Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(8): 2596-2602, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38251930

RESUMEN

Sepsis, a life-threatening inflammatory response, demands economical, accurate, and rapid detection of biomarkers during the critical "golden hour" to reduce the patient mortality rate. Here, we demonstrate a cost-effective waveguide-enhanced nanogold-linked immunosorbent assay (WENLISA) based on nanoplasmonic waveguide biosensors for the rapid and sensitive detection of procalcitonin (PCT), a sepsis-related inflammatory biomarker. To enhance the limit of detection (LOD), we employed sandwich assays using immobilized capture antibodies and detection antibodies conjugated to gold nanoparticles to bind the target analyte, leading to a significant evanescent wave redistribution and strong nanoplasmonic absorption near the waveguide surface. Experimentally, we detected PCT for a wide linear response range of 0.1 pg/mL to 1 ng/mL with a record-low LOD of 48.7 fg/mL (3.74 fM) in 8 min. Furthermore, WENLISA has successfully identified PCT levels in the blood plasma of patients with sepsis and healthy individuals, offering a promising technology for early sepsis diagnosis.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Sepsis , Humanos , Polipéptido alfa Relacionado con Calcitonina , Inmunoadsorbentes , Oro , Sepsis/diagnóstico , Biomarcadores , Anticuerpos Inmovilizados
2.
Small ; 19(2): e2203881, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36404110

RESUMEN

Carbon@titania yolk-shell nanostructures are successfully synthesized at different calcination conditions. These unique structure nanomaterials can be used as a photocatalyst to degrade the emerging water pollutant, acetaminophen (paracetamol). The photodegradation analysis studies have shown that the samples with residual carbon nanospheres have improved the photocatalytic efficiency. The local electronic and atomic structure of the nanostructures are analyzed by X-ray absorption spectroscopy (XAS) measurements. The spectra confirm that the hollow shell has an anatase phase structure, slight lattice distortion, and variation in Ti 3d orbital orientation. In situ XAS measurements reveal that the existence of amorphous carbon nanospheres inside the nano spherical shell inhibit the recombination of electron-hole pairs; more mobile holes are formed in the p-d hybridized bands near the Fermi surface and enables the acceleration of the carries that significantly enhance the photodegradation of paracetamol under UV-visible irradiation. The observed charge transfer process from TiO2  hybridized orbital to the carbon nanospheres reduces the recombination rate of electrons and holes, thus increasing the photocatalytic efficiency.


Asunto(s)
Carbono , Nanoestructuras , Fotólisis , Carbono/química , Acetaminofén , Espectroscopía de Absorción de Rayos X , Catálisis , Nanoestructuras/química
3.
ACS Appl Mater Interfaces ; 15(40): 47715-47724, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37769228

RESUMEN

Quasi van der Waals epitaxy is an approach to constructing the combination of 2D and 3D materials. Here, we quantify and discuss the 2D/3D interface structure and the corresponding features in metal/muscovite systems. High-resolution scanning transmission electron microscopy reveals the atomic arrangement at the interface. The theoretical results explain the formation mechanism and predict the mechanical robustness of these metal/muscovite quasi van der Waals epitaxies. The evidence of superior interface quality is delivered according to the outstanding performance of the designed systems in both retention (>105 s) and cycling tests (>105 cycles) through electromechanical measurements. With high-temperature X-ray reciprocal space mapping, the unique anisotropy of thermal expansion is discovered and predicted to sustain the thermal stress with a sizable thermal actuation. A maximum bending curvature of 264 m-1 at 243 °C can be obtained in the silver/muscovite heteroepitaxy. The electrothermal and photothermal methods show a fast response to thermal stress and demonstrate the interface robustness.

4.
Nanomaterials (Basel) ; 12(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36364533

RESUMEN

We fabricated a gas sensor with a wide-bandgap ZnGa2O4 (ZGO) epilayer grown on a sapphire substrate by metalorganic chemical vapor deposition. The ZGO presented (111), (222) and (333) phases demonstrated by an X-ray diffraction system. The related material characteristics were also measured by scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. This ZGO gas sensor was used to detect nitric oxide (NO) in the parts-per-billion range. In this study, the structure effect on the response of the NO gas sensor was studied by altering the sensor dimensions. Two approaches were adopted to prove the dimension effect on the sensing mechanism. In the first approach, the sensing area of the sensors was kept constant while both channel length (L) and width (W) were varied with designed dimensions (L × W) of 60 × 200, 80 × 150, and 120 ×100 µm2. In the second, the dimensions of the sensing area were altered (60, 40, and 20 µm) with W kept constant. The performance of the sensors was studied with varying gas concentrations in the range of 500 ppb~10 ppm. The sensor with dimensions of 20 × 200 µm2 exhibited a high response of 11.647 in 10 ppm, and 1.05 in 10 ppb for NO gas. The sensor with a longer width and shorter channel length exhibited the best response. The sensing mechanism was provided to explain the above phenomena. Furthermore, the reaction between NO and the sensor surface was simulated by O exposure of the ZGO surface in air and calculated by first principles.

5.
Nanomaterials (Basel) ; 9(11)2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31671883

RESUMEN

This study presents the preparation, characterization, and properties of a new composite containing cerium oxide nanoparticles and a conjugated polymer. CeO2 nanoparticles prepared using the co-precipitation method were dispersed into the conjugated polymer, prepared using the palladium-catalyzed Suzuki-Miyaura cross-coupling reaction. The interface interactions between the two components and the resultant optoelectronic properties of the composite are demonstrated. According to transmission electron microscopy and X-ray absorption spectroscopy, the dispersion of CeO2 nanoparticles in the polymer matrix strongly depends on the CeO2 nanoparticle concentration and results in different degrees of charge transfer. The photo-induced charge transfer and recombination processes were studied using steady-state optical spectroscopy, which shows a significant fluorescence quenching and red shifting in the composite. The higher photo-activity of the composite as compared to the single components was observed and explained. Unexpected room temperature ferromagnetism was observed in both components and all composites, of which the origin was attributed to the topology and defects.

6.
Nanoscale ; 11(8): 3574-3582, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30663762

RESUMEN

We investigate the role of interfaces and surfaces in the magnetic and surface enhanced Raman spectroscopy (SERS) properties of CeO2 hollow spheres decorated with Ag nanoparticles (H-CeO2@Ag). The composites, H-CeO2@Ag, were synthesized using a newly developed two-step process. The CeO2 hollow sphere diameter ranges from 100 nm to 2 µm and the grafted Ag nanoparticle (NP) size varies from 5 to 50 nm with a controllable coverage ratio. Spectroscopic and microscopic characterization confirms the formation of an interface between the Ag and ceria and shows different charge rearrangements occurring at both the interface and the surface. Room temperature ferro-magnetism was observed in all composites, and is associated mostly with ceria surface defects. A strong SERS effect was reported with a detection limit down to 10-14 M for the rhodamine 6G analyte. Scanning transmission electron microscopy and electron energy loss spectroscopy investigation reveals that hot-spots are associated with the silver NP surfaces and also with the Ag/CeO2 interface. This interfacial hot spot occurs for metallic particles above 30 nm and is strongly red shifted with respect to the Ag surface plasmon. The strong SERS activity is then attributed to the presence of several types of hot-spots and the geometrical features (buoyant hollow sphere and size dispersion) of the composite.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA