RESUMEN
Human elaC ribonuclease Z 2 (ELAC2) removes the 3' trailer of precursor transfer ribonucleic acid (pre-tRNA). Mutations in ELAC2 are highly associated with the development of prostate cancer and hypertrophic cardiomyopathy. However, the catalytic mechanism of ELAC2 remains unclear. We determined the cryogenic electron microscopy structures of human ELAC2 in various states, including the apo, pre-tRNA-bound and tRNA-bound states, which enabled us to identify the structural basis for its binding to pre-tRNA and cleavage of the 3' trailer. Notably, conformational rearrangement of the C-terminal helix was related to feeding of the 3' trailer into the cleavage site, possibly explaining why its mutations are associated with disease. We further used biochemical assays to analyse the structural effects of disease-related mutations of human ELAC2. Collectively, our data provide a comprehensive structural basis for how ELAC2 recruits pre-tRNA via its flexible arm domain and guides the 3' trailer of pre-tRNA into the active centre for cleavage by its C-terminal helix.
RESUMEN
Epstein-Barr virus (EBV) infects more than 90% of the world's adult population and accounts for a significant cancer burden of epithelial and B cell origins. Glycoprotein B (gB) is the primary fusogen essential for EBV entry into host cells. Here, we isolated two EBV gB-specific neutralizing antibodies, 3A3 and 3A5; both effectively neutralized the dual-tropic EBV infection of B and epithelial cells. In humanized mice, both antibodies showed effective protection from EBV-induced lymphoproliferative disorders. Cryoelectron microscopy analyses identified that 3A3 and 3A5 bind to nonoverlapping sites on domains D-II and D-IV, respectively. Structure-based mutagenesis revealed that 3A3 and 3A5 inhibit membrane fusion through different mechanisms involving the interference with gB-cell interaction and gB activation. Importantly, the 3A3 and 3A5 epitopes are major targets of protective gB-specific neutralizing antibodies elicited by natural EBV infection in humans, providing potential targets for antiviral therapies and vaccines.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Proteínas Virales , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/química , Anticuerpos Antivirales/aislamiento & purificación , Anticuerpos Antivirales/uso terapéutico , Microscopía por Crioelectrón , Infecciones por Virus de Epstein-Barr/prevención & control , Infecciones por Virus de Epstein-Barr/terapia , Herpesvirus Humano 4/inmunología , Humanos , Fusión de Membrana , Ratones , Proteínas Virales/inmunologíaRESUMEN
FTO alpha-ketoglutarate dependent dioxygenase (FTO) is aberrantly expressed in brain disorders. However, the roles of FTO in neonatal hypoxic-ischemic brain injury (HIE) are still unclear. This study aims to investigate the potential of FTO in neonatal HIE. Oxygen-glucose deprivation (OGD) was used to establish HIE in vitro. mRNA levels were detected by real-time reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). Protein expression was detected by Western blot. The levels of malondialdehyde (MDA), superoxide dismutase (SOD), ferrous iron (Fe2+) and glutathione (GSH) was detected by specific kit. m6A sites were analyzed using SRAMP and further verify by methylated RNA immunoprecipitation (MeRIP) assay. Cell proliferation was determined by Cell Counting Kit-8 (CCK-8) assay. Cell death was determined by propidium iodide (PI) staining. FTO was downregulated in patients with neonatal HIE and OGD-treated neurons. Moreover, FTO mRNA expression was decreased in ferroptosis inducer, especially ferric ammonium citrate (FAC). However, overexpression of FTO inhibited the ferroptosis of neurons. Moreover, FTO-mediated N6-methyladenosine (m6A) modification of ferritin heavy chain 1 (FTH1) suppressed its mRNA expression and stability, inhibiting its protein expression. However, overexpression of FTH1 abrogated the effects of FTO and promoted the ferroptosis of neurons. In summary, FTO functions as a protective role in neonatal HIE via inhibiting FTH1 signaling. Thence, targeting may be a promising strategy for FTO neonatal HIE.
Asunto(s)
Adenosina , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Ferroptosis , Hipoxia-Isquemia Encefálica , Neuronas , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Humanos , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/genética , Hipoxia-Isquemia Encefálica/patología , Ferroptosis/genética , Neuronas/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Recién Nacido , Ferritinas , OxidorreductasasRESUMEN
In this work, a novel MXene-Au nanoparticle (Ti3C2@Au) was synthesized with a high molar extinction coefficient, strong fluorescence quenching ability, ultrahigh antibody affinity, high stability, and good dispersibility, and it was used to develop a colorimetric-fluorescence dual-mode lateral flow immunoassay (LFIA). The detection limits of this method for the detection of dexamethasone in milk, beef, and pork were 0.0018, 0.12, and 0.084 µg/kg in the "turn-off" mode (colorimetric signal), and 0.0013, 0.080, and 0.070 µg/kg in the "turn-on" mode (fluorescent signal), respectively, which was up to 231-fold more sensitive compared with that of the reported LFIAs. The recovery rates ranged from 81.1-113.7%, and 89.2-115.4%, with the coefficients of variation ranging from 1.4-15.0%, and 1.9-14.8%, respectively. The results of the LC-MS/MS confirmation test on 30 real samples had a good correlation with that of our established method (R2 > 0.97). This work not only developed novel nanocarriers for antibody-based LFIA but also ensured high-performance detection.
Asunto(s)
Oro , Nanopartículas del Metal , Animales , Bovinos , Colorimetría , Cromatografía Liquida , Espectrometría de Masas en Tándem , Titanio , Inmunoensayo/métodos , Límite de DetecciónRESUMEN
BACKGROUND: Annexin (ANN) is calcium (Ca2+)-dependent and phospholipid binding protein family, which is involved in plant growth and development and response to various stresses. However, little known about ANN genes were identified from crape myrtle, an ornamental horticultural plant widely cultivated in the world. RESULTS: Here, 9 LiANN genes were identified from Lagerstroemia indica, and their characterizations and functions were investigated in L. indica for the first time. The LiANN genes were divided into 2 subfamilies. The gene structure, chromosomal location, and collinearity relationship were also explored. In addition, the GO annotation analysis of these LiANNs indicated that they are enriched in molecular functions, cellular components, and biological processes. Moreover, transcription factors (TFs) prediction analysis revealed that bHLH, MYB, NAC, and other TFs can interact with the LiANN promoters. Interestingly, the LiANN2/4/6-9 were demonstrated to play critical roles in the branching architecture of crape myrtle. Furthermore, the LiANN2/6/8/9 were differentially expressed under salt treatment, and a series of TFs regulating LiANN2/6/8/9 expression were predicted to play essential roles in salt resistance. CONCLUSIONS: These results shed light on profile and function of the LiANN gene family, and lay a foundation for further studies of the LiANN genes.
Asunto(s)
Lagerstroemia , Myrtus , Lagerstroemia/genética , Anexinas/genética , Factores de Transcripción/genética , Estrés Salino/genética , Regulación de la Expresión Génica de las Plantas , FilogeniaRESUMEN
BACKGROUND: Lagerstroemia indica is a widely cultivated ornamental woody shrub/tree of the family Lythraceae that is used as a traditional medicinal plant in East Asia and Egypt. However, unlike other ornamental woody plants, its genome is not well-investigated, which hindered the discovery of the key genes that regulate important traits and the synthesis of bioactive compounds. RESULTS: In this study, the genomic sequences of L. indica were determined using several next-generation sequencing technologies. Altogether, 324.01 Mb sequences were assembled and 98.21% (318.21 Mb) of them were placed in 24 pseudo-chromosomes. The heterozygosity, repeated sequences, and GC residues occupied 1.65%, 29.17%, and 38.64% of the genome, respectively. In addition, 28,811 protein-coding gene models, 327 miRNAs, 552 tRNAs, 214 rRNAs, and 607 snRNAs were identified. The intra- and interspecies synteny and Ks analysis revealed that L. indica exhibits a hexaploidy. The co-expression profiles of the genes involved in the phenylpropanoid (PA) and flavonoid/anthocyanin (ABGs) pathways with the R2R3 MYB genes (137 members) showed that ten R2R3 MYB genes positively regulate flavonoid/anthocyanin biosynthesis. The colors of flowers with white, purple (PB), and deep purplish pink (DPB) petals were found to be determined by the levels of delphinidin-based (Dp) derivatives. However, the substrate specificities of LiDFR and LiOMT probably resulted in the different compositions of flavonoid/anthocyanin. In L. indica, two LiTTG1s (LiTTG1-1 and LiTTG1-2) were found to be the homologs of AtTTG1 (WD40). LiTTG1-1 was found to repress anthocyanin biosynthesis using the tobacco transient transfection assay. CONCLUSIONS: This study showed that the ancestor L. indica experienced genome triplication approximately 38.5 million years ago and that LiTTG1-1 represses anthocyanin biosynthesis. Furthermore, several genes such as LiDFR, LiOMTs, and R2R3 LiMYBs are related to anthocyanin biosynthesis. Further studies are required to clarify the mechanisms and alleles responsible for flower color development.
Asunto(s)
Lagerstroemia , Lagerstroemia/genética , Antocianinas , Perfilación de la Expresión Génica , Genómica , Flavonoides/genéticaRESUMEN
Current therapeutic strategies for esophageal cancer (EC) patients have yielded limited improvements in survival rates. Recent research has highlighted the influence of drug metabolism enzymes on both drug response and EC development. Our study aims to identify specific drug metabolism enzymes regulated by histone acetylation and to elucidate its molecular and clinical features. CYP4F12 exhibited a notable upregulation subsequent to trichostatin A treatment as evidenced by RNA sequencing analysis conducted on the KYSE-150 cell line. The change in gene expression was associated with increased acetylation level of histone 3 K18 and K27 in the promoter. The regulation was dependent on p300. In silicon analysis of both The Cancer Genome Atlas esophageal carcinoma and GSE53624 dataset suggested a critical role of CYP4F12 in EC development, because CYP4F12 was downregulated in tumor tissues and predicted better disease-free survival. Gene ontology analysis has uncovered a robust correlation between CYP4F12 and processes related to cell migration, as well as its involvement in cytosine-mediated immune activities. Further investigation into the relationship between immune cells and CYP4F12 expression has indicated an increased level of B cell infiltration in samples with high CYP4F12 expression. CYP4F12 was also negatively correlated with the expression of inhibitory checkpoints. An accurate predictive nomogram model was established combining with clinical factors and CYP4F12 expression. In conclusion, CYP4F12 was crucial in EC development, and targeting CYP4F12 may improve the therapeutic efficacy of current treatment in EC patients. SIGNIFICANCE STATEMENT: CYP4F12 expression was downregulated in esophageal cancer (EC) patients and could be induced by trichostatin A. During EC development, CYP4F12 was linked to reduced cell migration and increased infiltration of B cells. CYP4F12 also is a biomarker as prognostic predictors and therapeutic guide in EC patients.
Asunto(s)
Neoplasias Esofágicas , Histonas , Humanos , Acetilación , Línea Celular Tumoral , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Familia 4 del Citocromo P450/genética , Familia 4 del Citocromo P450/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Ácidos Hidroxámicos/farmacologíaRESUMEN
Background: Percutaneous radiofrequency catheter ablation (RFA) in hypertrophic obstructive cardiomyopathy (HOCM) with intracardiac echocardiography (ICE) guidance is a novel method that has been proven to be safe and effective in a small sample size study. RFA of the interventricular septum through a trans-atrial septal approach in HOCM patients with a longer follow-up has not been reported. Methods: 62 consecutive patients from March 2019 to February 2022 were included in this study. The area between the hypertrophied septum and anterior mitral valve (MV) leaflet was established using the three-dimensional system (CARTO 3 system), and all patients received atrial septal puncture under the guidance of intracardiac echocardiography (ICE). Point-by-point ablation was performed to cover the contact area. After ablation, the patients were followed up for 1, 3, 6, and 12 months. Transthoracic echocardiography was performed at 1, 3, 6, and 12 months, and resting and exercise-provoked left ventricular outflow tract (LVOT) gradients were obtained. Results: During the 1-year follow-up, most patients' symptoms improved. The NYHA grading of the patient decreased from 2 (2, 3) at baseline to 2 (1, 2) (p < 0.001). LVOT peak gradient at rest was decreased from 59 ( ± 27) mmHg to 30 ( ± 24) mmHg (p < 0.001), and the provoked peak gradient was decreased from 99 ( ± 33) mmHg to 59 ( ± 34) mmHg (p < 0.001). The average maximum septal thickness was reduced from 21 ( ± 4) mm to 19 ( ± 4) mm (p < 0.001). Conclusions: After a 1-year follow-up, ice-guided radiofrequency ablation for HOCM might be a safe, accurate, and effective method. The catheter might be reliably attached to the ablation target area via trans-atrial septal access.
RESUMEN
DnaJs/Hsp40s/JPDs are obligate co-chaperones of heat shock proteins (Hsp70), performing crucial biological functions within organisms. A comparative genome analysis of four genomes (Vitis vinifera, Eucalyptus grandis, Lagerstroemia indica, and Punica granatum) revealed that the DnaJ gene family in L. indica has undergone expansion, although not to the extent observed in P. granatum. Inter-genome collinearity analysis of four plants indicates that members belonging to Class A and B are more conserved during evolution. In L. indica, the expanded members primarily belong to Class-C. Tissue expression patterns and the biochemical characterization of LiDnaJs further suggested that DnaJs may be involved in numerous biological processes in L. indica. Transcriptome and qPCR analyses of salt stressed leaves identified at least ten LiDnaJs that responded to salt stress. In summary, we have elucidated the expansion mechanism of the LiDnaJs, which is attributed to a recent whole-genome triplication. This research laid the foundation for functional analysis of LiDnaJs and provides gene resources for breeding salt-tolerant varieties of L. indica.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lagerstroemia , Familia de Multigenes , Proteínas de Plantas , Estrés Salino , Estrés Salino/genética , Lagerstroemia/genética , Proteínas de Plantas/genética , Genoma de Planta , Proteínas del Choque Térmico HSP40/genética , Filogenia , Genómica/métodosRESUMEN
Recurrent events, including cardiovascular events, are commonly observed in biomedical studies. Understanding the effects of various treatments on recurrent events and investigating the underlying mediation mechanisms by which treatments may reduce the frequency of recurrent events are crucial tasks for researchers. Although causal inference methods for recurrent event data have been proposed, they cannot be used to assess mediation. This study proposed a novel methodology of causal mediation analysis that accommodates recurrent outcomes of interest in a given individual. A formal definition of causal estimands (direct and indirect effects) within a counterfactual framework is given, and empirical expressions for these effects are identified. To estimate these effects, a semiparametric estimator with triple robustness against model misspecification was developed. The proposed methodology was demonstrated in a real-world application. The method was applied to measure the effects of two diabetes drugs on the recurrence of cardiovascular disease and to examine the mediating role of kidney function in this process.
Asunto(s)
Enfermedades Cardiovasculares , Causalidad , Análisis de Mediación , Modelos Estadísticos , Recurrencia , Humanos , Simulación por Computador , Interpretación Estadística de Datos , Hipoglucemiantes/uso terapéuticoRESUMEN
Salmonella-related foodborne infections are commonly caused by the serovars of S. Typhimurium, which can be detected using antibody-based immunoassays. The monovalent variable domain of the camelid heavy chain antibody (VHH) performs excellently in constructing multivalent VHH variants, which generally exhibit higher affinities with antigens and consequently enhance the assay sensitivity. In this study, the divalent variants of VHHs (diVHHs) targeting S. Typhimurium were generated by encoding the monovalent VHH genes assembled in tandem with a flexible linker peptide (G4S)2. Soluble diVHHs were produced in a prokaryotic expression system and purified with a yield of 4.22 mg/L. Benefiting from their stability and antigen-binding abilities towards tested Salmonella serovars, diVHH-based immunoassays were developed. The diVHH-based sandwich immunoassay, using diVHH as capture antibody, exhibited a detection limit of 1.04×102 CFU/mL and enabled as low as 10 CFU/mL S. Typhimurium to be detected after 6 h of enrichment in lettuce. Furthermore, this assay can be applied to spiked lettuce, chicken, and pork samples, showing acceptable recoveries ranging from 83 to 106%. This study presented feasible strategies for VHH multivalence and established a superior sensitivity VHH-based immunoassay for monitoring and analyzing Salmonella contamination in food.
RESUMEN
Stimulant laxatives were recently found to be abused in slimming foods, resulting in harmful effects on consumers. To ensure the safety of relative products, sensitive yet multiplex immunoassays are crucial in rapid screening of stimulant laxatives. However, there are few immunoassays for these substances, and even less for broad-specific recognition. Thus, in this work, four theoretically promising haptens of emerging stimulant laxative bisacodyl were rationally designed using molecular modeling and synthesized to immune animals, whose feasibility was confirmed by the obtained broad-specific antibody. Based on this unique antibody, a highly sensitive multiplex competitive indirect enzyme-linked immunosorbent assay (ciELISA) was established with low limits of detection for bisacodyl, sodium picosulfate, and BHPM (0.23, 13.68, and 0.11 ng/mL). In spiked sample recovery test and real sample detection, this ciELISA exhibited acceptable consistency with the validation method, demonstrating high accuracy and applicability of our method. This reliable multiplex ciELISA proceeds the rapid screening of stimulant laxatives in slimming foods.
Asunto(s)
Ensayo de Inmunoadsorción Enzimática , Laxativos , Ensayo de Inmunoadsorción Enzimática/métodos , Laxativos/análisis , Límite de Detección , Contaminación de Alimentos/análisis , Animales , Anticuerpos/inmunología , Análisis de los Alimentos/métodos , Haptenos/química , Haptenos/inmunologíaRESUMEN
BACKGROUND: The combination of programmed cell death ligand-1 (PD-L1) immune checkpoint blockade (ICB) and immunogenic cell death (ICD)-inducing chemotherapy has shown promise in cancer immunotherapy. However, triple-negative breast cancer (TNBC) patients undergoing this treatment often face obstacles such as systemic toxicity and low response rates, primarily attributed to the immunosuppressive tumor microenvironment (TME). METHODS AND RESULTS: In this study, PD-L1-targeted theranostic systems were developed utilizing anti-PD-L1 peptide (APP) conjugated with a bio-orthogonal click chemistry group. Initially, TNBC was treated with azide-modified sugar to introduce azide groups onto tumor cell surfaces through metabolic glycoengineering. A PD-L1-targeted probe was developed to evaluate the PD-L1 status of TNBC using magnetic resonance/near-infrared fluorescence imaging. Subsequently, an acidic pH-responsive prodrug was employed to enhance tumor accumulation via bio-orthogonal click chemistry, which enhances PD-L1-targeted ICB, the pH-responsive DOX release and induction of pyroptosis-mediated ICD of TNBC. Combined PD-L1-targeted chemo-immunotherapy effectively reversed the immune-tolerant TME and elicited robust tumor-specific immune responses, resulting in significant inhibition of tumor progression. CONCLUSIONS: Our study has successfully engineered a bio-orthogonal multifunctional theranostic system, which employs bio-orthogonal click chemistry in conjunction with a PD-L1 targeting strategy. This innovative approach has been demonstrated to exhibit significant promise for both the targeted imaging and therapeutic intervention of TNBC.
Asunto(s)
Antígeno B7-H1 , Química Clic , Inmunoterapia , Piroptosis , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Antígeno B7-H1/metabolismo , Animales , Femenino , Inmunoterapia/métodos , Ratones , Piroptosis/efectos de los fármacos , Humanos , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacos , Ratones Endogámicos BALB C , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/uso terapéutico , Imagen Óptica/métodos , Profármacos/química , Profármacos/farmacologíaRESUMEN
The most frequent primary brain tumor in adults is glioma, yet no effective curative treatments are currently available. Our previous study demonstrated the enhancing effects of JARID2 on glioma sensitivity to TMZ treatment. In this study, miR-155 is predicted to target JARID2. miR-155 is overexpressed in clinical glioma specimens and cell lines. miR-155 overexpression in glioma cells enhances cell viability and represses cell apoptosis. Through targeting, miR-155 inhibits JARID2 expression. miR-155 inhibition inhibits glioma cell viability and enhances cell apoptosis, whereas JARID2 knockdown enhances cell viability and inhibits cell apoptosis; JARID2 knockdown partially reverses miR-155 inhibition effects on glioma phenotypes. miR-155 inhibition reduces but knockdown of JARID2 promotes the tumor formation ability of glioma cells in vivo. Valproic acid (VPA) upregulates JARID2 expression, inhibits glioma cell viability and enhances cell apoptosis. VPA downregulates the expression level of miR-155 by increasing the methylation level of the miR-155 promoter, suggesting that the miR-155/JARID2 axis is implicated in VPA inhibition of glioma cell viability and enhancement of glioma cell apoptosis. This study demonstrates a new mechanism of VPA treatment of gliomas by affecting the miR-155/JARID2 axis, which could be regarded as a new strategy for the prevention and treatment of glioma.
Asunto(s)
Neoplasias Encefálicas , Glioma , MicroARNs , Humanos , Ácido Valproico/farmacología , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/metabolismo , MicroARNs/metabolismo , Metilación , Proliferación Celular/genética , Apoptosis/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Regulación Neoplásica de la Expresión GénicaRESUMEN
Inhaling microplastics (MPs) and nanoplastics (NPs) in the air can damage lung function. Xenobiotics in the body can cause endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) activation alleviates ER stress. Degradation of unfolded or misfolded proteins is an important pathway for recovering cellular homeostasis. The UPR and protein degradation induced by MPs/NPs in lung tissues are not well understood. Here, we investigated the UPR and protein ubiquitination in the lungs of mice exposed to polystyrene (PS)-NPs and their possible molecular mechanisms leading to protein ubiquitination. Mice were intratracheally administered with 5.6, 17, and 51â¯mg/kg PS-NPs once for 24â¯h. Exposure to PS-NPs elevated protein ubiquitination in the lungs of mice in a dose-dependent manner. PS-NPs activated three branches of UPR including inositol-requiring protein 1α (IRE1α), eukaryotic translation initiator factor 2α (eIF2α), and activating transcription factor 6α (ATF6α) in the lungs of mice. However, activated IRE1α did not trigger X-box binding protein 1 (XBP1) mRNA splicing. Exposure to PS-NPs induced an increase in the levels of E3 ubiquitin ligase hydroxymethyl glutaryl-coenzyme A reductase degradation protein 1 (HRD1) and carboxy terminus of Hsc70 interacting protein (CHIP) in the lungs of mice and BEAS-2B cells. ATF6α siRNA inhibited the levels of HRD1 and CHIP proteins induced by PS-NPs in BEAS-2B cells. These results suggest that ATF6α plays a critical role in increasing ubiquitination of unfolded or misfolded proteins by alleviating PS-NPs induced ER stress through UPR to achieve ER homeostasis in the lungs of mice.
Asunto(s)
Pulmón , Microplásticos , Poliestirenos , Ubiquitinación , Respuesta de Proteína Desplegada , Animales , Ubiquitinación/efectos de los fármacos , Ratones , Respuesta de Proteína Desplegada/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Poliestirenos/toxicidad , Microplásticos/toxicidad , Masculino , Estrés del Retículo Endoplásmico/efectos de los fármacos , Nanopartículas/toxicidad , Ratones Endogámicos C57BLRESUMEN
Microplastics (MPs)/nanoplastics (NPs), as a source and vector of pathogenic bacteria, are widely distributed in the natural environments. Here, we investigated the combined effects of polystyrene NPs (PS-NPs) and lipopolysaccharides (LPS) on testicular function in mice for the first time. 24 male mice were randomly assigned into 4 groups, control, PS-NPs, LPS, and PS-NPs + LPS, respectively. Histological alterations of the testes were observed in mice exposed to PS-NPs, LPS or PS-NPs + LPS. Total sperm count, the levels of testosterone in plasma and testes, the expression levels of steroidogenic acute regulatory (StAR) decreased more remarkable in testes of mice treated with PS-NPs and LPS than the treatment with LPS or PS-NPs alone. Compared with PS-NPs treatment, LPS treatment induced more sever inflammatory response in testes of mice. Moreover, PS-NPs combined with LPS treatment increased the expression of these inflammatory factors more significantly than LPS treatment alone. In addition, PS-NPs or LPS treatment induced oxidative stress in testes of mice, but their combined effect is not significantly different from LPS treatment alone. These results suggest that PS-NPs exacerbate LPS-induced testicular dysfunction. Our results provide new evidence for the threats to male reproductive function induced by both NPs and bacterial infection in human health.
Asunto(s)
Nanopartículas , Testículo , Humanos , Animales , Masculino , Ratones , Lipopolisacáridos/toxicidad , Microplásticos , Plásticos , Poliestirenos/toxicidad , Semen , Inflamación/inducido químicamente , TestosteronaRESUMEN
The objective was to determine the prevalence of foodborne pathogens in food in Longnan City, Gansu Province, China. In this research, we conducted tests on baked foods, catering foods, meat, and fruits and vegetables sold in supermarkets, farmers' markets, restaurants, retail stores, street stalls, and school canteens from 2013 to 2022. We analyzed the variety of foodborne pathogens (Salmonella, Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, and diarrheagenic Escherichia coli) in different sites and food types. Once foodborne pathogens were detected in the sample, it was deemed unqualified. The total detection rates of foodborne pathogens were 1.559%, 3.349%, 1.980%, 1.040%, 3.383%, and 1.303% in food from supermarkets, farmers' markets, restaurants, retail stores, street stalls, and school canteens, respectively. No pathogenic bacteria were detected in baked foods. Salmonella, S. aureus, L. monocytogenes, B. cereus, and diarrheagenic E. coli were detected in catering foods, among which B. cereus had the highest detection rate. Salmonella was the most common pathogenic bacteria detected in meat, while the detection rate of pathogenic bacteria in fruits and vegetables was low, with only one positive sample for diarrheagenic E. coli. Among the six sites, street stalls (3.382%) and farmers' markets (3.349%) had higher detection rates of pathogens. In general, the detection rate of pathogens from 2013 to 2022 was not high, but there were also some hidden dangers. Catering food is vulnerable to pathogen contamination, and street stalls and farmers' markets are the main sites of pollution. According to the above findings, the regulatory authorities should continue to strengthen supervision, guarantee food safety through early warning, and reduce the risk of food contamination.
Asunto(s)
Escherichia coli , Listeria monocytogenes , Staphylococcus aureus , Microbiología de Alimentos , Contaminación de Alimentos/análisis , Salmonella , Verduras/microbiologíaRESUMEN
The Siberian Scoter (Melanitta stejnegeri) is a medium sea duck distinct from M. deglandi due to the absence of hybridization and differences in morphological characteristics. However, knowledge of its phylogenetic relationships within Anseriformes is limited due to a lack of molecular data. In this study, the complete mitogenome of M. stejnegeri was firstly sequenced, then annotated and used to reconstruct the phylogenetic relationships of 76 Anseriformes species. The complete mitogenome of M. stejnegeri is 16,631 bp and encodes 37 typical genes: 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and 1 non-coding control region. Its mitogenome organization is similar to that of other Anseriformes species. The phylogenetic relationships within the genus Melanitta are initially clarified, with M. americana at the base. M. stejnegeri and M. deglandi are sister groups, clustering with M. fusca and M. perspicillata in order. Phylogenetic analysis suggests that Mareca falcata and M. strepera are sister groups, differing from previous studies. Results firstly indicate that Clangula hyemalis and Somateria mollissima are sister groups, suggesting a potentially skewed phylogenetic relationship may have been overlooked in earlier analyses relying solely on mitochondrial genomes. Our results provide new mitogenome data to support further phylogenetic and taxonomic studies of Anseriformes.
Asunto(s)
Genoma Mitocondrial , Filogenia , Animales , ARN de Transferencia/genética , Anseriformes/genética , Anseriformes/clasificación , ARN Ribosómico/genética , Patos/genética , Patos/clasificaciónRESUMEN
OBJECTIVE: Patients undergoing oral and maxillofacial flap reconstruction often need blood transfusions due to massive blood loss. With the increasing limitations of allogeneic blood transfusion (ABT), doctors are considering acute normovolemic hemodilution (ANH) because of its advantages. By comparing the differences in the (Δ) blood indices and postoperative complications of patients receiving ABT or ANH during the reconstruction and repair of oral and maxillofacial tumor flaps, this study's purpose was to provide a reference for the clinical application of ANH. METHODS: The clinical data of 276 patients who underwent oral and maxillofacial flap reconstruction from September 25, 2017, to October 11, 2021, in the Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, were retrospectively analyzed. According to the intraoperative blood transfusion mode, the patients were divided into two groups: ABT and ANH. The differences in the (Δ) blood indices and the incidence of postoperative complications between the groups were analyzed. RESULTS: Among the 276 patients who had ANH (124/276) and ABT (152/276), there were no differences in (Δ) Hb, (Δ) PT, or (Δ) FIB (P > 0.05), while (Δ) WBC, (Δ) PLT, (Δ) APTT and (Δ) D-dimer were significantly different (P < 0.05). The blood transfusion method was not an independent factor for flap crisis (P > 0.05). The wound infection probability in patients with high post-PTs was 1.953 times greater than that in patients with low post-PTs (OR = 1.953, 95% CI: 1.232 â¼ 3.095, P = 0.004). A normal or overweight BMI was a protective factor for pulmonary infection, and the incidence of pulmonary infection in these patients was only 0.089 times that of patients with a low BMI (OR = 0.089, 95% CI: 0.017 â¼ 0.462). Moreover, a high ASA grade promoted the occurrence of pulmonary infection (OR = 6.373, 95% CI: 1.681 â¼ 24.163). The blood transfusion mode (B = 0.310, ß = 0.360, P < 0.001; ANH: ln hospital stay = 2.20 ± 0.37; ABT: ln hospital stay = 2.54 ± 0.42) improved the length of hospital stay. CONCLUSION: Preoperative and postoperative blood transfusion (Δ) Hb, (Δ) PT, and (Δ) FIB did not differ; (Δ) WBC, (Δ) PLT, (Δ) APTT, and (Δ) D-dimer did differ. There was no difference in the effects of the two blood transfusion methods on flap crisis, incision infection or lung infection after flap reconstruction, but ANH resulted in a 3.65 day shorter average hospital stay than did ABT.
Asunto(s)
Transfusión Sanguínea , Hemodilución , Procedimientos de Cirugía Plástica , Complicaciones Posoperatorias , Colgajos Quirúrgicos , Humanos , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Complicaciones Posoperatorias/etiología , Procedimientos de Cirugía Plástica/métodos , Procedimientos de Cirugía Plástica/efectos adversos , Transfusión Sanguínea/estadística & datos numéricos , Hemodilución/métodos , Adulto , Anciano , Procedimientos Quirúrgicos Orales/efectos adversos , Procedimientos Quirúrgicos Orales/métodos , Pérdida de Sangre QuirúrgicaRESUMEN
To deeply explore the intervention effects of ischelium on the cognitive memory decline in naturally aging mice and its potential mechanisms, we randomly divided mice into four groups: young control group (C), elderly group (M), ischelium low-dose group (L), and ischelium high-dose group (H). The experiment lasted for 12 weeks. We employed the Y-maze test, open field test, and conditioned fear test to evaluate the memory functions of each group. Through HE staining and electron microscopy, we observed morphological changes in the mouse hippocampus. RT-PCR was used to detect changes in the expression of factors related to cognitive function in the hippocampus of elderly mice. We analyzed the changes in the Nrf2/HO-1 pathway and the inflammatory factors IL-1ß and TNF-α using elisa. Additionally, we examined the enzymatic activities of SOD, CAT, GSH-Px, and MDA in the hippocampus and analyzed the compositional changes of gut microbiota in mice using 16S technology. Our results indicate that ischelium effectively ameliorates cognitive impairments in elderly mice.