Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Cell ; 75(2): 394-407.e5, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31227230

RESUMEN

The structural diversity of glycans on cells-the glycome-is vast and complex to decipher. Glycan arrays display oligosaccharides and are used to report glycan hapten binding epitopes. Glycan arrays are limited resources and present saccharides without the context of other glycans and glycoconjugates. We used maps of glycosylation pathways to generate a library of isogenic HEK293 cells with combinatorially engineered glycosylation capacities designed to display and dissect the genetic, biosynthetic, and structural basis for glycan binding in a natural context. The cell-based glycan array is self-renewable and reports glycosyltransferase genes required (or blocking) for interactions through logical sequential biosynthetic steps, which is predictive of structural glycan features involved and provides instructions for synthesis, recombinant production, and genetic dissection strategies. Broad utility of the cell-based glycan array is demonstrated, and we uncover higher order binding of microbial adhesins to clustered patches of O-glycans organized by their presentation on proteins.


Asunto(s)
Ingeniería Genética , Redes y Vías Metabólicas/genética , Polisacáridos/química , Proteínas/genética , Epítopos/genética , Epítopos/inmunología , Glicosilación , Glicosiltransferasas/genética , Células HEK293 , Humanos , Oligosacáridos/genética , Polisacáridos/clasificación , Polisacáridos/genética , Polisacáridos/inmunología , Proteínas/inmunología
2.
J Biol Chem ; 296: 100448, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33617880

RESUMEN

Advances in nuclease-based gene-editing technologies have enabled precise, stable, and systematic genetic engineering of glycosylation capacities in mammalian cells, opening up a plethora of opportunities for studying the glycome and exploiting glycans in biomedicine. Glycoengineering using chemical, enzymatic, and genetic approaches has a long history, and precise gene editing provides a nearly unlimited playground for stable engineering of glycosylation in mammalian cells to explore and dissect the glycome and its many biological functions. Genetic engineering of glycosylation in cells also brings studies of the glycome to the single cell level and opens up wider use and integration of data in traditional omics workflows in cell biology. The last few years have seen new applications of glycoengineering in mammalian cells with perspectives for wider use in basic and applied glycosciences, and these have already led to discoveries of functions of glycans and improved designs of glycoprotein therapeutics. Here, we review the current state of the art of genetic glycoengineering in mammalian cells and highlight emerging opportunities.


Asunto(s)
Ingeniería Genética , Animales , Edición Génica , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glicoproteínas/metabolismo , Glicosilación , Humanos , Mamíferos , Polisacáridos/metabolismo
3.
Cell Mol Life Sci ; 78(21-22): 6963-6978, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34586443

RESUMEN

The endogenous chemokines CCL19 and CCL21 signal via their common receptor CCR7. CCL21 is the main lymph node homing chemokine, but a weak chemo-attractant compared to CCL19. Here we show that the 41-amino acid positively charged peptide, released through C-terminal cleavage of CCL21, C21TP, boosts the immune cell recruiting activity of CCL21 by up to 25-fold and the signaling activity via CCR7 by ~ 100-fold. Such boosting is unprecedented. Despite the presence of multiple basic glycosaminoglycan (GAG) binding motifs, C21TP boosting of CCL21 signaling does not involve interference with GAG mediated cell-surface retention. Instead, boosting is directly dependent on O-glycosylations in the CCR7 N-terminus. As dictated by the two-step binding model, the initial chemokine binding involves interaction of the chemokine fold with the receptor N-terminus, followed by insertion of the chemokine N-terminus deep into the receptor binding pocket. Our data suggest that apart from a role in initial chemokine binding, the receptor N-terminus also partakes in a gating mechanism, which could give rise to a reduced ligand activity, presumably through affecting the ligand positioning. Based on experiments that support a direct interaction of C21TP with the glycosylated CCR7 N-terminus, we propose that electrostatic interactions between the positively charged peptide and sialylated O-glycans in CCR7 N-terminus may create a more accessible version of the receptor and thus guide chemokine docking to generate a more favorable chemokine-receptor interaction, giving rise to the peptide boosting effect.


Asunto(s)
Quimiocina CCL21/metabolismo , Células Dendríticas/metabolismo , Ganglios Linfáticos/metabolismo , Receptores CCR7/metabolismo , Receptores Mensajeros de Linfocitos/metabolismo , Transducción de Señal/fisiología , Animales , Células CHO , Células Cultivadas , Cricetulus , Glicosilación , Humanos , Ligandos , Péptidos/metabolismo , Unión Proteica/fisiología , Electricidad Estática
4.
Nat Methods ; 15(11): 881-888, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30104636

RESUMEN

Glycosaminoglycans (GAGs) are essential polysaccharides in normal physiology and disease. However, understanding of the contribution of specific GAG structures to specific biological functions is limited, largely because of the great structural heterogeneity among GAGs themselves, as well as technical limitations in the structural characterization and chemical synthesis of GAGs. Here we describe a cell-based method to produce and display distinct GAGs with a broad repertoire of modifications, a library we refer to as the GAGOme. By using precise gene editing, we engineered a large panel of Chinese hamster ovary cells with knockout or knock-in of the genes encoding most of the enzymes involved in GAG biosynthesis, to generate a library of isogenic cell lines that differentially display distinct GAG features. We show that this library can be used for cell-based binding assays, recombinant expression of proteoglycans with distinct GAG structures, and production of distinct GAG chains on metabolic primers that may be used for the assembly of GAG glycan microarrays.


Asunto(s)
Regulación de la Expresión Génica , Biblioteca de Genes , Glicómica/métodos , Glicosaminoglicanos/metabolismo , Proteoglicanos/metabolismo , Animales , Células CHO , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cricetinae , Cricetulus
5.
Glycobiology ; 28(5): 295-305, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29315387

RESUMEN

Over 200 glycosyltransferases are involved in the orchestration of the biosynthesis of the human glycome, which is comprised of all glycan structures found on different glycoconjugates in cells. The glycome is vast, and despite advancements in analytic strategies it continues to be difficult to decipher biological roles of glycans with respect to specific glycan structures, type of glycoconjugate, particular glycoproteins, and distinct glycosites on proteins. In contrast to this, the number of glycosyltransferase genes involved in the biosynthesis of the human glycome is manageable, and the biosynthetic roles of most of these enzymes are defined or can be predicted with reasonable confidence. Thus, with the availability of the facile CRISPR/Cas9 gene editing tool it now seems easier to approach investigation of the functions of the glycome through genetic dissection of biosynthetic pathways, rather than by direct glycan analysis. However, obstacles still remain with design and validation of efficient gene targeting constructs, as well as with the interpretation of results from gene targeting and the translation of gene function to glycan structures. This is especially true for glycosylation steps covered by isoenzyme gene families. Here, we present a library of validated high-efficiency gRNA designs suitable for individual and combinatorial targeting of the human glycosyltransferase genome together with a global view of the predicted functions of human glycosyltransferases to facilitate and guide gene targeting strategies in studies of the human glycome.


Asunto(s)
Sistemas CRISPR-Cas/genética , Biblioteca de Genes , Glicosiltransferasas/genética , ARN Guía de Kinetoplastida/genética , Glicosiltransferasas/metabolismo , Células HEK293 , Humanos , ARN Guía de Kinetoplastida/metabolismo , Reproducibilidad de los Resultados
6.
Glycobiology ; 28(7): 542-549, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29596681

RESUMEN

Precise gene editing technologies are providing new opportunities to stably engineer host cells for recombinant production of therapeutic glycoproteins with different glycan structures. The glycosylation of recombinant therapeutics has long been a focus for both quality and consistency of products and for optimizing and improving pharmacokinetic properties as well as bioactivity. Structures of glycans on therapeutic glycoproteins are important for circulation, biodistribution and bioactivity. In particular, the latter has been demonstrated for therapeutic IgG1 antibodies where the core α1,6Fucose on the conserved N-glycan at Asn297 have remarkable dampening effects on antibody effector functions. We previously explored precise gene engineering and design options for N-glycosylation in CHO cells, and here we focus on engineering options possible for N-glycans on human IgG1. We demonstrate stable precise gene engineering of rather homogenous biantennary N-glycans with and without galactose (G0F, G2F) as well as the α2,6-linked monosialylated (G2FS1) glycoform. We were unable to introduce substantial disialylated glycoforms. Instead we engineered a novel monoantennary homogeneous N-glycan design with complete α2,6-linked sialic acid capping. All N-glycoforms may be engineered with and without core α1,6Fucose. The stably engineered design options enable production of human IgG antibodies with an array of distinct glycoforms for testing and selection of optimal design for different therapeutic applications.


Asunto(s)
Edición Génica/métodos , Inmunoglobulina G/genética , Procesamiento Proteico-Postraduccional , Animales , Células CHO , Cricetinae , Cricetulus , Glicosilación , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Polisacáridos/metabolismo
7.
Front Bioeng Biotechnol ; 11: 1128371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911201

RESUMEN

Currently available enzyme replacement therapies for lysosomal storage diseases are limited in their effectiveness due in part to short circulation times and suboptimal biodistribution of the therapeutic enzymes. We previously engineered Chinese hamster ovary (CHO) cells to produce α-galactosidase A (GLA) with various N-glycan structures and demonstrated that elimination of mannose-6-phosphate (M6P) and conversion to homogeneous sialylated N-glycans prolonged circulation time and improved biodistribution of the enzyme following a single-dose infusion into Fabry mice. Here, we confirmed these findings using repeated infusions of the glycoengineered GLA into Fabry mice and further tested whether this glycoengineering approach, Long-Acting-GlycoDesign (LAGD), could be implemented on other lysosomal enzymes. LAGD-engineered CHO cells stably expressing a panel of lysosomal enzymes [aspartylglucosamine (AGA), beta-glucuronidase (GUSB), cathepsin D (CTSD), tripeptidyl peptidase (TPP1), alpha-glucosidase (GAA) or iduronate 2-sulfatase (IDS)] successfully converted all M6P-containing N-glycans to complex sialylated N-glycans. The resulting homogenous glycodesigns enabled glycoprotein profiling by native mass spectrometry. Notably, LAGD extended the plasma half-life of all three enzymes tested (GLA, GUSB, AGA) in wildtype mice. LAGD may be widely applicable to lysosomal replacement enzymes to improve their circulatory stability and therapeutic efficacy.

8.
Nat Commun ; 14(1): 7000, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919266

RESUMEN

Viral and host glycans represent an understudied aspect of host-pathogen interactions, despite potential implications for treatment of viral infections. This is due to lack of easily accessible tools for analyzing glycan function in a meaningful context. Here we generate a glycoengineered keratinocyte library delineating human glycosylation pathways to uncover roles of specific glycans at different stages of herpes simplex virus type 1 (HSV-1) infectious cycle. We show the importance of cellular glycosaminoglycans and glycosphingolipids for HSV-1 attachment, N-glycans for entry and spread, and O-glycans for propagation. While altered virion surface structures have minimal effects on the early interactions with wild type cells, mutation of specific O-glycosylation sites affects glycoprotein surface expression and function. In conclusion, the data demonstrates the importance of specific glycans in a clinically relevant human model of HSV-1 infection and highlights the utility of genetic engineering to elucidate the roles of specific viral and cellular carbohydrate structures.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/genética , Herpes Simple/genética , Glicoproteínas/metabolismo , Queratinocitos/metabolismo , Polisacáridos/metabolismo , Proteínas del Envoltorio Viral/metabolismo
9.
ACS Cent Sci ; 8(5): 527-545, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35647275

RESUMEN

Heparan sulfate (HS) is a cell surface polysaccharide recently identified as a coreceptor with the ACE2 protein for the S1 spike protein on SARS-CoV-2 virus, providing a tractable new therapeutic target. Clinically used heparins demonstrate an inhibitory activity but have an anticoagulant activity and are supply-limited, necessitating alternative solutions. Here, we show that synthetic HS mimetic pixatimod (PG545), a cancer drug candidate, binds and destabilizes the SARS-CoV-2 spike protein receptor binding domain and directly inhibits its binding to ACE2, consistent with molecular modeling identification of multiple molecular contacts and overlapping pixatimod and ACE2 binding sites. Assays with multiple clinical isolates of SARS-CoV-2 virus show that pixatimod potently inhibits the infection of monkey Vero E6 cells and physiologically relevant human bronchial epithelial cells at safe therapeutic concentrations. Pixatimod also retained broad potency against variants of concern (VOC) including B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Furthermore, in a K18-hACE2 mouse model, pixatimod significantly reduced SARS-CoV-2 viral titers in the upper respiratory tract and virus-induced weight loss. This demonstration of potent anti-SARS-CoV-2 activity tolerant to emerging mutations establishes proof-of-concept for targeting the HS-Spike protein-ACE2 axis with synthetic HS mimetics and provides a strong rationale for clinical investigation of pixatimod as a potential multimodal therapeutic for COVID-19.

10.
Front Pharmacol ; 12: 660490, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421587

RESUMEN

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic has caused a significant number of fatalities and worldwide disruption. To identify drugs to repurpose to treat SARS-CoV-2 infections, we established a screen to measure the dimerization of angiotensin-converting enzyme 2 (ACE2), the primary receptor for the virus. This screen identified fenofibric acid, the active metabolite of fenofibrate. Fenofibric acid also destabilized the receptor-binding domain (RBD) of the viral spike protein and inhibited RBD binding to ACE2 in enzyme-linked immunosorbent assay (ELISA) and whole cell-binding assays. Fenofibrate and fenofibric acid were tested by two independent laboratories measuring infection of cultured Vero cells using two different SARS-CoV-2 isolates. In both settings at drug concentrations, which are clinically achievable, fenofibrate and fenofibric acid reduced viral infection by up to 70%. Together with its extensive history of clinical use and its relatively good safety profile, this study identifies fenofibrate as a potential therapeutic agent requiring an urgent clinical evaluation to treat SARS-CoV-2 infection.

11.
Comput Struct Biotechnol J ; 19: 2806-2818, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968333

RESUMEN

SARS-CoV-2 has rapidly spread throughout the world's population since its initial discovery in 2019. The virus infects cells via a glycosylated spike protein located on its surface. The protein primarily binds to the angiotensin-converting enzyme-2 (ACE2) receptor, using glycosaminoglycans (GAGs) as co-receptors. Here, we performed bioinformatics and molecular dynamics simulations of the spike protein to investigate the existence of additional GAG binding sites on the receptor-binding domain (RBD), separate from previously reported heparin-binding sites. A putative GAG binding site in the N-terminal domain (NTD) of the protein was identified, encompassing residues 245-246. We hypothesized that GAGs of a sufficient length might bridge the gap between this site and the PRRARS furin cleavage site, including the mutation S247R. Docking studies using GlycoTorch Vina and subsequent MD simulations of the spike trimer in the presence of dodecasaccharides of the GAGs heparin and heparan sulfate supported this possibility. The heparan sulfate chain bridged the gap, binding the furin cleavage site and S247R. In contrast, the heparin chain bound the furin cleavage site and surrounding glycosylation structures, but not S247R. These findings identify a site in the spike protein that favors heparan sulfate binding that may be particularly pertinent for a better understanding of the recent UK and South African strains. This will also assist in future targeted therapy programs that could include repurposing clinical heparan sulfate mimetics.

12.
Sci Adv ; 7(52): eabl6026, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34936441

RESUMEN

Heparan sulfate (HS) polysaccharides are master regulators of diverse biological processes via sulfated motifs that can recruit specific proteins. 3-O-sulfation of HS/heparin is crucial for anticoagulant activity, but despite emerging evidence for roles in many other functions, a lack of tools for deciphering structure-function relationships has hampered advances. Here, we describe an approach integrating synthesis of 3-O-sulfated standards, comprehensive HS disaccharide profiling, and cell engineering to address this deficiency. Its application revealed previously unseen differences in 3-O-sulfated profiles of clinical heparins and 3-O-sulfotransferase (HS3ST)­specific variations in cell surface HS profiles. The latter correlated with functional differences in anticoagulant activity and binding to platelet factor 4 (PF4), which underlies heparin-induced thrombocytopenia, a known side effect of heparin. Unexpectedly, cells expressing the HS3ST4 isoenzyme generated HS with potent anticoagulant activity but weak PF4 binding. The data provide new insights into 3-O-sulfate structure-function and demonstrate proof of concept for tailored cell-based synthesis of next-generation heparins.

13.
Br J Pharmacol ; 178(3): 626-635, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33125711

RESUMEN

BACKGROUND AND PURPOSE: Currently, there are no licensed vaccines and limited antivirals for the treatment of COVID-19. Heparin (delivered systemically) is currently used to treat anticoagulant anomalies in COVID-19 patients. Additionally, in the United Kingdom, Brazil and Australia, nebulised unfractionated heparin (UFH) is being trialled in COVID-19 patients as a potential treatment. A systematic comparison of the potential antiviral effect of various heparin preparations on live wild type SARS-CoV-2, in vitro, is needed. EXPERIMENTAL APPROACH: Seven different heparin preparations including UFH and low MW heparins (LMWH) of porcine or bovine origin were screened for antiviral activity against live SARS-CoV-2 (Australia/VIC01/2020) using a plaque inhibition assay with Vero E6 cells. Interaction of heparin with spike protein RBD was studied using differential scanning fluorimetry and the inhibition of RBD binding to human ACE2 protein using elisa assays was examined. KEY RESULTS: All the UFH preparations had potent antiviral effects, with IC50 values ranging between 25 and 41 µg·ml-1 , whereas LMWHs were less inhibitory by ~150-fold (IC50 range 3.4-7.8 mg·ml-1 ). Mechanistically, we observed that heparin binds and destabilizes the RBD protein and furthermore, we show heparin directly inhibits the binding of RBD to the human ACE2 protein receptor. CONCLUSION AND IMPLICATIONS: This comparison of clinically relevant heparins shows that UFH has significantly stronger SARS-CoV-2 antiviral activity compared to LMWHs. UFH acts to directly inhibit binding of spike protein to the human ACE2 protein receptor. Overall, the data strongly support further clinical investigation of UFH as a potential treatment for patients with COVID-19.


Asunto(s)
Heparina/farmacología , SARS-CoV-2/crecimiento & desarrollo , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Antivirales/farmacología , Chlorocebus aethiops , Heparina/metabolismo , Heparina/uso terapéutico , Heparina de Bajo-Peso-Molecular/farmacología , Unión Proteica/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Ensayo de Placa Viral , Tratamiento Farmacológico de COVID-19
14.
Hu Li Za Zhi ; 56(3): 57-65, 2009 Jun.
Artículo en Zh | MEDLINE | ID: mdl-19472113

RESUMEN

Drug administration error in the hospital ward is an ever-present problem and an all-too-frequent occurrence. Such errors are often made by nurses who fail to follow relevant nursing standards. The aim of this article was to describe an adverse event of chemotherapy-related medication error that happened in an academic hospital located in central Taiwan. The authors and their colleagues used root cause analysis to survey the adverse event and to suggest ways to improve the accuracy of nurse chemotherapy medication administration. We investigated medication administration of chemotherapy made by nurses between February 24th and 26th, 2008, and found that a number of nurses failed to administer medication properly. Based on data analysis, root causes were identified as: (1) directed prescriptions were unclear, (2) chemotherapy medication administration lacked protocol guidance, (3) education was insufficient and (4) computer systems were inadequately designed. Based on a literature review and matrix analysis, the task force identified four major categories in which improvements were needed. These included: (1) prescription promotion, (2) protocol development and standardization, (3) education for healthcare practitioners and (4) improvement of computer systems. After improvements were put into practices, the accuracy of chemotherapy medication administration by nurses increased to 100%. We shared the promotion experience with clinical managers to analyze and avoid adverse events.


Asunto(s)
Antineoplásicos/uso terapéutico , Errores de Medicación/prevención & control , Sistemas de Medicación en Hospital , Personal de Enfermería en Hospital , Humanos
15.
Nat Commun ; 10(1): 1785, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31040271

RESUMEN

Lysosomal replacement enzymes are essential therapeutic options for rare congenital lysosomal enzyme deficiencies, but enzymes in clinical use are only partially effective due to short circulatory half-life and inefficient biodistribution. Replacement enzymes are primarily taken up by cell surface glycan receptors, and glycan structures influence uptake, biodistribution, and circulation time. It has not been possible to design and systematically study effects of different glycan features. Here we present a comprehensive gene engineering screen in Chinese hamster ovary cells that enables production of lysosomal enzymes with N-glycans custom designed to affect key glycan features guiding cellular uptake and circulation. We demonstrate distinct circulation time and organ distribution of selected glycoforms of α-galactosidase A in a Fabry disease mouse model, and find that an α2-3 sialylated glycoform designed to eliminate uptake by the mannose 6-phosphate and mannose receptors exhibits improved circulation time and targeting to hard-to-reach organs such as heart. The developed design matrix and engineered CHO cell lines enables systematic studies towards improving enzyme replacement therapeutics.


Asunto(s)
Lisosomas/enzimología , Animales , Células CHO , Cricetinae , Cricetulus , Modelos Animales de Enfermedad , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/enzimología , Enfermedad de Fabry/metabolismo , Glicosilación , Masculino , Ratones , Ratones Noqueados , Proteínas Recombinantes/uso terapéutico , alfa-Galactosidasa/uso terapéutico
16.
Cell Death Discov ; 4: 25, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30109144

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) has been shown to play a critical role in the maintenance of cancer stem cells (CSCs). Hence, the inhibition of STAT3 signaling has been suggested to be a viable therapeutic approach for cancers. Moreover, the efficacy of combinations of chemotherapeutic drugs and napabucasin, a small-molecule STAT3 inhibitor, have been assessed in various clinical trials, including those involving patients with metastatic colorectal cancer (CRC). Two recently developed small-molecule STAT3 inhibitors, SC-43 and SC-78, which can stimulate SHP-1 to inactivate STAT3, were found to have anti-tumor activity. In this study, the inhibitory effects of SC-43, SC-78, and regorafenib (a reference drug) on cell viability, STAT3 phosphorylation, and various stemness properties [e.g., sphere-forming and soft agar colony-forming abilities, CD133+/CD44+ (stem cell-like) subpopulations, and the expression of several CSC markers] were examined for both HCT-116 and HT-29 human CRC cells. We found that SC-43 and SC-78 but not regorafenib inhibited constitutive and IL-6-induced STAT3 phosphorylation in HCT-116 and HT-29 cells, respectively. Moreover, SC-43 and SC-78 were more potent than regorafenib in suppressing the stemness properties (except stem cell-like subpopulations) of these cells. As expected, SHP-1 knockdown almost completely abolished the suppressive effects of SC-43 and SC-78 on the sphere formation in both cell lines. Furthermore, SC-43 and SC-78 showed synergistic inhibitory effects with oxaliplatin and/or irinotecan on sphere formation. Overall, our results suggest that SC-43 and SC-78 are potent STAT3 inhibitors that may potentially be used in combination therapy for CRC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA