Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 21(2): 247-258, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38200227

RESUMEN

RNA-binding proteins (RBPs) regulate diverse cellular processes by dynamically interacting with RNA targets. However, effective methods to capture both stable and transient interactions between RBPs and their RNA targets are still lacking, especially when the interaction is dynamic or samples are limited. Here we present an assay of reverse transcription-based RBP binding site sequencing (ARTR-seq), which relies on in situ reverse transcription of RBP-bound RNAs guided by antibodies to identify RBP binding sites. ARTR-seq avoids ultraviolet crosslinking and immunoprecipitation, allowing for efficient and specific identification of RBP binding sites from as few as 20 cells or a tissue section. Taking advantage of rapid formaldehyde fixation, ARTR-seq enables capturing the dynamic RNA binding by RBPs over a short period of time, as demonstrated by the profiling of dynamic RNA binding of G3BP1 during stress granule assembly on a timescale as short as 10 minutes.


Asunto(s)
ARN , Transcripción Reversa , ARN/genética , ARN/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Sitios de Unión/genética , Unión Proteica
2.
J Mol Cell Cardiol ; 187: 51-64, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38171043

RESUMEN

Senescence of vascular smooth muscle cells (VSMCs) is a key contributor to plaque vulnerability in atherosclerosis (AS), which is affected by endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) production. However, the crosstalk between ER stress and ROS production in the pathogenesis of VSMC senescence remains to be elucidated. ER-associated degradation (ERAD) is a complex process that clears unfolded or misfolded proteins to maintain ER homeostasis. HRD1 is the major E3 ligase in mammalian ERAD machineries that catalyzes ubiquitin conjugation to the unfolded or misfolded proteins for degradation. Our results showed that HRD1 protein levels were reduced in human AS plaques and aortic roots from ApoE-/- mice fed with high-fat diet (HFD), along with the increased ER stress response. Exposure to cholesterol in VSMCs activated inflammatory signaling and induced senescence, while reduced HRD1 protein expression. CRISPR Cas9-mediated HRD1 knockout (KO) exacerbated cholesterol- and thapsigargin-induced cell senescence. Inhibiting ER stress with 4-PBA (4-Phenylbutyric acid) partially reversed the ROS production and cell senescence induced by HRD1 deficiency in VSMCs, suggesting that ER stress alone could be sufficient to induce ROS production and senescence in VSMCs. Besides, HRD1 deficiency led to mitochondrial dysfunction, and reducing ROS production from impaired mitochondria partly reversed HRD1 deficiency-induced cell senescence. Finally, we showed that the overexpression of HDR1 reversed cholesterol-induced ER stress, ROS production, and cellular senescence in VSMCs. Our findings indicate that HRD1 protects against senescence by maintaining ER homeostasis and mitochondrial functionality. Thus, targeting HRD1 function may help to mitigate VSMC senescence and prevent vascular aging related diseases. TRIAL REGISTRATION: A real-world study based on the discussion of primary and secondary prevention strategies for coronary heart disease, URL:https://www.clinicaltrials.gov, the trial registration number is [2022]-02-121-01.


Asunto(s)
Aterosclerosis , Músculo Liso Vascular , Animales , Humanos , Ratones , Aterosclerosis/metabolismo , Senescencia Celular , Estrés del Retículo Endoplásmico/fisiología , Degradación Asociada con el Retículo Endoplásmico , Mamíferos/metabolismo , Músculo Liso Vascular/metabolismo , Proteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
Cancer Sci ; 115(10): 3466-3480, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39118482

RESUMEN

Corilagin (CLG) has antitumor activities in certain human malignant cancers. Herein, the effects and mechanisms of CLG on osteosarcoma (OS) were investigated. OS cell viability and proliferation were detected by MTT and colony formation assay. Cell cycle and apoptosis were examined using flow cytometry. The interaction between TRAF6 and FLT3 was investigated using a co-immunoprecipitation assay. Results demonstrated that CLG treatment inhibited OS cell viability and proliferation but promoted OS cell autophagy and apoptosis in a concentration-dependent manner. Mechanically, CLG inhibited TRAF6-mediated FLT3 ubiquitination degradation. TRAF6 overexpression abolished the effects of CLG on OS cell proliferation, autophagy, and apoptosis. Finally, CLG administration inhibited OS tumor growth in mice by inducing autophagy-dependent apoptosis. Taken together, CLG inhibited OS progression by facilitating mTOR/ULK1 pathway-mediated autophagy through inhibiting TRAF6-mediated FLT3 ubiquitination, which indicated that CLG was a promising candidate for the treatment of OS.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia , Autofagia , Proliferación Celular , Osteosarcoma , Factor 6 Asociado a Receptor de TNF , Serina-Treonina Quinasas TOR , Ubiquitinación , Tirosina Quinasa 3 Similar a fms , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia/efectos de los fármacos , Humanos , Animales , Ratones , Serina-Treonina Quinasas TOR/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Tirosina Quinasa 3 Similar a fms/metabolismo , Tirosina Quinasa 3 Similar a fms/genética , Osteosarcoma/metabolismo , Osteosarcoma/patología , Osteosarcoma/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Supervivencia Celular/efectos de los fármacos
4.
Cell Commun Signal ; 22(1): 275, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755602

RESUMEN

BACKGROUND: Diabetic retinopathy (DR) is a major cause of blindness and is characterized by dysfunction of the retinal microvasculature. Neutrophil stasis, resulting in retinal inflammation and the occlusion of retinal microvessels, is a key mechanism driving DR. These plugging neutrophils subsequently release neutrophil extracellular traps (NETs), which further disrupts the retinal vasculature. Nevertheless, the primary catalyst for NETs extrusion in the retinal microenvironment under diabetic conditions remains unidentified. In recent studies, cellular communication network factor 1 (CCN1) has emerged as a central molecule modulating inflammation in pathological settings. Additionally, our previous research has shed light on the pathogenic role of CCN1 in maintaining endothelial integrity. However, the precise role of CCN1 in microvascular occlusion and its potential interaction with neutrophils in diabetic retinopathy have not yet been investigated. METHODS: We first examined the circulating level of CCN1 and NETs in our study cohort and analyzed related clinical parameters. To further evaluate the effects of CCN1 in vivo, we used recombinant CCN1 protein and CCN1 overexpression for gain-of-function, and CCN1 knockdown for loss-of-function by intravitreal injection in diabetic mice. The underlying mechanisms were further validated on human and mouse primary neutrophils and dHL60 cells. RESULTS: We detected increases in CCN1 and neutrophil elastase in the plasma of DR patients and the retinas of diabetic mice. CCN1 gain-of-function in the retina resulted in neutrophil stasis, NETs extrusion, capillary degeneration, and retinal leakage. Pre-treatment with DNase I to reduce NETs effectively eliminated CCN1-induced retinal leakage. Notably, both CCN1 knockdown and DNase I treatment rescued the retinal leakage in the context of diabetes. In vitro, CCN1 promoted adherence, migration, and NETs extrusion of neutrophils. CONCLUSION: In this study, we uncover that CCN1 contributed to retinal inflammation, vessel occlusion and leakage by recruiting neutrophils and triggering NETs extrusion under diabetic conditions. Notably, manipulating CCN1 was able to hold therapeutic promise for the treatment of diabetic retinopathy.


Asunto(s)
Proteína 61 Rica en Cisteína , Retinopatía Diabética , Trampas Extracelulares , Neutrófilos , Animales , Femenino , Humanos , Masculino , Ratones , Proteína 61 Rica en Cisteína/metabolismo , Proteína 61 Rica en Cisteína/genética , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Retinopatía Diabética/patología , Retinopatía Diabética/metabolismo , Retinopatía Diabética/genética , Trampas Extracelulares/genética , Trampas Extracelulares/metabolismo , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Retina/patología , Retina/metabolismo
5.
Gastrointest Endosc ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111392

RESUMEN

BACKGROUND AND AIMS: Many gastrointestinal (GI) disorders and precancerous conditions often present asymptomatically, leading to delayed patient diagnoses and treatment interventions. This study aimed to develop a novel cable-transmission magnetically controlled capsule endoscopy (CT-MCCE) system for detecting GI diseases and assess its safety and feasibility through clinical trials. METHODS: This prospective, multicenter, trial compared CT-MCCE with conventional gastroscopy in patients aged 18-75 years with upper GI diseases between October 2022 and May 2023. The primary endpoints included the evaluation of sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) in the detection of focal lesions within the esophagus, stomach, and duodenal bulb using CT-MCCE. RESULTS: A total of 180 individuals (mean age: 43.1 years, 52.22% female) were recruited from three hospitals in China. CT-MCCE detected lesions in esophagus with 97.22% sensitivity, 100% specificity, a PPV of 100%, a NPV of 98.18%, and 98.89% accuracy. CT-MCCE detected gastric focal lesions in the whole stomach with 96.81% sensitivity, 98.84% specificity, a PPV of 98.91%, a NPV of 96.59%, and 97.78% accuracy. CT-MCCE detected lesions in the duodenal bulb with 100% sensitivity, 100% specificity, a PPV of 100%, a NPV of 100%, and 100% accuracy. There were no significant differences between CT-MCCE and EGD regarding the cleanliness of the upper GI tract and visibility of the upper GI mucosa. However, CT-MCCE was associated with a lower incidence of discomfort than EGD (P<0.001). CONCLUSIONS: The diagnostic performance of CT-MCCE is comparable to that of EGD in the completion of upper GI tract examinations and lesion detection. Furthermore, the improved tolerance of CT-MCCE in detecting upper GI diseases was noted without any observed adverse events.

6.
Nutr J ; 23(1): 62, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38862996

RESUMEN

INTRODUCTION: The Weight-Adjusted Waist Index (WWI) is a new indicator of obesity that is associated with all-cause mortality in Asian populations. Our study aimed to investigate the linear and non-linear associations between WWI and all-cause mortality in non-Asian populations in the United States, and whether WWI was superior to traditional obesity indicators as a predictor of all-cause mortality. METHODS: We conducted a cohort study using data from the 2011-2018 National Health and Nutrition Examination Survey (NHANES), involving 18,592 participants. We utilized Cox proportional hazard models to assess the association between WWI, BMI, WC, and the risk of all-cause mortality, and performed subgroup analyses and interaction tests. We also employed a receiver operating characteristics (ROC) curve study to evaluate the effectiveness of WWI, BMI, and WC in predicting all-cause mortality. RESULTS: After adjusting for confounders, WWI, BMI, and WC were positively associated with all-cause mortality. The performance of WWI, BMI, and WC in predicting all-cause mortality yielded AUCs of 0.697, 0.524, and 0.562, respectively. The data also revealed a U-shaped relationship between WWI and all-cause mortality. Race and cancer modified the relationship between WWI and all-cause mortality, with the relationship being negatively correlated in African Americans and cancer patients. CONCLUSIONS: In non-Asian populations in the United States, there is a U-shaped relationship between WWI and all-cause mortality, and WWI outperforms BMI and WC as a predictor of all-cause mortality. These findings may contribute to a better understanding and prediction of the relationship between obesity and mortality, and provide support for effective obesity management strategies.


Asunto(s)
Índice de Masa Corporal , Encuestas Nutricionales , Obesidad , Circunferencia de la Cintura , Humanos , Masculino , Femenino , Persona de Mediana Edad , Encuestas Nutricionales/métodos , Encuestas Nutricionales/estadística & datos numéricos , Estudios de Cohortes , Estados Unidos/epidemiología , Adulto , Obesidad/mortalidad , Mortalidad , Anciano , Peso Corporal , Factores de Riesgo , Causas de Muerte , Modelos de Riesgos Proporcionales
7.
Genomics ; 115(5): 110681, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37453476

RESUMEN

This study conducted a high-throughput sequencing analysis of the T- and B- repertoires in the newly diagnosed GDM patients and evaluated the association between abnormal adaptive immunity and GDM. The unique TCR CDR3 clonotypes were mildly decreased in GDM patients, and the similarity of TCR V-J distributions was higher in the GDM group. Moreover, the usages of the V gene and V-J pair and the frequency distributions of some CDR3 amino acids (AAs) both in BCR and TCR were significantly different between groups. Moreover, the cytokines including IL-4, IL-6, IFN-γ and IL-17A were synchronously elevated in the GDM cases. Our findings provide a comprehensive view of BCR and TCR repertoires at newly diagnosed GDM patients, revealing the mild reduction in unique TCRB CDR3 sequences and slight alteration of the V gene, V-J combination and CDR3 (AA) usages of BCR and TCR. This work provides deep insight into the mechanism of maternal adaptive immunity in GDM and provides novel diagnostic biomarkers and potential immunotherapy targets for GDM.

8.
Small ; 19(35): e2300403, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37104822

RESUMEN

Receptor-mediated vesicular transport has been extensively developed to penetrate the blood-brain barrier (BBB) and has emerged as a class of powerful brain-targeting delivery technologies. However, commonly used BBB receptors such as transferrin receptor and low-density lipoprotein receptor-related protein 1, are also expressed in normal brain parenchymal cells and can cause drug distribution in normal brain tissues and subsequent neuroinflammation and cognitive impairment. Here, the endoplasmic reticulum residing protein GRP94 is found upregulated and relocated to the cell membrane of both BBB endothelial cells and brain metastatic breast cancer cells (BMBCCs) by preclinical and clinical investigations. Inspired by that Escherichia coli penetrates the BBB via the binding of its outer membrane proteins with GRP94, avirulent DH5α outer membrane protein-coated nanocapsules (Omp@NCs) are developed to cross the BBB, avert normal brain cells, and target BMBCCs via recognizing GRP94. Embelin (EMB)-loaded Omp@EMB specifically reduce neuroserpin in BMBCCs, which inhibits vascular cooption growth and induces apoptosis of BMBCCs by restoring plasmin. Omp@EMB plus anti-angiogenic therapy prolongs the survival of mice with brain metastases. This platform holds the translational potential to maximize therapeutic effects on GRP94-positive brain diseases.


Asunto(s)
Neoplasias Encefálicas , Nanocápsulas , Ratones , Animales , Células Endoteliales/metabolismo , Biomimética , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Proteínas de la Membrana/metabolismo , Barrera Hematoencefálica/metabolismo
9.
Mol Cell Biochem ; 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38145449

RESUMEN

Phenotypic change of vascular smooth muscle cells (VSMCs) is the main contributor of vascular pathological remodeling in atherosclerosis. The endoplasmic reticulum (ER) is critical for maintaining VSMC function through elimination of misfolded proteins that impair VSMC cellular function. ER-associated degradation (ERAD) is an ER-mediated process that controls protein quality by clearing misfolded proteins. One of the critical regulators of ERAD is HRD1, which also plays a vital role in lipid metabolism. However, the function of HRD1 in VSMCs of atherosclerotic vessels remains poorly understood. The level of HRD1 expression was analyzed in aortic tissues of mice fed with a high-fat diet (HFD). The H&E and EVG (VERHOEFF'S VAN GIESON) staining were used to demonstrate pathological vascular changes. IF (immunofluorescence) and WB (western blot) were used to explore the signaling pathways in vivo and in vitro. The wound closure and transwell assays were also used to test the migration rate of VSMCs. CRISPR gene editing and transcriptomic analysis were applied in vitro to explore the cellular mechanism. Our data showed significant reduction of HRD1 in aortic tissues of mice under HFD feeding. VSMC phenotypic change and HRD1 downregulation were detected by cholesterol supplement. Transcriptomic and further analysis of HRD1-KO VSMCs showed that HRD1 deficiency induced the expression of genes related to ER stress response, proliferation and migration, but reduced the contractile-related genes in VSMCs. HRD1 deficiency also exacerbated the proliferation, migration and ROS production of VSMCs induced by cholesterol, which promoted the VSMC dedifferentiation. Our results showed that HRD1 played an essential role in the contractile homeostasis of VSMCs by negatively regulating ER stress response. Thus, HRD1 in VSMCs could serve as a potential therapeutic target in metabolic disorder-induced vascular remodeling.

10.
Pharmacol Res ; 187: 106585, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36455814

RESUMEN

Disturbed endoplasmic reticulum (ER) stress response driven by the excessive lipid accumulation in the liver is a characteristic feature in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Restoring metabolic homeostasis by targeting ER stress is a potentially therapeutic strategy for NAFLD. Here we aim to identify novel proteins or pathways involved in regulating ER stress response and therapeutic targets for alleviating NAFLD. Proteomic and transcriptomic analysis demonstrated that major urinary proteins (MUPs) were significantly reduced in the livers from NAFLD mouse models. Then we confirmed that MUP1, the major secreted form of MUPs, was reduced at mRNA and protein expression levels in hepatocytes both in vivo and in vitro under ER stress. We further illustrated that MUP1 protein levels in the urine were reduced in mice with NAFLD, which was reversed by GLP-1 receptor agonist treatment. To study the relationship between ER stress and MUP1 biology, our analysis demonstrated that MUP1 was misfolded and trapped in the ER under ER stress in vivo. Interestingly, we discovered that recombinant MUP1 treatment in hepatocytes increased calcium efflux from the ER, which resulted in transient ER stress response, including reduced protein synthesis. These responses facilitated the alleviation of chemical induced ER stress in hepatocytes, which was suggested as "pre-adaptive ER stress". Besides, recombinant MUP1 pretreatment also improved ER stress-induced insulin resistance in hepatocytes. Our findings revealed a novel and critical role of MUP1, and recombinant MUP1 or its potential derivates may serve as a promising therapeutic target for alleviating NAFLD.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Estrés del Retículo Endoplásmico , Hepatocitos , Metabolismo de los Lípidos , Hígado , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA