionarily conserved protein related to spermatozoa. To clarify its role and mechanism of action in spermatozoa, qRT-PCR was used to analyse the expression of TBL1XR1 in human spermatozoa and mouse testes. The mice were established as an animal model by injecting the mice testes with small interfering RNA against TBL1XR1 or control siRNA. Our results indicated that deficiency of TBL1XR1 in mice reduced the motility of spermatozoa and disrupted the histone-to-protamine transition. We also found the decreased expression of TBL1XR1 in the spermatozoa of human patients with asthenozoospermia (AZ) compared with that in the spermatozoa of healthy males. Moreover, we carried out chromatin immunoprecipitation analyses and found that genes downstream of TBL1XR1 were related to sperm motility. Thus, TBL1XR1 might be related to sperm motility and might function through its downstream genes. Our data highlight the role of TBL1XR1 involved in spermatozoa and provide new molecular insights into the intricate systems required for male fertility.


Asunto(s)
Astenozoospermia , Proteínas Nucleares/genética , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Represoras/genética , Animales , Astenozoospermia/genética , Humanos , Masculino , Ratones , Motilidad Espermática , Espermatozoides
15.
Hepatology ; 69(4): 1751-1767, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30506577

RESUMEN

Sepsis-induced liver injury is recognized as a key problem in intensive care units. The gut microbiota has been touted as an important mediator of liver disease development; however, the precise roles of gut microbiota in regulating sepsis-induced liver injury are unknown. Here, we aimed to investigate the role of the gut microbiota in sepsis-induced liver injury and the underlying mechanism. Cecal ligation and puncture (CLP) was used to induce polymicrobial sepsis and related liver injury. Fecal microbiota transplantation (FMT) was used to validate the roles of gut microbiota in these pathologies. Metabolomics analysis was performed to characterize the metabolic profile differences between sepsis-resistant (Res; survived to 7 days after CLP) and sepsis-sensitive (Sen; moribund before or approximately 24 hours after CLP) mice. Mice gavaged with feces from Sen mice displayed more-severe liver damage than did mice gavaged with feces from Res mice. The gut microbial metabolic profile between Sen and Res mice was different. In particular, the microbiota from Res mice generated more granisetron, a 5-hydroxytryptamine 3 (5-HT3 ) receptor antagonist, than the microbiota from Sen mice. Granisetron protected mice against CLP-induced death and liver injury. Moreover, proinflammatory cytokine expression by macrophages after lipopolysaccharide (LPS) challenge was markedly reduced in the presence of granisetron. Both treatment with granisetron and genetic knockdown of the 5-HT3A receptor in cells suppressed nuclear factor kappa B (NF-кB) transactivation and phosphorylated p38 (p-p38) accumulation in macrophages. Gut microbial granisetron levels showed a significantly negative correlation with plasma alanine aminotransferase (ALT)/aspartate aminotransferase (AST) levels in septic patients. Conclusion: Our study indicated that gut microbiota plays a key role in the sensitization of sepsis-induced liver injury and associates granisetron as a hepatoprotective compound during sepsis development.


Asunto(s)
Coinfección/complicaciones , Microbioma Gastrointestinal , Granisetrón/metabolismo , Hepatopatías/microbiología , Sepsis/microbiología , Animales , Citocromo P-450 CYP1A1/metabolismo , Citocinas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Células RAW 264.7 , Receptores de Serotonina 5-HT3/genética , Receptores de Serotonina 5-HT3/metabolismo , Receptor Toll-Like 4/metabolismo
16.
Plant Cell ; 29(9): 2214-2232, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28814646

RESUMEN

Plants use both cell surface-resident pattern recognition receptors (PRRs) and intracellular nucleotide binding leucine-rich repeat (NLR) receptors to detect various pathogens. Plant PRRs typically recognize conserved pathogen-associated molecular patterns (PAMPs) to provide broad-spectrum resistance. By contrast, plant NLRs generally detect pathogen strain-specific effectors and confer race-specific resistance. Here, we demonstrate that the tomato (Solanum lycopersicum) NLR Sw-5b confers broad-spectrum resistance against American-type tospoviruses by recognizing a conserved 21-amino acid peptide region within viral movement protein NSm (NSm21). Sw-5b NB-ARC-LRR domains directly associate with NSm21 in vitro and in planta. Domain swap, site-directed mutagenesis and structure modeling analyses identified four polymorphic sites in the Sw-5b LRR domain that are critical for the recognition of NSm21 Furthermore, recognition of NSm21 by Sw-5b likely disturbs the residues adjacent to R927 in the LRR domain to weaken the intramolecular interaction between LRR and NB-ARC domains, thus translating recognition of NSm21 into activation of Sw-5b. Natural variation analysis of Sw-5b homologs from wild tomato species of South America revealed that the four polymorphic sites in the Sw-5b LRR domain were positively selected during evolution and are all necessary to confer resistance to tospovirus. The results described here provide a new example of a plant NLR mediating broad-spectrum resistance through recognition of a small conserved PAMP-like region within the pathogen effector.


Asunto(s)
Secuencia Conservada , Resistencia a la Enfermedad , Epítopos/metabolismo , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Solanum lycopersicum/inmunología , Solanum lycopersicum/virología , Tospovirus/fisiología , Secuencia de Aminoácidos , Muerte Celular , Modelos Moleculares , Péptidos/química , Enfermedades de las Plantas/virología , Proteínas de Plantas/química , Polimorfismo Genético , Unión Proteica , Dominios Proteicos
17.
FASEB J ; 33(11): 12299-12310, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31465241

RESUMEN

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to microbial infection. For decades, the potential role of gut microbiota in sepsis pathogenesis has been revealed. However, the systemic and functional link between gut microbiota and sepsis has remained unexplored. To address this gap in knowledge, we carried out systematic analyses on clinical stool samples from patients with sepsis, including 16S rDNA sequencing, metabolomics, and metaproteomics analyses. In addition, we performed fecal microbiota transplantation from human to mice to validate the roles of gut microbiota on sepsis progression. We found that the composition of gut microbiota was significantly disrupted in patients with sepsis compared with healthy individuals. Besides, the microbial functions were significantly altered in septic feces as identified by metabolomics and metaproteomics analyses. Interestingly, mice that received septic feces exhibited more severe hepatic inflammation and injury than mice that received healthy feces after cecal ligation and puncture. Finally, several strains of intestinal microbiota and microbial metabolites were corelated with serum total bilirubin levels in patients with sepsis. Taken together, our data indicated that sepsis development is associated with the disruption of gut microbiota at both compositional and functional levels, and such enteric dysbiosis could promote organ inflammation and injury during sepsis.-Liu, Z., Li, N., Fang, H., Chen, X., Guo, Y., Gong, S., Niu, M., Zhou, H., Jiang, Y., Chang, P., Chen, P. Enteric dysbiosis is associated with sepsis in patients.


Asunto(s)
Disbiosis/complicaciones , Microbioma Gastrointestinal/fisiología , Sepsis/etiología , Animales , Humanos , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
18.
Int J Syst Evol Microbiol ; 70(5): 2988-2997, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32369000

RESUMEN

A novel, Gram-stain-positive, rod-shaped, non-motile, non-spore-forming, obligately anaerobic bacterium, designated strain ZHW00191T, was isolated from human faeces and characterized by using a polyphasic taxonomic approach. Growth occurred at 25-45 °C (optimum, 37-42 °C), at pH 5.5-10.0 (optimum, pH 6.5-7.0) and with 0-2 % (w/v) NaCl (optimum, 0 %). The end products of glucose fermentation were acetic acid, isobutyric acid and isovaleric acid and a small amount of propionic acid. The dominant cellular fatty acids (>10 %) of strain ZHW00191T were C16 : 0, C18 : 1 ω9с and C18 : 2ω6,9с. Its polar lipid profile comprised diphosphatidylglycerol, phosphatidylglycerol, three unidentified phospholipids and ten unidentified glycolipids. Respiratory quinones were not detected. The cell-wall peptidoglycan contained meso-2,6-diaminopimelic acid, and the whole-cell sugars were ribose and glucose. The genomic DNA G+C content was 32.8 mol%. Analysis of the 16S rRNA gene sequence indicated that ZHW00191T was most closely related to Clostridium hiranonis TO-931T (95.3 % similarity). Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) analyses with closely related reference strains indicated that reassociation values were both well below the thresholds of 95-96% and 70 % for species delineation, respectively. Based on phenotypic, chemotaxonomic and genetic studies, a novel genus, Peptacetobacter gen. nov., is proposed. The novel isolate ZHW00191T (=JCM 33482T=GDMCC 1.1530T) is proposed as the type strain of the type species Peptacetobacter hominis gen. nov., sp. nov. of the proposed new genus. Furthermore, it is proposed that Clostridium hiranonis be transferred to this novel genus, as Peptacetobacter hiranonis comb. nov.


Asunto(s)
Clostridium/clasificación , Heces/microbiología , Bacilos Grampositivos Formadores de Endosporas/clasificación , Filogenia , Adulto , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Glucolípidos/química , Bacilos Grampositivos Formadores de Endosporas/aislamiento & purificación , Humanos , Masculino , Hibridación de Ácido Nucleico , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
19.
Plant Dis ; 2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32854603

RESUMEN

Pea (Pisum sativum L.) is an economically important legume crop that is commonly used as dry beans, fresh peas, pods and shoots (Guo et al. 2009). Pea enation mosaic is an important virus disease of pea caused by two viruses in an obligate symbiosis, pea enation mosaic virus 1 (PEMV-1, Enamovirus, Luteoviridae) and pea enation mosaic virus 2 (PEMV-2, Umbravirus, Tombusviridae) (Hema et al. 2014). In November 2019, foliar yellow mosaic and vein enations symptoms were observed from pea plants in five fields of Honghe autonomous prefecture, Yunnan province, China. Incidence of symptomatic plants ranged from 20 to 40% and was distributed in both small and large fields. Leaves with typical virus-like symptoms were collected from five symptomatic pea plants in two fields and used for total RNA extraction. The five extracts of equimolar quantities were pooled into a sample and subjected to High Throughput Sequencing (HTS) by Illumina HiSeq system. Analyses of raw RNA reads were performed using CLC Genomics Workbench 12 (Qiagen). A total of 60,009,746 RNA reads were obtained from the sample, and de novo assembly of the reads using the CLC Genomics generated 88,105 contigs. BLASTN searches revealed the presence of contigs with high similarities to PEMV-1, PEMV-2, Pea seed-borne mosaic virus, and Bean yellow mosaic virus. To confirm the presence of PEMV-1 and PEMV-2 in the samples, two virus-specific primer pairs were designed based on the contig sequences obtained by HTS in this study. Primer pairs PEMV-1F/PEMV-1R (5'-ATGCCGACTAGATCGAAATC-3'/5'-TCAGAGGGAGGCATTCATTA-3') that flank the cp gene of PEMV-1 and PEMV-2F/PEMV-2R (5'-ATGACGATAATCATTAATG-3'/5'-TCACCCGTAGTGAGAGGCA-3') that target the ORF3 region of PEMV-2 were used to amplify the two viruses in RT-PCR. DNA fragments of the expected sizes (PEMV-1, 570 bp; PEMV-2, 693 bp) were amplified from all five samples. The RT-PCR products were cloned and sequenced. Sequence analysis showed that the 570-bp amplicon (MT481989) shared the highest nucleotide sequence identity of 98.95% with PEMV-1 (Z48507), while the 693-bp fragment (MT481990) had the highest nucleotide sequence identity of 97.4% with PEMV-2 isolate JKI (MK948534). One gram of the symptomatic leaves from each of the five plants was homogenized with 5 mL of 0.01 M phosphate-buffered saline (PBS buffer), pH 7.0. Each of the resulted saps was used to inoculate onto five healthy pea seedlings. A total of 25 healthy pea seedlings were inoculated, and 16 inoculated plants developed yellowing and mottling at 10 days post inoculation (dpi); no symptoms were observed on control plants inoculated only with PBS buffer. The formation of the typical enation was observed along the veins of lower side of the symptomatic leaves of the inoculated plants at 30 dpi. PEMV-1 and PEMV-2 infection were confirmed by RT-PCR assays using the specific primer pairs described above. Although the presence of the pea enation mosaic virus complex was suspected in China based on symptomatology (Brunt et al. 1997), to our knowledge, this is the first molecular confirmation of PEMV-1 and PEMV-2 occurrence in China. The co-infection of PEMV-1 and PEMV-2 usually cause severe yield losses; therefore, integration of detection and control measures is important in pea production regions where the two viruses occurred.

20.
Arch Virol ; 164(12): 3099-3102, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31520219

RESUMEN

The complete genomic sequence of a novel potyvirus from a noni plant in China (Morinda citrifolia) with foliar mosaic and chlorotic symptoms was determined. The genomic RNA consists of 9645 nucleotides (nt) excluding the poly(A) tail, containing the typical open reading frame (ORF) of potyviruses and encoding a large putative polyprotein of 3077 amino acids (aa). Pairwise comparisons showed that the virus shares 48.8%-58.5% sequence identity at the genome sequence level, and 38.5%-53.4% identity at the polyprotein sequence level with other members of the genus Potyvirus. Phylogenetic analysis indicated that the virus is most closely related to jasmine virus T and plum pox virus in the genus Potyvirus. These results suggest that this virus should be considered a distinct member of the genus Potyvirus, and it was tentatively named "noni mosaic virus" (NoMV).


Asunto(s)
Morinda/virología , Potyvirus/clasificación , ARN Viral/genética , Tamaño del Genoma , Sistemas de Lectura Abierta , Filogenia , Potyvirus/genética , Potyvirus/aislamiento & purificación , Análisis de Secuencia de ARN , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA